1
|
Xu Y, Kuipers OP. Design and Biosynthesis of Ornithine 8-Containing Semaglutide Variants with a Click Chemistry-Modifiable Position 26. ACS Synth Biol 2025; 14:1790-1801. [PMID: 40305415 PMCID: PMC12090216 DOI: 10.1021/acssynbio.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, constitutes an effective and widely used treatment for type 2 diabetes and obesity. However, challenges such as insufficient oral bioavailability, gastrointestinal side effects, and high costs persist. Overcoming these limitations is essential for improving patient compliance and semaglutide's safety profile. While advanced technologies such as oral delivery systems offer partial solutions, optimizing the peptide structure is crucial for addressing these issues. Establishing a rapid method to generate a large library of semaglutide mutants will enable high-throughput activity screening. In this study, we introduce a novel "Fits-In-All" approach that combines ribosomally synthesized and post-translationally modified peptide (RiPP) technology with amber stop codon incorporation to generate semaglutide variants. To counter dipeptidyl peptidase-4-mediated cleavage, our method strategically incorporates noncanonical amino acid ornithine at position 8 utilizing microbial modification enzyme OspR in vivo. Furthermore, functional groups are introduced by an orthogonal tRNA/aminoacyl-tRNA synthetase pair recognizing the amber stop codon at position 26, which enabled the click chemistry-based linkage of diverse groups. This approach allows for the generation of a broad array of semaglutide analogues that can be screened for optimal properties. In conclusion, this innovative approach opens new avenues for the design and synthesis of optimized peptide-based GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Sun X, Yang D, Li Y, Shi J, Zhang X, Yi T. Identification and utility exploration of a highly potent and long-acting bullfrog GLP-1 analogue in GLP-1 and amylin combination therapy. Peptides 2024; 177:171203. [PMID: 38582303 DOI: 10.1016/j.peptides.2024.171203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
This study assesses the efficacy of an innovative therapeutic approach that combines GLP-1 and amylin analogues for weight reduction. Focusing on GLP-1 analogues from bullfrog (Rana catesbeiana), we designed ten bGLP-1 analogues with various modifications. Among them, bGLP-10 showed high potency in binding and activating GLP-1 receptors, with superior albumin affinity. In diet-induced obesity (DIO) mice fed a high-fat diet, bGLP-10 demonstrated significant superiority over semaglutide in reducing blood sugar and food intake at a dose of 10 nmol/kg (P < 0.001). Notably, in a chronic study involving DIO mice, the combination of bGLP-10 with the amylin analogue cagrilintide led to a more substantial weight loss (-38.4%, P < 0.001) compared to either the semaglutide-cagrilintide combination (-23.0%) or cagrilintide (-5.7%), bGLP-10 (-16.1%), and semaglutide (-10.9%) alone. Furthermore, the bGLP-10 and cagrilintide combination exhibited superior glucose control and liver lipid management compared to the semaglutide-cagrilintide combination (P < 0.001). These results highlight bGLP-10's potential in GLP-1 and amylin-based therapies and suggest exploring more GLP-1 analogues from natural sources for anti-obesity and anti-diabetic treatments.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Dawei Yang
- Affiliated Hospital of Youjiang Medical University For Nationalities, No. 18 Zhongshan Second Road, Youjiang, Baise, Guangxi, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China.
| | - Tingzhuang Yi
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi/Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| |
Collapse
|
3
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
4
|
Jiang N, Su D, Chen D, Huang S, Tang C, Jing L, Yang C, Zhou Z, Yan Z, Han J. Discovery of a Novel Glucagon-like Peptide-1 (GLP-1) Analogue from Bullfrog and Investigation of Its Potential for Designing GLP-1-Based Multiagonists. J Med Chem 2024; 67:180-198. [PMID: 38117235 DOI: 10.1021/acs.jmedchem.3c01049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we aimed to discover novel GLP-1 analogues from natural sources. We investigated GLP-1 analogues from fish and amphibians, and bullfrog GLP-1 (bGLP-1) showed the highest potency. Starting with bGLP-1, we explored the structure-activity relationship and performed optimization and long-acting modifications, resulting in a potent analogue called 2f. Notably, 2f exhibited superior effects on food intake, glycemic control, and body weight compared to semaglutide. Furthermore, we explored the usefulness of bGLP-1 in designing GLP-1-based multiagonists. Using the bGLP-1 sequence, we designed novel dual GLP-1/glucagon receptor agonists and triple GLP-1/GIP/glucagon receptor agonists. The selected dual GLP-1/glucagon receptor agonist 3o and triple GLP-1/GIP/glucagon receptor agonist 4b exhibited significant therapeutic effects on lipid regulation, glycemic control, and body weight. Overall, our study highlights the potential of discovering potent GLP-1 receptor agonists from natural sources. Additionally, utilizing natural GLP-1 analogues for designing multiagonists presents a practical approach for developing antiobesity and antidiabetic agents.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Di Su
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Caiyan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jing Han
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
5
|
Zhou F, Song P, Tang X, Yang Q, Zhou S, Xu R, Fang T, Jia Z, Han J. Discovery of once-weekly, peptide-based selective GLP-1 and cholecystokinin 2 receptors co-agonizts. Peptides 2022; 153:170811. [PMID: 35594964 DOI: 10.1016/j.peptides.2022.170811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 01/03/2023]
Abstract
A group of long-acting, peptide-based, and selective GLP-1R/CCK-2R dual agonizts were identified by rational design. Guided by sequence analysis, structural elements of the CCK-2R agonist moiety were engineered into the GLP-1R agonist Xenopus GLP-1, resulting in hybrid peptides with potent GLP-1R/CCK-2R dual activity. Further modifications with fatty acids resulted in novel metabolically stable peptides, among which 3d and 3 h showed potent GLP-1R and CCK-2R activation potencies and comparable stability to semaglutide. In food intake tests, 3d and 3 h also showed a potent reduction in food intake, superior to that of semaglutide. Moreover, the acute hypoglycemic and insulinotropic activities of 3d and 3 h were better than that of semaglutide and ZP3022. Importantly, the limited pica response following 3d and 3 h administration in SD rats preliminarily indicated that the food intake reduction effects of 3d and 3 h are independent of nausea/vomiting. In a 35-day study in db/db mice, every two days administration of 3d and 3 h increased islet areas and numbers, insulin contents, β-cell area, β-cell proliferation, as well as improved glucose tolerance, and decreased HbA1c, to a greater extent than ZP3022 and semaglutide. In a 21-day study in DIO mice, once-weekly administration of 3d and 3 h significantly induced body weight loss, improved glucose tolerance, and normalized lipid metabolism, to a greater extent than semaglutide. The current study showed the antidiabetic and antiobesity potentials of GLP-1R/CCK-2R dual agonizts that warrant further investigation.
Collapse
Affiliation(s)
- Feng Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Peng Song
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xueling Tang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qimeng Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Siyuan Zhou
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Ronglian Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Ting Fang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, PR China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
6
|
Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, Jin L, Jiang N, Yuan Y, Han J, Yan Z. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur J Med Chem 2022; 233:114214. [DOI: 10.1016/j.ejmech.2022.114214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
|
7
|
Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. Eur J Med Chem 2020; 212:113118. [PMID: 33422984 DOI: 10.1016/j.ejmech.2020.113118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Dual activation of the glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) has the potential to lead to an effective therapy for the treatment of diabetes and obesity. Here, we report the discovery of a series of peptides with dual activity on GLP-1R and GCGR that were discovered by rational design. Structural elements of oxyntomodulin (OXM), glucagon or exendin-4 were engineered into the selective GLP-1R agonist Xenopus GLP-1 (xGLP-1) on the basis of sequence analysis, resulting in hybrid peptides with potent dual activity at GLP-1R and GCGR. Further modifications with fatty acid resulted in a novel metabolically stable peptide (xGLP/GCG-15) with enhanced and balanced GLP-1R and GCGR activations. This lead peptide was further explored pharmacologically in both db/db and diet-induced obesity (DIO) rodent models. Chronic administration of xGLP/GCG-15 significantly induced hypoglycemic effects and body weight loss, improved glucose tolerance, and normalized lipid metabolism, adiposity, and liver steatosis in relevant rodent models. These preclinical studies suggest that xGLP/GCG-15 has potential for development as a novel anti-obesity and/or anti-diabetic candidate. Considering the equal effects of xGLP/GCG-15 and the clinical candidate MEDI0382 on reverse hepatic steatosis, it may also be explored as a new therapy for nonalcoholic steatohepatitis (NASH) in the future.
Collapse
|
8
|
Faya M, Hazzah HA, Omolo CA, Agrawal N, Maji R, Walvekar P, Mocktar C, Nkambule B, Rambharose S, Albericio F, de la Torre BG, Govender T. Novel formulation of antimicrobial peptides enhances antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Amino Acids 2020; 52:1439-1457. [PMID: 33074344 DOI: 10.1007/s00726-020-02903-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides (AMPs) have the ability to penetrate as well as transport cargo across bacterial cell membranes, and they have been labeled as exceptional candidates to function in drug delivery. The aim of this study was to investigate the effectiveness of novel formulation of AMPs for enhanced MRSA activity. The strategy was carried out through the formulation of liposomes by thin-layer film hydration methodology, containing phosphatidylcholine, cholesterol, oleic acid, the novel AMP, as well as vancomycin (VCM). Characterization of the AMPs and liposomes included HPLC and LCMS for peptide purity and mass determination; DLS (size, polydispersity, zeta potential), TEM (surface morphology), dialysis (drug release), broth dilution, and flow cytometry (antibacterial activity); MTT assay, haemolysis and intracellular antibacterial studies. The size, PDI, and zeta potential of the drug-loaded AMP2-Lipo-1 were 102.6 ± 1.81 nm, 0.157 ± 0.01, and - 9.81 ± 1.69 mV, respectively, while for AMP3-Lipo-2 drug-loaded formulation, it was 146.4 ± 1.90 nm, 0.412 ± 0.05, and - 4.27 ± 1.25 mV respectively at pH 7.4. However, in acidic pH for both formulations, we observed an increase in size, PDI, and a switch to positive zeta potential, which indicated the pH responsiveness of our liposomal systems. The in vitro drug release studies demonstrated that liposomal formulations released VCM-HCl at a faster rate at pH 6.0 compared to pH 7.4. In vitro antibacterial activity against S. aureus and MRSA revealed that liposomes had enhanced activity at pH 6 compared to pH 7.4. The study revealed that the formulation can potentially be used to enhance activity and penetration of AMPs, thereby improving the treatment of bacterial infections.
Collapse
Affiliation(s)
- Mbuso Faya
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Heba A Hazzah
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal Durban, Durban, 4041, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa.,Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya
| | - Nikhi Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Pavan Walvekar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa
| | - Sanjeev Rambharose
- Department of Surgery, Division of Emergency Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal Durban, Durban, 4041, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag, Durban, X54001, South Africa.
| |
Collapse
|
9
|
Han J, Fu J, Yang Q, Zhou F, Chen X, Li C, Yin J. Rational design and biological evaluation of gemfibrozil modified Xenopus GLP-1 derivatives as long-acting hypoglycemic agents. Eur J Med Chem 2020; 198:112389. [DOI: 10.1016/j.ejmech.2020.112389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
|
10
|
Tang C, Li Q, Deng X, Wu W, Liao L, Liang K, Huo R, Li C, Han J, Tang W, Jiang N. Discovery of lixisenatide analogues as long-acting hypoglycemic agents using novel peptide half-life extension technology based on mycophenolic acid. RSC Adv 2020; 10:12089-12104. [PMID: 35496622 PMCID: PMC9050719 DOI: 10.1039/d0ra01002b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Noncovalent binding of peptides to human serum albumin protects against renal clearance and enzymatic degradation. Herein, we investigated the effect of mycophenolic acid (MPA) albumin binders for improving the stability of peptides. For proof-of-principle, the short acting glucagon-like peptide-1 (GLP-1) receptor agonist lixisenatide was selected and functionalized with different MPA albumin binders. In vitro, all lixisenatide analogues showed well preserved GLP-1 receptor activation potency. High performance affinity chromatography (HPAC) and ultrafiltration analyses indicated that DiMPA was able to confer high albumin affinity to lixisenatide and revealed that affinity is increased for DiMPA modified lixisenatide analogues containing OEG spacers. In db/db mice, the selected peptide 2c showed comparable efficacies to lixisenatide with respect to glucose-lowering and insulinotropic activities. Furthermore, the duration of action of glucose homeostasis of 2c was comparable to semaglutide in db/db mice. Importantly, DiMPA albumin binder did not bring significant toxicity of lixisenatide, as reflected by the comparable toxicity indexes in 2c and semaglutide groups after 2 weeks dosing in normal Kunming mice. Short-term study (21 days) conducted on db/db mice showed the better therapeutic efficacies of 2c than semaglutide on pancreas islets protection. Importantly, in chronic studies (84 days) on db/db mice, 2c exhibited a sustained improvement in glycaemic control, to a greater extent than that of semaglutide. Thus, we propose DiMPA modification as a novel and general method for development of long-acting GLP-1 receptor agonists for type 2 diabetes treatments, and 2c as a promising antidiabetic candidate. DiMPA albumin binders were effectively applied to lixisenatide to make 2c as a long-acting antidiabetic agent.![]()
Collapse
Affiliation(s)
- Chunli Tang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China .,Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Weiwei Wu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Liufeng Liao
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Kai Liang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Rongrui Huo
- Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University Xuzhou China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 PR China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Neng Jiang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| |
Collapse
|
11
|
Niu X, Nong S, Zhang X, Li X, Wang C, Li W, Zhou T. Design and evaluation of novel thrombin-based GLP-1 analogs with peptidic albumin binding domain for the controlled release of GLP-1. RSC Adv 2020; 10:4725-4732. [PMID: 35495226 PMCID: PMC9049141 DOI: 10.1039/d0ra00104j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 11/21/2022] Open
Abstract
Currently, the curative effects of polypeptide drugs are often restricted due to the short in vivo duration of action. In this study, we fused a series of heptapeptide tags with different length fatty chains to the N-terminus of mutated glucagon-like peptide-1 (GLP-1) using an intermediate sequence comprising a flexible linker (GGGGS)2 and thrombin (TBN)-cleavable site (FNPR), to develop promising prolonged GLP-1 receptor (GLP-1R) agonists. As a result, twenty-one fusion peptides, termed PES01-PES21, were designed and prepared. Surface plasmon resonance (SPR) measurements and plasma stability tests showed that PES14 exert better albumin binding affinity and in vitro plasma stability compared with the other ones. Preclinical assay in db/db mice proved that PES14 exert the hypoglycemic efficacies in a dose-dependent model within the range of 10-90 nmol kg-1. Furtherly, an enhanced glucose-lowering effect and significantly prolonged hypoglycemic duration of PES14 were exhibited in multiple oral glucose tolerance tests (OGTTs) and hypoglycemic duration test, compared with Liraglutide and Semaglutide, respectively. Moreover, the in vivo t 1/2 of intact PES14 and released GLP-1 were approximately 95.1 h and 110.5 h in rhesus monkeys after a single subcutaneous injection of 90 nmol kg-1, respectively. Furthermore, long-term treatment with PES14 in db/db mice for 8 weeks obtained beneficial efficacies on body weight gain, food intake, fat% and hemoglobin A1c (HbA1c) reduction compared with the control and superior to those of Semaglutide treatment. Meanwhile, chronic treatment of PES14 also exhibited proper insulin immunoreactivity and effectively enhanced the improvement on hepatocyte damage. All these results suggested that PES14 has the potential to be developed as a once-weekly anti-diabetic drug.
Collapse
Affiliation(s)
- Xianli Niu
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University Guangzhou Guangdong 510632 P. R. China
- Department of Biochemistry and Molecular Biology, Zunyi Medical University Zhuhai Guangdong 519041 P. R. China
| | - Shirong Nong
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Zunyi Medical University Zhuhai Guangdong 519041 P. R. China
- Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong 519100 P. R. China
| | - Xiangyang Li
- Department of Biochemistry and Molecular Biology, Zunyi Medical University Zhuhai Guangdong 519041 P. R. China
- Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong 519100 P. R. China
| | - Cheng Wang
- Department of Biochemistry and Molecular Biology, Zunyi Medical University Zhuhai Guangdong 519041 P. R. China
- Fifth Affiliated Hospital of Zunyi Medical University Zhuhai Guangdong 519100 P. R. China
| | - Wei Li
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Tianhong Zhou
- Key Laboratory of Genetic Engineering and Medicine, Key Laboratory of Viral Biology, Jinan University Guangzhou Guangdong 510632 P. R. China
| |
Collapse
|
12
|
Isono A, Tsuji M, Sanada Y, Matsushita A, Masunaga S, Hirayama T, Nagasawa H. Design, Synthesis, and Evaluation of Lipopeptide Conjugates of Mercaptoundecahydrododecaborate for Boron Neutron Capture Therapy. ChemMedChem 2019; 14:823-832. [DOI: 10.1002/cmdc.201800793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/23/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Aoi Isono
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Yu Sanada
- Particle Radiation BiologyInstitute for Integrated Radiation and Nuclear ScienceKyoto University 2-1010 Asashiro-Nishi Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Akari Matsushita
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Shinichiro Masunaga
- Particle Radiation BiologyInstitute for Integrated Radiation and Nuclear ScienceKyoto University 2-1010 Asashiro-Nishi Kumatori-cho, Sennan-gun Osaka 590-0494 Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal ChemistryGifu Pharmaceutical University Daigaku-nishi 1-25-4 Gifu-city Gifu 501-1196 Japan
| |
Collapse
|
13
|
Sun L, Han J, Chen X, Han Y, Wu L, E X. Novel mono-lipidated dimeric glucagon-like peptide-1 receptor agonist with improved long-acting and hypoglycemic activity. RSC Adv 2019; 9:9654-9662. [PMID: 35520704 PMCID: PMC9062351 DOI: 10.1039/c9ra00833k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022] Open
Abstract
Dimerization is a useful tool to boost ligand–receptor interaction. Both lipidation and dimerization effectively prolong the short half-life (t1/2) of peptides by facilitating binding with serum albumin and increasing hydrodynamic size. Here, we described two novel GLP-1 conjugates with high glucagon-like peptide-1 (GLP-1) receptor activation potencies, dimerized GLP-1 (Di-GLP-1) and lipidated Di-GLP-1 (Lip-Di-GLP-1). Di-GLP-1 and Lip-Di-GLP-1 were prepared through cysteine–maleimide specific coupling reactions using Gly8-Cys31-GLP-1, bis-maleimide amine, and activated palmitic acid. The receptor activation potencies of Di-GLP-1 and Lip-Di-GLP-1 were 13.6-fold and 9.5-fold higher than GLP-1, respectively. The in vivo hypoglycemic and insulinotropic activities of Di-GLP-1 and Lip-Di-GLP-1 were also better than GLP-1 in db/db mice. Furthermore, Lip-Di-GLP-1 was found to have greater circulating t1/2 than synthesized liraglutide by 1.8-fold. Accordingly, the improved pharmacokinetic profiles of Lip-Di-GLP-1 resulted in protracted antidiabetic effects as confirmed by hypoglycemic duration test. Moreover, Lip-Di-GLP-1 administered in mice potently inhibits gastric emptying and reduce food intake. Chronic Lip-Di-GLP-1 treatment in db/db mice resulted in significant improvements in food intake, body weight, pancreatic function and corrected hyperglycemia, which was more effective than synthesized liraglutide. Our research indicated that combined dimerization and lipidation were effectively applied to GLP-1, and the preclinical results suggested the potential usage of Lip-Di-GLP-1 as a long-acting antidiabetic agent. Dimerization and lipidation were effectively applied to GLP-1 to make Lip-Di-GLP-1 as a long-acting antidiabetic agent.![]()
Collapse
Affiliation(s)
- Lidan Sun
- Integrated Medicine Research Center for Neurological Rehabilitation
- College of Medicine
- Jiaxing University
- Jiaxing 314001
- PR China
| | - Jing Han
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Xinyu Chen
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Yue Han
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Lingling Wu
- Integrated Medicine Research Center for Neurological Rehabilitation
- College of Medicine
- Jiaxing University
- Jiaxing 314001
- PR China
| | - Xia E
- Integrated Medicine Research Center for Neurological Rehabilitation
- College of Medicine
- Jiaxing University
- Jiaxing 314001
- PR China
| |
Collapse
|