1
|
Wang X, Ye C, Yang X, Yang M. Ceftriaxone-associated dysbiosis decreases voriconazole bioavailability by upregulating intestinal P-glycoprotein expression through activation of the Nrf2-mediated signalling pathway. Front Pharmacol 2025; 15:1522271. [PMID: 39830360 PMCID: PMC11738772 DOI: 10.3389/fphar.2024.1522271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objectives The purpose of this study was to investigate the effect of intestinal dysbiosis on the bioavailability of voriconazole and to explore any underlying mechanisms. Method Sprague-Dawley rats were randomly divided into two groups: a normal control group and a ceftriaxone-associated dysbiotic group. The composition of the intestinal flora was examined using 16S rRNA sequencing analysis. Voriconazole concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry. Outer membrane vesicles (OMVs) of microbes from the different groups were prepared for in vitro study in Caco-2 cells. The Nrf2 pathway and its related proteins involved in modifying P-glycoprotein (P-gp) expression were clarified by a series of immunoblot analyses. Key findings The diversity and richness of intestinal bacteria, especially the abundance of gram-negative bacteria, were significantly decreased after ceftriaxone treatment. The AUC(0-t) and Cmax of voriconazole were reduced, and greater voriconazole clearance were noted in the dysbiotic group. An in vivo study also indicated that the expression of P-glycoprotein was significantly increased after ceftriaxone treatment, which may be due to the absence of gram-negative bacteria in the intestine. Finally, in vitro findings in Caco-2 cells treated with OMVs from the ceftriaxone-associated dysbiotic group suggested that Nrf2 translocation into the nucleus induced high expression of P-gp. Conclusion OMVs from intestinal bacterial in the ceftriaxone-associated dysbiotic group induced high P-gp expression by regulating the Nrf2 signalling pathway, which led to an in vivo reduction in the bioavailability of voriconazole due to ceftriaxone-associated dysbiosis.
Collapse
Affiliation(s)
- Xiaokang Wang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Maoxun Yang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Guangdong Medical University, Dongguan, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Xun T, Zhang M, Wei S, Zhao C, Lin Z, Feng H, Wang X, Zhao J, Yang X. CYP2E1 mediated advanced oxidation protein products exacerbate acetaminophen induced drug-derived liver injury in vitro and in vivo. Eur J Pharm Sci 2024; 200:106829. [PMID: 38866111 DOI: 10.1016/j.ejps.2024.106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Drug-induced liver injury (DILI) is prevalent in the treatment of chronic kidney disease (CKD). Advanced oxidation protein products (AOPPs) are markers of CKD progression and participate in the occurrence and development of liver diseases. However, the mechanisms underlying the regulation of DILI in CKD have not been established. Herein, we demonstrate the involvement of Cytochrome p450 2E1 (CYP2E1) in DILI induced by AOPPs is exacerbated by exposure to acetaminophen (APAP). We used a adenine-induced CKD model, a model of DILI induced by APAP, and the AOPPs model was generated by intraperitoneal injection. The decline in renal function was associated with a significantly increased concentration of Scr, BUN and AOPPs, and renal tissue fibrosis. The ALT, AST, and AOPPs levels and liver tissue necrosis increased significantly in CKD model group compared with the sodium carboxymethyl cellulose (CMCNa) group. In the AOPPs model, compared to the PBS controls, ALT, AST, and AOPP levels, and liver tissue necrosis increased significantly. In HepG2 or L0-2 cell lines, cell survival was significantly reduced in the AOPP + APAP treatment and CYP2E1 protein expression was increased. FPS-ZM1 or NAC attenuated the hepatocyte toxicity induced by AOPP + APAP and suppression of CYP2E1 expression. AOPPs exacerbated APAP-induced DILI through CYP2E1 signaling pathways. Protein uremic toxins, such as AOPPs, can modify drug toxicity in patients with CKD. This study provides new a rationale to reduce the generation of DILIs in clinical treatment in patients with CKD. AOPPs targeting may present a novel approach to reduce the occurrence of DILI.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chenyu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Neurology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital. Shenzhen University, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
3
|
Wang X, Hu X, Ye C, Zhao J, Tan SC, Zhou L, Zhao C, Wu KH, Yang X, Wei J, Yang M. Astragalus Polysaccharide Enhances Voriconazole Metabolism under Inflammatory Conditions through the Gut Microbiota. J Clin Transl Hepatol 2024; 12:481-495. [PMID: 38779521 PMCID: PMC11106349 DOI: 10.14218/jcth.2024.00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims Voriconazole (VRC), a widely used antifungal drug, often causes hepatotoxicity, which presents a significant clinical challenge. Previous studies demonstrated that Astragalus polysaccharide (APS) can regulate VRC metabolism, thereby potentially mitigating its hepatotoxic effects. In this study, we aimed to explore the mechanism by which APS regulates VRC metabolism. Methods First, we assessed the association of abnormal VRC metabolism with hepatotoxicity using the Roussel Uclaf Causality Assessment Method scale. Second, we conducted a series of basic experiments to verify the promotive effect of APS on VRC metabolism. Various in vitro and in vivo assays, including cytokine profiling, immunohistochemistry, quantitative polymerase chain reaction, metabolite analysis, and drug concentration measurements, were performed using a lipopolysaccharide-induced rat inflammation model. Finally, experiments such as intestinal biodiversity analysis, intestinal clearance assessments, and Bifidobacterium bifidum replenishment were performed to examine the ability of B. bifidum to regulate the expression of the VRC-metabolizing enzyme CYP2C19 through the gut-liver axis. Results The results indicated that APS does not have a direct effect on hepatocytes. However, the assessment of gut microbiota function revealed that APS significantly increases the abundance of B. bifidum, which could lead to an anti-inflammatory response in the liver and indirectly enhance VRC metabolism. The dual-luciferase reporter gene assay revealed that APS can hinder the secretion of pro-inflammatory mediators and reduce the inhibitory effect on CYP2C19 transcription through the nuclear factor-κB signaling pathway. Conclusions The study offers valuable insights into the mechanism by which APS alleviates VRC-induced liver damage, highlighting its immunomodulatory influence on hepatic tissues and its indirect regulatory control of VRC-metabolizing enzymes within hepatocytes.
Collapse
Affiliation(s)
- Xiaokang Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Guangdong Medical University, Dongguan, Guangdong, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chunxiao Ye
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenyu Zhao
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kit Hang Wu
- Department of Pharmacy, Nossa Senhora do Carmo-Lago Health Centre, Health Bureau, Macau, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Maoxun Yang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Guangdong Medical University, Dongguan, Guangdong, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
4
|
Zhao J, Zhao C, Xun T, Wang X, Wei S, Ye C, Zhang M, Guo D, Yang X. Huang Gan Formula Alleviates Systemic Inflammation and Uremia in Adenine-Induced Chronic Kidney Disease Rats May Associate with Modification of Gut Microbiota and Colonic Microenvironment. Drug Des Devel Ther 2024; 18:13-28. [PMID: 38205394 PMCID: PMC10777866 DOI: 10.2147/dddt.s421446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose This study aims to investigate the effects of Huang Gan formula (HGF), a Chinese herbal prescription used for chronic kidney disease (CKD), on the regulation of the gut microbiota and colonic microenvironment of CKD. Methods CKD rats were induced by 150 mg/kg adenine gavage for 4 weeks, then orally treated with or without 3.6 g/kg or 7.2 g/kg of HGF for 8 weeks. The renal function and structure were analyzed by biochemical detection, hematoxylin and eosin, Masson's trichrome, Sirius red and immunochemical staining. Average fecal weight and number in the colon were recorded to assess colonic motility. Further, the changes in the gut microbiota and colonic microenvironment were evaluated by 16S rRNA sequencing, RT-PCR or immunofluorescence. The levels of inflammatory cytokines, uremic toxins, and NF-κB signaling pathway were detected by RT-PCR, ELISA, chloramine-T method or Western blotting. Redundancy analysis biplot and Spearman's rank correlation coefficient were used for correlation analysis. Results HGF significantly improved renal function and pathological injuries of CKD. HGF could improve gut microbial dysbiosis, protect colonic barrier and promote motility of colonic lumens. Further, HGF inhibited systemic inflammation through a reduction of TNF-α, IL-6, IL-1β, TGF-β1, and a suppression of NF-κB signaling pathway. The serum levels of the selected uremic toxins were also reduced by HGF treatment. Spearman correlation analysis suggested that high-dose HGF inhibited the overgrowth of bacteria that were positively correlated with inflammatory factors (eg, TNF-α) and uremic toxins (eg, indoxyl sulfate), whereas it promoted the proliferation of bacteria belonging to beneficial microbial groups and was positively correlated with the level of IL-10. Conclusion Our results suggest that HGF can improve adenine-induced CKD via suppressing systemic inflammation and uremia, which may associate with the regulations of the gut microbiota and colonic microenvironment.
Collapse
Affiliation(s)
- Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chenyu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Eguchi H, Kimura R, Matsunaga H, Matsunaga T, Yoshino Y, Endo S, Ikari A. Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression. Int J Mol Sci 2022; 23:ijms23147536. [PMID: 35886884 PMCID: PMC9316057 DOI: 10.3390/ijms23147536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Claudin-2 (CLDN2), a component of tight junction, is involved in the reduction of anticancer drug-induced toxicity in spheroids of A549 cells derived from human lung adenocarcinoma. Fisetin, a dietary flavonoid, inhibits cancer cell growth, but its effect on chemosensitivity in spheroids is unknown. Here, we found that fisetin (20 μM) decreases the protein level of CLDN2 to 22.3%. Therefore, the expression mechanisms were investigated by real-time polymerase chain reaction and Western blotting. Spheroids were formed in round-bottom plates, and anticancer drug-induced toxicity was measured by ATP content. Fisetin decreased the phosphorylated-Akt level, and CLDN2 expression was decreased by a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting the inhibition of PI3K/Akt signal is involved in the reduction of CLDN2 expression. Hypoxia level, one of the hallmarks of tumor microenvironment, was reduced by fisetin. Although fisetin did not change hypoxia inducible factor-1α level, it decreased the protein level of nuclear factor erythroid 2-related factor 2, a stress response factor, by 25.4% in the spheroids. The toxicity of doxorubicin (20 μM) was enhanced by fisetin from 62.8% to 40.9%, which was rescued by CLDN2 overexpression (51.7%). These results suggest that fisetin can enhance anticancer drug toxicity in A549 spheroids mediated by the reduction of CLDN2 expression.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Riho Kimura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
6
|
Xun T, Lin Z, Zhang M, Mo L, Chen Y, Wang X, Zhao J, Ye C, Feng H, Yang X. Advanced oxidation protein products upregulate ABCB1 expression and activity via HDAC2-Foxo3α-mediated signaling in vitro and in vivo. Toxicol Appl Pharmacol 2022; 449:116140. [PMID: 35753429 DOI: 10.1016/j.taap.2022.116140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
The unpredictable pharmacokinetics of non-renal cleared drugs in chronic kidney disease (CKD) patients is associated with the activity of drug transporters. However, the mechanisms underlying regulation of drug transporters are yet to be established. In this study, we demonstrated the involvement of a HDAC2-Foxo3α pathway in advanced oxidation protein products (AOPPs)-induced ATP-binding cassette subfamily B member 1 (ABCB1) expression and activity. The correlation of AOPPs accumulation with concentration of cyclosporine in plasma was evaluated in 194 patients with transplantation. Molecular changes in acetylation of various histones and related regulatory molecules were examined in HepG2 cell cultures treated with AOPPs. Accumulation of AOPPs in serum in relation to molecular changes in HDAC2-Foxo3α in vivo were evaluated in 5/6 nephrectomy (5/6 nx) and oral adenine (Adenine) CKD rat models. Interestingly, the cyclosporine level was negatively correlated with AOPPs in plasma. In addition, AOPPs markedly suppressed the expression of histone deacetylase 2 (HDAC2), inducing ABCB1 expression and activity in vitro and in vivo. Importantly, AOPPs modulated phosphorylation of Foxo3α and the upstream Akt protein. Our findings indicate that AOPPs regulate the expression and activity of ABCB1 via reducing HDAC2 expression and activating Foxo3α-dependent signaling. The collective results support the utility of AOPPs as a potential target for drug and/or dosage adjustment in CKD patients. Targeting of AOPPs presents a novel approach to regulate non-renal clearance.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
7
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
8
|
Feng H, Hu H, Zheng P, Xun T, Wu S, Yang X, Mo L. AGE receptor 1 silencing enhances advanced oxidative protein product-induced epithelial-to-mesenchymal transition of human kidney proximal tubular epithelial cells via RAGE activation. Biochem Biophys Res Commun 2020; 529:1201-1208. [PMID: 32819586 DOI: 10.1016/j.bbrc.2020.06.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Advanced oxidative protein products (AOPPs) are novel uremic toxins whose concentrations continuously increases in patients with chronic kidney disease (CKD). Epithelial-to-mesenchymal transition (EMT) of tubular cells is the main mechanism underlying CKD pathogenesis. Studies have shown that AOPPs can induce EMT and promote renal fibrosis. However, the mechanism through which AOPPs induce tubular cell-EMT is poorly understood. In this study, we aimed to clarify the mechanisms underlying AOPP-induced EMT in human kidney proximal tubular (HKC-8) epithelial cells. Small molecule inhibitor, CRISPR-Cas9 knockout technology, siRNA knockdown technology, western blot, and reverse transcription-quantitative polymerase chain reaction were applied to investigate the mechanisms underlying AOPP-induced EMT in HKC-8 cells. AOPP treatment was found to significantly induce EMT, as evidenced by increased α-smooth muscle actin (α-SMA) and decreased E-cadherin levels, and upregulated Wnt1, β-catenin, Tcf4, and Gsk-3β expression. Conversely, blockade of Wnt/β-catenin signaling using small molecule inhibitor ICG-001 hindered AOPP-induced EMT. Moreover, knockout of receptor of advanced glycation end-products (RAGE) reversed these aforementioned effects, whereas AGE receptor 1 (AGER1)-specific siRNA transfection enhanced them. Taken together, these data suggested that AOPPs could induce HKC-8 cell EMT by activating the RAGE/Wnt/β-catenin signaling pathway and AGER1 could restore EMT by antagonizing the role of RAGE. These results may provide a new theoretical basis for EMT and help identify new therapeutic targets for suppressing CKD progression.
Collapse
Affiliation(s)
- Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hongling Hu
- Department of Orthopaedic Surgery, Shunde Hospital, Southern Medical University, Foshan, 528000, China.
| | - Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Tianrong Xun
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shulong Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xixiao Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|