1
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Yadav KS, Upadhya A, Misra A. Targeted drug therapy in nonsmall cell lung cancer: clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin Drug Deliv 2020; 18:103-118. [PMID: 33017541 DOI: 10.1080/17425247.2021.1832989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Nonsmall cell lung cancer (NSCLC) accounts for 80-85% of the cases of lung cancer. The conventional therapeutic effective dosage forms used to treat NSCLC are associated with rigid administration schedules, adverse effects, and may be associated with acquired resistance to therapy. Nanocarriers may provide a suitable alternative to regular formulations to overcome inherent drawbacks and provide better treatment modalities for the patient. AREAS COVERED The article explores the application of drug loaded nanocarriers for lung cancer treatment. Drug-loaded nanocarriers can be modified to achieve controlled delivery at the desired tumor infested site. The type of nanocarriers employed are diverse based on polymers, liposomes, metals and a combination of two or more different base materials (hybrids). These may be designed for systemic delivery or local delivery to the lung compartment (via inhalation). EXPERT OPINION Nanocarriers can improve pharmacokinetics of the drug payload by improving its delivery to the desired location and can reduce associated systemic toxicities. Through nanocarriers, a wide variety of therapeutics can be administered and targeted to the cancerous site. Some examples of the utilities of nanocarriers are codelivery of drugs, gene delivery, and delivery of other biologics. Overall, the nanocarriers have promising potential in improving therapeutic efficacy of drugs used in NSCLC.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Svkm's Nmims , Mumbai, India
| |
Collapse
|
3
|
Polyplexes for gene and nucleic acid delivery: Progress and bottlenecks. Eur J Pharm Sci 2020; 150:105358. [PMID: 32360232 DOI: 10.1016/j.ejps.2020.105358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Gene and nucleic acid delivery constitute a huge biological challenge and several attempts have been made by research laboratories to address this issue. Cationic polymers and cationic lipids (positively charged carriers) can be utilized for the transport of these biomolecules. Polyplexes (PPs) are interpolyelectrolyte complexes which are spontaneously formed through the electrostatic condensation between nucleic acid and a cationic polymer. PPs are capable of high-density payload condensation leading to cell internalization and subsequent protection from enzymatic degradation. Most cationic polymers can cross extracellular barriers, but it is more challenging to overcome intracellular barriers (efficient disassembly and endosomal escape). In this review, the use of PPs for gene and nucleic acid delivery is discussed.
Collapse
|
4
|
Fliervoet LA, Lisitsyna ES, Durandin NA, Kotsis I, Maas-Bakker RFM, Yliperttula M, Hennink WE, Vuorimaa-Laukkanen E, Vermonden T. Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules 2020; 21:73-88. [PMID: 31500418 PMCID: PMC6961130 DOI: 10.1021/acs.biomac.9b00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.
Collapse
Affiliation(s)
- Lies A.
L. Fliervoet
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ekaterina S. Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Nikita A. Durandin
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Ilias Kotsis
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F. M. Maas-Bakker
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences and Drug Research Program, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
5
|
Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020; 8:9385-9403. [DOI: 10.1039/d0tb01836h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic covalent polymers have revealed strong potential in gene delivery, thanks to their versatile self-assembly, adaptive and responsive behaviors.
Collapse
Affiliation(s)
- Dandan Su
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| | - Andrei Diaconu
- Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi
- Romania
| | - Mihail Barboiu
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| |
Collapse
|
6
|
Lisitsyna ES, Ketola TM, Morin-Picardat E, Liang H, Hanzlíková M, Urtti A, Yliperttula M, Vuorimaa-Laukkanen E. Time-Resolved Fluorescence Spectroscopy Reveals Fine Structure and Dynamics of Poly(l-lysine) and Polyethylenimine Based DNA Polyplexes. J Phys Chem B 2017; 121:10782-10792. [DOI: 10.1021/acs.jpcb.7b08394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina S. Lisitsyna
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Tiia-Maaria Ketola
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Emmanuelle Morin-Picardat
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Huamin Liang
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Martina Hanzlíková
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Arto Urtti
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo, 5, 35131 Padova, Italy
| | - Elina Vuorimaa-Laukkanen
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| |
Collapse
|
7
|
Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery. Bioorg Med Chem Lett 2017; 27:4781-4785. [PMID: 29017784 DOI: 10.1016/j.bmcl.2017.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles.
Collapse
|