1
|
Milenkova S, Ambrus R, Mukhtar M, Pilicheva B, Marudova M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels 2024; 10:189. [PMID: 38534607 DOI: 10.3390/gels10030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating the Weibull model as the most appropriate one.
Collapse
Affiliation(s)
- Sofia Milenkova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Maria Marudova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Chitosan/Calcium-Coated Ginsenoside Rb1 Phosphate Flower-like Microparticles as an Adjuvant to Enhance Immune Responses. Vet Sci 2022; 9:vetsci9070355. [PMID: 35878372 PMCID: PMC9316975 DOI: 10.3390/vetsci9070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The field-level control over IBD is primarily via vaccination. The development of high effective IBV vaccine has drawing great attentions worldwide. Herein, the GRb1 was encap-sulated into Calcium phosphate and chitosan core-structure nanoparticles microspheres, which con-stitute a novel system for nanoparticle delivery (GRb1/IL-4@CS/Cap). The new nano-adjuvant de-livery system could induce the activation of chicken dendritic cells ( DCs ), with up-regulate the expression of MHC II and CD80, and increase the production of IL-1β and TNF-α. At the same time, it can trigger higher levels of IBDV-specific IgG and higher IgG2a/IgG1 ratio, and promote the production of IFN-γ, TNF-α, IL-4, IL-6, IL-1α, and IL-1βand other cytokines in chicken serum after vaccination, it provides an effective adjuvant system for the development of chicken IBDV attenu-ated vaccine. Abstract Infectious bursal disease (IBD) is a highly contagious immunocompromising disorder that caused great economic losses in the poultry industry. The field-level control over IBD is primarily via vaccination. The development of a highly effective IBV vaccine has drawn great attention worldwide. Chitosan/Calcium Phosphate (CS/CaP) nanoparticle was a newly developed effective biological delivery system for drug and antigen. Ginsenoside Rb1 is one of the main bioactive components of ginseng root extract, which has antioxidant, anti-inflammatory and immunological enhancement effects. Until now, the combined effect of CS/CaP and ginsenoside Rb1 on the chicken immune response had remained unknown. In this study, the GRb1 and IL-4 were encapsulated into Calcium phosphate and chitosan core structure nanoparticles microspheres (GRb1/IL-4@CS/CaP), and the effect of a newly developed delivery system on an infectious bursal disease virus (IBDV) attenuated vaccine was further evaluated. The results demonstrated that GRb1/IL-4@CS/CaP treatment could induce the activation of chicken dendritic cells (DCs), with the upregulated expression of MHCII and CD80, and the increased production of IL-1β and TNF-α. Importantly, GRb1/IL-4@CS/CaP could trigger a higher level of IBDV-specific IgG and a higher ratio of IgG2a/IgG1 than the traditional adjuvant groups, promoting the production of cytokine, including IFN-γ, TNF-α, IL-4, IL-6, IL-1α, and IL-1β, in chicken serum after 28 d and 42 d post-vaccine. Taken in all, GRb1/IL-4@CS/CaP could elicit prolonged vigorous immune responses for IBDV attenuated vaccine in chicken, which might provide an effective adjuvant system for avian vaccine development.
Collapse
|
3
|
Atty SA, El-Hadi HRA, Eltanany BM, Zaazaa HE, Eissa MS. Analytical Eco-Scale for Evaluating the Uniqueness of Voltammetric Method used for Determination of Antiemetic Binary Mixture Containing Doxylamine Succinate in Presence of its Toxic Metabolite. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractGreen analytical procedures are gaining popularity in the pharmaceutical research area as a way to reduce environmental impact and improve analyst health safety. The current work presents a green and sensitive electrochemical carbon paste electrode that has been chemically modified with zirconium dioxide and multi-walled carbon nanotubes for estimation of pyridoxine HCl (PYR) and doxylamine succinate (DOX) using the square wave voltammetric technique. Under optimum conditions, the linearity ranges were 20.00–2000.00 ng mL−1 and 2.00–20.00 µg mL−1 for both drugs in the 1st linear segment and 2nd linear segment, respectively. Stability testing assesses how the quality of a drug substance changes over time, depending on environmental and laboratory factors. DOX was found to undergo oxidative degradation when refluxed for 7 h using 30% H2O2 and the degraded product (DOX DEG) (toxic metabolite) was successfully characterized utilizing LC–MS. The developed electrode showed selectivity for the determination of binary mixture in pure form, pharmaceutical form, and in the presence of DOX DEG and common interfering molecules with good recovery. The proposed method was found to be eco-friendlier than the reported method in terms of the use of hazardous chemicals and solvents, energy consumption, and waste generation.
Graphical Abstract
Collapse
|
4
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
5
|
Mir TA, Ali A, Mazumdar N. Glycerol-crosslinked guar gum monoaldehyde based superabsorbent hydrogels for vitamin B6 (pyridoxine hydrochloride) delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Harnessing of Doxylamine Succinate/Pyridoxine Hydrochloride-Dual Laden Bilosomes as a Novel Combinatorial Nanoparadigm for Intranasal Delivery: In Vitro Optimization and In Vivo Pharmacokinetic Appraisal. J Pharm Sci 2021; 111:794-809. [PMID: 34808217 DOI: 10.1016/j.xphs.2021.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The present work is concerned with tailoring and appraisal of a novel nano-cargo; bilosomes (BLS) dual laded with doxylamine succinate (DAS) and pyridoxine hydrochloride (PDH), the first treatment option against gestational nausea and vomiting, for intranasal delivery. This bifunctional horizon could surmount constraints of orally-commercialized platforms both in dosage regimen and pharmacokinetic profile. For accomplishing this purpose, DAS/PDH-BLS were elaborated integrating phospholipid, sodium cholate and cholesterol applying thin-film hydration method based on Box-Behnken design. Utilizing Design-Expert® software, the effect of formulation variables on BLS physicochemical features alongside the optimal formulation selection were investigated. Then, the optimum DAS/PDH-BLS formulation was incorporated into a thermally-triggered in situ gelling base. The in vivo pharmacokinetic studies were explored in rats for intranasal DAS/PDH-BLS in situ gel compared with analogous intranasal free in situ gel and oral solution. The optimized BLS disclosed vesicle size of 243.23 nm, ζ potential of -31.33 mV, entrapment efficiency of 59.18 and 41.63%, accumulative % release within 8 h of 63.30 and 85.52% and accumulative permeated amount over 24 h of 347.92 and 195.4 µg/cm2 for DAS/PDH, respectively. Following intranasal administration of the inspected BLS in situ gel, pharmacokinetic studies revealed a 1.64- and 2.3-fold increment in the relative bioavailability of DAS and a 1.7- and 3.73-fold increase for PDH compared to the intranasal free in situ gel and oral solution, respectively besides significantly extended mean residence times for both drugs. Thus, the intranasally exploited DAS/PDH-BLS could be deemed as a promising hybrid nanoplatform with fruitful pharmacokinetics and tolerability traits.
Collapse
|
7
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|
8
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
9
|
López-Cano JJ, Sigen A., Andrés-Guerrero V, Tai H, Bravo-Osuna I, Molina-Martínez IT, Wang W, Herrero-Vanrell R. Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics 2021; 13:234. [PMID: 33562265 PMCID: PMC7915560 DOI: 10.3390/pharmaceutics13020234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31-34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtime.
Collapse
Affiliation(s)
- José Javier López-Cano
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Sigen A.
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Vanessa Andrés-Guerrero
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Hongyun Tai
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Irene Bravo-Osuna
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Rocío Herrero-Vanrell
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
10
|
Eltanany BM, Abd El-Hadi HR, Zaazaa HE, Eissa MS. In vitro analytical dissolution profiling of antiemetic delayed release tablets in two different dissolution media: Validated spectrophotometric methods versus reported HPLC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119013. [PMID: 33049467 DOI: 10.1016/j.saa.2020.119013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/11/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The combination of pyridoxine HCl (PYR) and doxylamine succinate (DOX) was proved to be effective and safe acting as the first line of pregnancy medication for vomiting and nausea under a trade name; Vomibreak® delayed release tablets. This combination has been available in the Egyptian market since 2016. Dissolution study is a meaningful tool that represents a predictor of output because the rate controlling steps in any drug's absorption is the rate of discharging from its medicinal formulation. Generally, the dissolution test of all delayed release tablets is operated at two stages: first the acid stage then the buffer stage. In our work, the acid stage was performed in 0.1 N hydrochloric acid (0.1 M HCl) and the buffer one was in 0.2 M sodium phosphate buffer (0.2 M Na-PB), pH = 6.8, according to FDA guidelines. In present work, for the first time, this binary mixture was quantitatively determined by applying four spectrophotometric methods. PYR was directly determined by zero order spectra method (D0) at 291.0 nm in the range 2.0-26.0 μg/mL in the acid stage and at 325.0 nm in the range 5.0-35.0 μg/mL in the buffer stage, where DOX show no interference in both cases. However, DOX was determined by three methods, namely, Dual wavelength (DW), Ratio difference (RD) and Derivative ratio (DD1). DD1 was the chosen method for determination of DOX in the two-phase dissolution study of Vomibreak® tablets at 249.0 nm in the range 2.0-44.0 μg/mL and 273.0 nm in the range 5.0-100.0 μg/mL in acid and buffer phases, respectively. All of the suggested methods were tested in compliance with ICH guidelines, where all methods were found to be reliable, reproducible, and selective. A statistical comparison was computed between two analytical techniques of critical importance in the development of two media dissolution profile: proposed UV- spectrophotometric and reported HPLC methods where no significant difference was found. Difference (ƒ1) and similarity (ƒ2) factors were calculated for PYR and DOX and shown that ƒ1 was 1.490 and 1.654 and ƒ2 was 94.431 and 92.396 for PYR and DOX, respectively.
Collapse
Affiliation(s)
- Basma M Eltanany
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562 Kasr El-Aini St., Cairo, Egypt.
| | - Heidi R Abd El-Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562 Kasr El-Aini St., Cairo, Egypt
| | - Maya S Eissa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| |
Collapse
|
11
|
Zeng W, Hui H, Liu Z, Chang Z, Wang M, He B, Hao D. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr Polym 2021; 258:117684. [PMID: 33593557 DOI: 10.1016/j.carbpol.2021.117684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
To control the release of nerve growth factor (NGF) in the injured peripheral nerve, NGF-loaded chitosan/PLGA composite microspheres ionically cross-linked by tripolyphosphate (TPP/Chitosan/PLGA-NGF) were prepared. The encapsulation efficiency of NGF ranged from 83.4 ± 1.5 % to 72.1 ± 1.6 % with TPP concentrations from 1 % to 10 %. Zeta potential and FT-IR analyses together with confocal microscopy demonstrated that multiple NGF-loaded PLGA microspheres were embedded in chitosan matrix, the mean size of TPP/Chitosan/PLGA-NGF microspheres ranged from 40.2 ± 3.4 to 49.3 ± 3.1 μm. The increase of TPP concentration improved the network stability and decreased the swelling ratio, resulting in the decreased NGF release from 67.7 ± 1.2 % to 45.7 ± 0.8 % in 49 days. The sustained release of NGF could promote PC12 cells differentiation and neurite growth in vitro. Moreover, in comparison with NGF solution without microencapsulation, TPP/Chitosan/PLGA-NGF microspheres enhanced sciatic nerve regeneration and prevented gastrocnemius muscle atrophy in rats. These results demonstrate the feasibility of using TPP/Chitosan/PLGA-NGF microspheres for neural tissue repair.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hua Hui
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhongyang Liu
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Mingbo Wang
- Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
12
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
13
|
Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Djekic L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol 2020; 148:942-955. [DOI: 10.1016/j.ijbiomac.2020.01.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/24/2023]
|
14
|
Luo C, Wu S, Li J, Li X, Yang P, Li G. Chitosan/calcium phosphate flower-like microparticles as carriers for drug delivery platform. Int J Biol Macromol 2020; 155:174-183. [PMID: 32222289 DOI: 10.1016/j.ijbiomac.2020.03.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
A special flower-like chitosan (CS)/calcium phosphate (CaP) microparticle was fabricated as a novel pH-sensitive carrier for sustained release drug system via a rapid one-pot approach. The CS-tripolyphosphate (TPP) nanocomplexes were firstly prepared through ionotropic gelation. Then, the CS nanocomplexes network acted as the template and inducer for adsorbing the mineralized CaP nanosheets and directing its assembly into the flower-like microparticles. The preparation condition optimized by Box-Behnken design-response surface methodology was achieved with 3.16 mg/ml of CS, 127.22 mg/ml of TPP, and 89.50 mM of CaCl2. The morphologies of the system were observed by scanning electron microscopy (SEM) and transmission electron microscope (TEM), and it showed that the flower-like microparticles with a diameter of 5-7 μm are composed of sheet-like petals with about 40 nm in thickness. And the TEM results showed that the petals consist by nanosheets with the thickness of 2-5 nm. The X-ray diffraction (XRD) results showed that the P/Ca ratio of CS/CaP microparticles is 1.29/1. The in vitro release studies demonstrated well sustained-release properties and pH-sensitive releasing characteristic of CS/CaP microparticles. The drug release mechanism was fitted by Korsmeyer-Peppas model at a pH of 5.8 and 7.4, respectively. The in vitro cell viability research demonstrated the microparticles have no obvious cytotoxicity at the dosages below 500 μg/ml. This work supplied a versatile platform as a novel drug delivery system with excellent pH-sensitive and sustained release performances.
Collapse
Affiliation(s)
- Chao Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Medicine and Health, Shaoxing University Yuanpei College, Shaoxing 312000, China
| | - Shizhao Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiao Li
- Department of Medicine and Health, Shaoxing University Yuanpei College, Shaoxing 312000, China
| | - Xiaoqin Li
- Department of Medicine and Health, Shaoxing University Yuanpei College, Shaoxing 312000, China
| | - Peng Yang
- Department of Medicine and Health, Shaoxing University Yuanpei College, Shaoxing 312000, China
| | - Guohua Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Li J, Cai C, Li J, Li J, Li J, Sun T, Wang L, Wu H, Yu G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018; 23:E2661. [PMID: 30332830 PMCID: PMC6222903 DOI: 10.3390/molecules23102661] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lihao Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Haotian Wu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|