1
|
Senniksen MB, Wyttenbach N, Page S, Dressman J. Combining high throughput ASD screening with the rDCS to streamline development of poorly soluble drugs. Eur J Pharm Sci 2025:107130. [PMID: 40383401 DOI: 10.1016/j.ejps.2025.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poor aqueous solubility and slow dissolution rate of active pharmaceutical ingredients (APIs) are often encountered challenges during oral drug development, leading to variable and insufficient bioavailability. To overcome these challenges, a so-called "enabling" formulation strategy is often pursued. Among these, amorphous solid dispersions (ASDs) are established as an effective means of improving drug absorption. However, evaluating the outcome of in vitro ASD screening approaches and relating this to the expected bioavailability increase can be difficult if not done systematically. Here we show, for the first time, how the combination of a high throughput ASD screening method with the refined Developability Classification System (rDCS) can streamline the formulation of poorly soluble APIs as ASDs. Using the Screening of Polymers for Amorphous Drug Stabilization (SPADS) approach to rapidly prepare ASD films, the improvement in dissolution performance of three APIs (befetupitant, celecoxib and itraconazole) was investigated with eight polymeric carriers. The results showed that the concentration of dissolved API was highly dependent on both the carrier and the drug load. For the APIs studied, Eudragit E, HPMC 100LV and Soluplus showed especially advantageous effects as carriers. Translating these results into the rDCS framework allowed for the visualization of the left-shift (more favorable for absorption) in classification. Several ASD films were classified as rDCS class I, showing a major improvement from the initial IIb classification of the pure API. This novel approach could be expanded to include a diverse set of screening methods for enabling formulation strategies, where the rDCS can allow for a direct comparison and support formulation selection.
Collapse
Affiliation(s)
- Malte Bøgh Senniksen
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nicole Wyttenbach
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Susanne Page
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Hofmann N, Harms M, Mäder K. ASDs of PROTACs: Spray-dried solid dispersions as enabling formulations. Int J Pharm 2024; 650:123725. [PMID: 38113976 DOI: 10.1016/j.ijpharm.2023.123725] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are a promising class of pharmaceutical agents with a unique mode of action. PROTACs enable the targeting of a broad variety of structures including transcription factors and other "undruggable" targets. The poor solubility and slow dissolution of PROTACs currently limit the extensive use of their potential. Up to date, only very limited drug delivery options have been examined to address this challenge. Therefore, we explored the potential of amorphous solid dispersions (ASDs) by spray drying a model PROTAC with different polymers. The resulting formulations were assessed in terms of purity, solid state, dissolution performance, and stability. A strong increase in supersaturation compared to the physical mixture was provided, although in both systems the PROTAC molecule itself was already in the amorphous state. Evaluation of the reasons for the superiority of the ASD formulations revealed that the major factor was the homogeneous, molecular distribution of the active pharmaceutical ingredient (API) in the polymer matrix, as well as improved wettability of the formulation containing Soluplus compared to the physical mixture. The manufactured formulations were stable over a minimum of 8 weeks when protected from light and humidity.
Collapse
Affiliation(s)
- Nicole Hofmann
- Global Drug Product Development, Orals Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Meike Harms
- Global Drug Product Development, Orals Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
3
|
Pluntze A, Beecher S, Anderson M, Wright D, Mudie D. Material-Sparing Feasibility Screening for Hot Melt Extrusion. Pharmaceutics 2024; 16:76. [PMID: 38258087 PMCID: PMC10819182 DOI: 10.3390/pharmaceutics16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take into account kinetics of dissolution or the associated degradation of the API during thermal processing, both of which are critical considerations in generating a successful amorphous solid dispersion by HME. This work aims to develop a material-sparing approach for screening manufacturability of a given pharmaceutical API by HME using physically relevant time, temperature, and shear. Piroxicam, ritonavir, and phenytoin were used as model APIs with PVP VA64 as the dispersion polymer. We present a screening flowchart, aided by a simple custom device, that allows rapid formulation screening to predict both achievable API loadings and expected degradation from an HME process. This method has good correlation to processing with a micro compounder, a common HME screening industry standard, but only requires 200 mg of API or less.
Collapse
Affiliation(s)
- Amanda Pluntze
- Global Research and Development, Small Molecules, Lonza, 64550 Research Road, Bend, OR 97703, USA (D.M.)
| | | | | | | | | |
Collapse
|
4
|
Drop-on-powder 3D printing of amorphous high dose oral dosage forms: Process development, opportunities and printing limitations. Int J Pharm X 2022; 5:100151. [PMID: 36687376 PMCID: PMC9850179 DOI: 10.1016/j.ijpx.2022.100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Drop-on-powder 3D printing is able to produce highly drug loaded solid oral dosage forms. However, this technique is mainly limited to well soluble drugs. The majority of pipeline compounds is poorly soluble, though, and requires solubility enhancement, e.g., via formation of amorphous solid dispersions. This study presents a detailed and systematic development approach for the production of tablets containing high amounts of a poorly soluble, amorphized drug via drop-on-powder 3D printing (also known as binder jetting). Amorphization of the compound was achieved via hot-melt extrusion using the exemplary system of the model compound ketoconazole and copovidone as matrix polymer at drug loadings of 20% and 40%. The milled extrudate was used as powder for printing and the influence of inks and different ink-to-powder ratios on recrystallization of ketoconazole was investigated in a material-saving small-scale screening. Crystallinity assessment was performed using differential scanning calorimetry and polarized light microscopy to identify even small traces of crystallinity. Printing of tablets showed that the performed small-scale screening was capable to identify printing parameters for the development of amorphous and mechanically stable tablets via drop-on-powder printing. A stability study demonstrated physically stable tablets over twelve weeks at accelerated storage conditions.
Collapse
Key Words
- 3D Printing
- 3D, three-dimensional
- 3DP, three-dimensional printing
- AM, additive manufacturing
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- Additive manufacturing
- Amorphous solid dispersion
- BCS, Biopharmaceutics Classification System
- Binder jetting
- DSC, differential scanning calorimetry
- DoP, drop-on-powder
- Drop-on-powder printing
- FDA, U.S. Food and Drug Administration
- FDM, fused deposition modeling
- HME, hot-melt extrusion
- KTZ, ketoconazole
- Process development
- SODF, solid oral dosage form
- Solubility enhancement
- dpmm, dots per millimeter
Collapse
|
5
|
Lugtu-Pe JA, Lin BY, Chen K, Ghaffari A, Kane A, Wu XY. Tailoring Release Profiles of BCS Class II Drugs Using Controlled Release Amorphous Solid Dispersion Beads with Membrane-Reservoir Design: Effect of Pore Former and Coating Levels. Mol Pharm 2021; 18:4198-4209. [PMID: 34668379 DOI: 10.1021/acs.molpharmaceut.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poor aqueous solubility is a major limiting factor during the development of BCS Class II drug candidates in a solid oral dosage form. Conventional amorphous solid dispersion (ASD) systems focus on maximizing the rate and extent of release by employing water-soluble polymeric crystallization inhibitors; however, they often encounter rapid supersaturation and solution-mediated phase transformation (SMPT). Therefore, in this work, a controlled release membrane was introduced onto ASD beads to mitigate the SMPT problem. A membrane-reservoir controlled release amorphous solid dispersion (CRASD) bead system was designed, and the effects of the coating thickness and pore former content on drug release profiles were investigated. CRASD beads were manufactured by spray-coating polyvinyl acetate with polyvinylpyrollidone (PVP) as a pore former onto sugar bead substrates layered with the ASD reservoir of celecoxib and PVP. Raising the pore former content and/or lowering the coating level imparted higher release rates and supersaturation levels. The extent of release, measured by the area under the curve, was greatest when an optimal balance between the release rate and peak concentration could be established, corresponding to a high pore former/high coating level combination. Attributed to a thicker membrane structure with a higher pore former, rapid initial release could be achieved, yet controlled gradually for several hours, avoiding the critical threshold where the onset of SMPT predominates. The greater membrane capacity to transiently immobilize drug molecules (i.e., preserve amorphicity) and gradually release drug over a prolonged duration may be key to balancing supersaturation on both sides of the membrane; hence coating variables should be tactfully selected to exploit this benefit.
Collapse
Affiliation(s)
- Jamie Anne Lugtu-Pe
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Bing Ying Lin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Kuan Chen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Alireza Ghaffari
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anil Kane
- Thermo Fisher Scientific, Mississauga, Ontario L5N 7K9, Canada
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
6
|
Mosquera-Giraldo LI, Donoso M, Stefanski K, Foster K, Gesenberg C, Abraham P, Ren Y, Rose A, Freeden C, Ranasinghe A. Solvent-Casted Films to Assist Polymer Selection for Amorphous Solid Dispersions During Preclinical Studies: In-vitro and In-vivo Exploration. Pharm Res 2021; 38:901-914. [PMID: 33880721 DOI: 10.1007/s11095-021-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The use of two solvent-casted film methods to select optimal polymer compositions for amorphous solid dispersions prepared to support preclinical pharmacokinetic and toxicology studies is described. METHODS Evaporation of solvent from cover slips by using nitrogen flow, and solvent removal from vials by using rotary evaporation were employed. The films prepared on cover slips were evaluated under the microscope to determine crystallinity. The methods were validated by scaling up corresponding SDDs, evaluating SDD's dissolution, and comparing those results to the dissolution of drug-polymer films. Subsequently, SDD suspensions were prepared and dosed orally to rats to determine pharmacokinetic parameters. This was done by using three compounds from our pipeline and evaluating multiple polymers. RESULTS The dissolution of generated films showed good agreement with the dissolution of spray dried dispersions when the films were fully amorphous (Compound A and B). In contrast, there was disagreement between film and SDD dissolution when the films had crystallized (Compound C). The in vivo exposure results indicated that the polymer choice based on the film screening methods would have been accurate for drug-polymer films that were amorphous (Compound A and B). Two additional case studies (Compound D and E) are presented, showing good agreement between in vivo and in vitro results. CONCLUSION This study established the ability of two film casting screening methods to predict the in vitro and in vivo performance of corresponding SDDs, provided that the films are fully amorphous.
Collapse
Affiliation(s)
- Laura I Mosquera-Giraldo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA.
| | - Maria Donoso
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Kevin Stefanski
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Kimberly Foster
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Christoph Gesenberg
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Pamela Abraham
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Ying Ren
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Anne Rose
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| | - Asoka Ranasinghe
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08540, USA
| |
Collapse
|
7
|
Gottschalk N, Bogdahn M, Harms M, Quodbach J. Brittle polymers in Fused Deposition Modeling: An improved feeding approach to enable the printing of highly drug loaded filament. Int J Pharm 2021; 597:120216. [PMID: 33493597 DOI: 10.1016/j.ijpharm.2021.120216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Brittleness is often described as a restricting material property for the processability of filaments via Fused Deposition Modeling. Especially filaments produced from approved pharmaceutical polymers often tend to fracture between feeding gears, the commonly employed feeding mechanism. In order to enhance their mechanical properties, usually extensive formulation development is performed. This study presents a different strategy to enable the printing of brittle filaments without the use of additional excipients by adapting the feeding mechanism to piston feeding. The polymers Soluplus®, Kollidon® VA64 and Eudragit® E PO were used, which have been reported to be brittle. Ketoconazole was used as model compound at 40% drug load and the influence on the mechanical properties was investigated using the three-point flexural test. In order to gain a better understanding of the mechanism affecting brittleness, filaments were analyzed in terms of crystallinity and miscibility of the components using polarized microscopy, differential scanning calorimetry and X-ray diffraction. Printing was performed with the aim to obtain immediate release tablets. The addition of Ketoconazole resulted in filaments even more brittle than placebo filaments. Nevertheless, the adaption of the feeding mechanism enabled the successful manufacturing of uniform tablets from all formulations.
Collapse
Affiliation(s)
- Nadine Gottschalk
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany; Department of Pharmaceutical Technologies, Merck KGaA, Darmstadt, Germany
| | - Malte Bogdahn
- Department of Pharmaceutical Technologies, Merck KGaA, Darmstadt, Germany.
| | - Meike Harms
- Department of Pharmaceutical Technologies, Merck KGaA, Darmstadt, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Flügel K, Schmidt K, Mareczek L, Gäbe M, Hennig R, Thommes M. Impact of incorporated drugs on material properties of amorphous solid dispersions. Eur J Pharm Biopharm 2021; 159:88-98. [PMID: 33383170 DOI: 10.1016/j.ejpb.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Formulation development of amorphous solid dispersions (ASD) still is challenging although several poorly water-soluble drugs have been marketed using this technique. During development of novel drugs, the selection of the preparation technique and polymer matrix is commonly performed for the certain drug via screening tools. However, if general trends regarding material properties are to be investigated, this approach is not beneficial, although often utilized in literature. The main component of the ASD usually is the polymer and thus it predominantly determines the material properties of the system. Therefore, to study the impact of different drugs and their drug loads on mechanical properties and wettability, three poorly soluble model drugs with drug loads ranging from 10% to 40% were incorporated into copovidone via hot-melt extrusion. The obtained extrudates were subsequently characterized regarding mechanical properties by applying diametral compression test and nanoindentation and the results were compared to the performance during tablet compression. Incorporation of all tested drugs resulted in a similar increase in brittleness of the ASDs, whereas the Young's modulus and hardness changed differently in dependence of the incorporated drug. These observations correlated well with the performance during tablet compression and it was concluded, that the brittleness seemed to be the predominant factor influencing the compression behavior of copovidone-based ASDs. Furthermore, the degree of water absorption and wettability was assessed by applying dynamic vapor sorption experiments and contact angle measurements. Here, the incorporated drugs impacted the contact angle to different degrees and a strong correlation between the contact angle and disintegration time was observable. These results highlight the importance of thorough characterization of the ASDs as it helps to predict their performance during tablet compression and thus facilitates the optimal selection of excipients.
Collapse
Affiliation(s)
- Karsten Flügel
- Faculty of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Technical University Dortmund, Emil-Figge-Str. 68, 44227 Dortmund, Germany; Department of Pharmaceutical Technologies, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Katharina Schmidt
- Department of Pharmaceutical Technologies, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lena Mareczek
- Department of Pharmaceutical Technologies, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Michael Gäbe
- Department of Pharmaceutical Technologies, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Robert Hennig
- Department of Pharmaceutical Technologies, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Markus Thommes
- Faculty of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Technical University Dortmund, Emil-Figge-Str. 68, 44227 Dortmund, Germany.
| |
Collapse
|
9
|
Vacuum Compression Molding as a Screening Tool to Investigate Carrier Suitability for Hot-Melt Extrusion Formulations. Pharmaceutics 2020; 12:pharmaceutics12111019. [PMID: 33114382 PMCID: PMC7693833 DOI: 10.3390/pharmaceutics12111019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Hot-melt extrusion (HME) is the most preferred and effective method for manufacturing amorphous solid dispersions at production scale, but it consumes large amounts of samples when used for formulation development. Herein, we show a novel approach to screen the polymers by overcoming the disadvantage of conventional HME screening by using a minimum quantity of active pharmaceutical ingredient (API). Vacuum Compression Molding (VCM) is a fusion-based method to form solid specimens starting from powders. This study aimed to investigate the processability of VCM for the creation of amorphous formulations and to compare its results with HME-processed formulations. Mixtures of indomethacin (IND) with drug carriers (Parteck® MXP, Soluplus®, Kollidon® VA 64, Eudragit® EPO) were processed using VCM and extrusion technology. Thermal characterization was performed using differential scanning calorimetry, and the solid-state was analyzed via X-ray powder diffraction. Dissolution studies in the simulated gastric fluid were performed to evaluate the drug release. Both technologies showed similar results proving the effectiveness of VCM as a screening tool for HME-based formulations.
Collapse
|
10
|
Stocker MW, Healy AM, Ferguson S. Spray Encapsulation as a Formulation Strategy for Drug-Based Room Temperature Ionic Liquids: Exploiting Drug–Polymer Immiscibility to Enable Processing for Solid Dosage Forms. Mol Pharm 2020; 17:3412-3424. [DOI: 10.1021/acs.molpharmaceut.0c00467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael W. Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
- I-form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Abel AK, Dreger NZ, Nettleton K, Gustafson TP, Forster SP, Becker ML. Amino Acid-Based Poly(ester urea)s as a Matrix for Extended Release of Entecavir. Biomacromolecules 2020; 21:946-954. [DOI: 10.1021/acs.biomac.9b01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra K. Abel
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan Z. Dreger
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tiffany P. Gustafson
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Seth P. Forster
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
- Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Auch C, Jede C, Harms M, Wagner C, Mäder K. Impact of amorphization and GI physiology on supersaturation and precipitation of poorly soluble weakly basic drugs using a small-scale in vitro transfer model. Int J Pharm 2020; 574:118917. [PMID: 31811926 DOI: 10.1016/j.ijpharm.2019.118917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
Formulation of amorphous solid dispersions (ASD) is one possibility to improve poor aqueous drug solubility by creating supersaturation. In case of weakly basic drugs like ketoconazole (KTZ), supersaturation can also be generated during the gastrointestinal (GI) transfer from the stomach to the intestine due to pH-dependent solubility. In both cases, the supersaturation during dissolution can be stabilized by polymeric precipitation inhibitors. A small-scale GI transfer model was used to compare the dissolution performance of ASD versus crystalline KTZ with the polymeric precipitation inhibitor HPMCAS. Similar in vitro AUCs were found for the transfer from SGF pH2 into FaSSIF. Moreover, the impact of variability in gastric pH on drug dissolution was assessed. Here, the ASD performed significantly better at a simulated hypochlorhydric gastric pHof 4. Last, the importance of drug-polymer interactions for precipitation inhibition was evaluated. HPMCAS HF and LF grades with and without the basic polymer Eudragit EPO were used. However, EPO caused a faster precipitation probably due to competition for the interaction sites between KTZ and HPMCAS. Thus, the results are suited to assess the benefits of amorphous formulations vs. precipitation inhibitors under different gastrointestinal conditions to optimize the design of such drug delivery systems.
Collapse
Affiliation(s)
- Carolin Auch
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany; Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Jede
- Department of Analytical Development, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Meike Harms
- Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Wagner
- Department of Pharmaceutical Technologies, Merck Healthcare KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany.
| |
Collapse
|
13
|
Simões MF, Pereira A, Cardoso S, Cadonau S, Werner K, Pinto RMA, Simões S. Five-Stage Approach for a Systematic Screening and Development of Etravirine Amorphous Solid Dispersions by Hot-Melt Extrusion. Mol Pharm 2020; 17:554-568. [PMID: 31774685 DOI: 10.1021/acs.molpharmaceut.9b00996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study was to develop a fast, effective, and material sparing screening method to design amorphous solid dispersions (ASDs) of etravirine to drive more effectively the development process, leading to improved bioavailability (BA) and stability. A systematic step-by-step approach was followed by combining theoretical calculations with high-throughput screening (HTS) and software-assisted multivariate statistical analysis. The thermodynamic miscibility and interaction of the drug in several polymers were predicted using Hansen solubility parameters (δ). The selected polymers were evaluated by HTS, using solvent evaporation. Binary compositions were evaluated by their solubilization capacity and physical stability over 2 months. JMP 14.0 was used for multivariate statistical analysis using principal components analysis. Extrusion was performed in Thermo Scientific HAAKE MiniLab II, and extrudates were characterized by assay, related substances, dissolution, and physical state (polarized light microscopy (PLM), Raman spectroscopy, and X-ray powder diffraction (XRPD)). A short stability study was performed where milled extrudates were exposed to 25 °C/60%RH and 40 °C/75%RH for 3 months. Through thermodynamic predictions, five main polymers were selected. The HTS enabled the evaluation of 42 formulations for solubilization capacity and physical stability. The three most promising compositions were selected for hot-melt extrusion (HME) tests. In general, a good correlation was found among the results of theoretical predictions, HTS, and HME. Poly(vinylpyrrolidone) (PVP)-based formulations were shown to be easily extrudable, with low degradation and complete amorphicity, whereas in Soluplus, the drug was not miscible, leading to a high crystalline content. The drug release rate was improved more than two times with PVP, and the manufactured ASD was demonstrated to be stable physically and chemically. A fast and effective screening technique to develop stable ASDs for a poorly soluble drug was successfully developed as applied to etravirine. The given method is easy to use, requires a low amount of drug, and is fairly accurate in predicting the amorphization of the drug when formulated. The success of HME formulation development of etravirine was undoubtedly enhanced with this high-throughput tool, which led to the identification of extrudates with improved biopharmaceutical properties. The structural characterization performed by PLM, XRPD, and Raman spectroscopy demonstrated that the HME prototype was essentially amorphous. The unexpected stability at 40 °C/75%RH was correlated with the presence of molecular interaction characterized by Raman spectroscopy.
Collapse
Affiliation(s)
- Marta F Simões
- Bluepharma - Indústria Farmacêutica , São Martinho do Bispo , 3045-016 Coimbra , Portugal.,Faculty of Pharmacy , University of Coimbra , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal
| | - Alexandra Pereira
- Bluepharma - Indústria Farmacêutica , São Martinho do Bispo , 3045-016 Coimbra , Portugal
| | - Sara Cardoso
- Bluepharma - Indústria Farmacêutica , São Martinho do Bispo , 3045-016 Coimbra , Portugal
| | | | - Karl Werner
- Midas Pharma GmbH , Rheinstrasse 49 , 55218 Ingelheim , Germany
| | - Rui M A Pinto
- Bluepharma - Indústria Farmacêutica , São Martinho do Bispo , 3045-016 Coimbra , Portugal
| | - Sérgio Simões
- Bluepharma - Indústria Farmacêutica , São Martinho do Bispo , 3045-016 Coimbra , Portugal.,Faculty of Pharmacy , University of Coimbra , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal
| |
Collapse
|
14
|
Electrospun amorphous solid dispersions of meloxicam: Influence of polymer type and downstream processing to orodispersible dosage forms. Int J Pharm 2019; 569:118593. [DOI: 10.1016/j.ijpharm.2019.118593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022]
|
15
|
Simões MF, Pinto RM, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today 2019; 24:1749-1768. [DOI: 10.1016/j.drudis.2019.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 01/30/2023]
|
16
|
Poozesh S, Mahdi Jafari S. Are traditional small-scale screening methods reliable to predict pharmaceutical spray drying? Pharm Dev Technol 2019; 24:915-925. [PMID: 31057007 DOI: 10.1080/10837450.2019.1616208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Driven by the new trend to build quality into products and reducing empiricism, small-scale screening techniques have been frequently used to evaluate, thermodynamic of drug solubility in the polymer, and drug-polymer kinetic amorphous miscibility. In this paper, these methods have been overviewed to shed light on their liabilities in predicting spray-dried amorphous solid dispersions' (ASDs) properties. By scrutinizing relevant open literature, several inconsistencies have been recognized, deemed to be due to the inability of conventional miniaturized means to simulate the spray drying process operations/constraints in formulating active pharmaceutical ingredients (APIs). Given the complex interplay of thermodynamics of mixing, heat and mass transfer, and fluid dynamics in this process, scaling rules have been introduced to remedy arisen issues in conventional miniaturized tools. Accordingly, spray drying process is analyzed considering the fundamental physical transformations involved, i.e. atomization and drying. Each transformation is explored from a scaling perspective with an emphasis on key response factors, and ways to retain them for each transformation across scales. Prospective bifurcated developments may improve the odds of successful formulations/process conditions later on during development stages.
Collapse
Affiliation(s)
- Sadegh Poozesh
- a Mechanical Engineering Department , Tuskegee University , Tuskegee , AL , US
| | - Seid Mahdi Jafari
- b Food Materials and Process Design Engineering Department , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| |
Collapse
|
17
|
Jacobsen AC, Krupa A, Brandl M, Bauer-Brandl A. High-Throughput Dissolution/Permeation Screening -A 96-Well Two-Compartment Microplate Approach. Pharmaceutics 2019; 11:pharmaceutics11050227. [PMID: 31083433 PMCID: PMC6572106 DOI: 10.3390/pharmaceutics11050227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Early formulation screening can alleviate development of advanced oral drug formulations, such as amorphous solid dispersions (ASDs). Traditionally, dissolution is used to predict ASD performance. Here, a high-throughput approach is described that simultaneously screens drug dissolution and permeation employing a two-compartment 96-well plate. Freeze-drying from hydro-alcoholic solutions was used to prepare amorphous formulations. The screening approach was tested on amorphous and crystalline tadalafil formulations with and without Soluplus®. The workflow consisted of: 1) dispersion of the formulations; 2) incubation within the two-compartment plate, where a dialysis membrane separated donor (dispersed formulation) and acceptor; 3) sampling (donor and acceptor), where donor samples were centrifuged to remove non-dissolved material; and 4) quantification by UHPLC-UV. To identify optimal screening conditions, the following parameters were varied: dispersion medium (buffer / biomimetic media), acceptor medium (buffer / surfactant solutions), and incubation time (1, 3, and 6 h). Surfactants (acceptor) increased tadalafil permeation. Biomimetic medium (donor) enhanced dissolution, but not permeation, except for freeze-dried tadalafil, for which the permeated amount increased. The predictiveness was evaluated by comparing dissolution-/permeation-results with in vivo bioavailability. In general, both dissolution and permeation reflected bioavailability, whereof the latter was a better predictor. High-throughput dissolution/permeation is regarded promising for formulation screening.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow 30-6088, Poland.
| | - Martin Brandl
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| | - Annette Bauer-Brandl
- Drug Transport & Delivery Group, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
18
|
Auch C, Harms M, Golitsyn Y, Reichert D, Mäder K. Miniaturized Measurement of Drug-Polymer Interactions via Viscosity Increase for Polymer Selection in Amorphous Solid Dispersions. Mol Pharm 2019; 16:2214-2225. [PMID: 30920843 DOI: 10.1021/acs.molpharmaceut.9b00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-polymer interactions have a substantial impact on stability and performance of amorphous solid dispersions (ASD) but are difficult to analyze. Whereas there are many screening methods described for polymer selection based for example on glass forming ability, drug-polymer miscibility, supersaturation, or inhibition of recrystallization, the distinct detection of physico-chemical interactions mostly lacks miniaturized techniques. This work presents an interaction screening assessing the relative viscosity increase between highly concentrated polymer solutions with and without the model drug ketoconazole (KTZ). The fluorescent molecular rotor 9-(2-carboxy-2-cyanovinyl)julolidine was added to the solutions in a miniaturized setup in μL-scale. Due to its environment-sensitive emission behavior, the integrated fluorescence intensity can be used as a viscosity dye within this screening approach (FluViSc). Differences in relative viscosity increases through addition of KTZ were proposed to rank polymers regarding KTZ-polymer interactions. Absolute viscosities were measured with a cone-plate rheometer as a complimentary method and supported the results acquired by the FluViSc. Solid-state nuclear magnetic resonance (ss-NMR) relaxation time measurements and Raman spectroscopy were utilized to investigate drug-polymer interactions at a molecular level. Whereas Raman spectroscopy was not suited to reveal KTZ-polymer interactions, ss-NMR relaxation time measurements differentiated between the selected polymeric carriers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone vinyl acetate 60:40 (PVP-VA64). Interactions were detected for HPMCAS/KTZ ASD while there was no hint for interactions between KTZ and PVP-VA64. These results were in correlation with the FluViSc. The findings were correlated with the dissolution performance of ASD and found to be predictive for supersaturation and inhibition of precipitation during dissolution.
Collapse
Affiliation(s)
- Carolin Auch
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany.,Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Meike Harms
- Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Yury Golitsyn
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Detlef Reichert
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany
| |
Collapse
|
19
|
Lee D, Ha E, Ha D, Sim W, Choi J, Kim M, Cho C, Hwang S. Effect of Polymer Type on the Dissolution Profile of a Solid Dispersion of Cilostazol. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deokkeun Lee
- College of PharmacyChungnam National University Daejeon 305‐764 South Korea
| | - Eun‐Sol Ha
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Dong‐Hyeon Ha
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Woo‐Yong Sim
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Ji‐Eun Choi
- PRIME College of Interdisciplinary & Creative StudiesKonyang University Nonsan 32992 South Korea
| | - Min‐Soo Kim
- College of PharmacyPusan National University Busan 609‐735 South Korea
| | - Cheong‐Weon Cho
- College of PharmacyChungnam National University Daejeon 305‐764 South Korea
| | - Sung‐Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical SciencesYonsei University Incheon 406‐840 Republic of Korea
| |
Collapse
|