1
|
Chen M, Liu G, Fang Z, Gao W, Song Y, Lei L, Du X, Li X. Buddleoside alleviates nonalcoholic steatohepatitis by targeting the AMPK-TFEB signaling pathway. Autophagy 2025; 21:1316-1334. [PMID: 39936600 DOI: 10.1080/15548627.2025.2466145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a combination of hepatic steatosis, inflammation, and fibrosis, and it often follows simple hepatic steatosis in nonalcoholic fatty liver disease (NAFLD). However, no pharmacological treatment is currently available for NASH. Given the important role of TFEB (transcription factor EB) in regulating the macroautophagy/autophagy-lysosomal pathway, TFEB is potentially a novel therapeutic target for treatment of NASH, which function can be regulated by AMP-activated protein kinase (AMPK) and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Buddleoside (Bud), a natural flavonoid compound, has recently emerged as a promising drug candidate for liver diseases. Here, we shown that Bud treatment alleviated hepatic steatosis, insulin resistance, inflammation, and fibrosis in mice fed a high-fat and high-cholesterol (HFHC) diet. Notably, Bud activated AMPK, inhibited MTORC1, and enhanced TFEB transcriptional activity as well as autophagic flux in vivo and in vitro. Inhibition of AMPK or knockout of hepatic Tfeb abrogated the alleviation effects of Bud on hepatic steatosis, insulin resistance, inflammation, and fibrosis. Mechanistic investigation revealed that Bud bound to the PRKAB1 subunit via Val81, Arg83, and Ser108 residues and activated AMPK, thereby eliciting phosphorylation of RPTOR (regulatory associated protein of MTOR complex 1) and inhibiting the kinase MTORC1, which activated the TFEB-mediated autophagy-lysosomal pathway and further ameliorated HFHC-induced NASH in mice. Altogether, our results indicate that Bud ameliorates NASH by activating hepatic the AMPK-TFEB axis, suggesting that Bud is a potential therapeutic strategy for NASH.Abbreviations: ACAC, acetyl-CoA carboxylase; ADaM, allosteric drug and metabolite; AICAR, 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside; AKT, AKT serine/threonine kinase; ALP, autophagy-lysosomal pathway; AMPK, AMP-activated protein kinase; Bud, buddleoside; CAMKK2, calcium/calmodulin dependent protein kinase kinase 2; CC, compound C; CETSA, cellular thermal shift assay; Cmax, maximum concentration; CQ, chloroquine; DARTS, drug affinity responsive target stability assay; EIF4EBP1, eukaryotic translation factor 4E binding protein 1; GOT1, glutamic-oxaloacetic transaminase 1; GPT, glutamic-pyruvic transaminase; GSK3B, glycogen synthase kinase 3 beta; GTT, glucose-tolerance test; HFD, high fat diet; HFHC, high-fat and high-cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; IKBKB, inhibitor of nuclear factor kappa B kinase subunit beta; INSR, insulin receptor; ITT, insulin-tolerance test; LDH, lactate dehydrogenase; STK11, serine/threonine kinase 11; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MTORC1, MTOR complex 1; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; ND, normal diet; NFKB, nuclear factor kappa B; PA, palmitic acid; PSR, picrosirius red; RRAG, Ras related GTP binding; RPTOR, regulatory associated protein of MTOR complex 1; RPS6, ribosomal protein S6; RPS6KB, ribosomal protein S6 kinase B; SMAD2, SMAD family member 2; SMAD3, SMAD family member 3; SQSTM1, sequestosome 1; TFEB, transcription factor EB; tfeb-HKO, hepatocyte-specific tfeb knockout; TSC2, TSC complex subunit 2.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Li H, Li R, Yu H, Zhang Y, Feng H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution. PLoS One 2025; 20:e0322880. [PMID: 40388423 PMCID: PMC12088040 DOI: 10.1371/journal.pone.0322880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) are widely present across various organisms and play crucial roles in regulating cellular processes such as growth, proliferation, signal transduction, and other physiological functions. Recent research has increasingly focused on the regulation of STKs and STPs in bacteria. STKs have been well studied, identified and characterized in a variety of bacterial species. However, the role of STPs in bacteria remains less understood, and the number of proteins characterized is limited. It has been found that most of the STPs characterized in bacteria were Mg2+/Mn2+ dependent 2C protein phosphatases (PP2Cs), but the evolutionary relationship and taxonomic distribution of bacterial PP2C phosphatases were still not fully elucidated. In this study, we utilized bacterial PP2C phosphatase sequences from the InterPro database to perform a phylogenetic analysis, categorizing the family into five groups. Based on this classification, we examined the evolutionary relationships, species distribution, sequence and structural variations, and domain distribution characteristics of bacterial PP2C phosphatases. Our analysis uncovered evidence of a common evolutionary origin for bacterial PP2C phosphatases. These findings advance the understanding of PP2C phosphatases, offering valuable insights for future functional studies of bacterial serine/threonine phosphatases and aiding in the design of targeted therapeutics for pathogenic bacteria.
Collapse
Affiliation(s)
- Hang Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyue Yu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Youhuan Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Barbarossa A, Rosato A, Tardugno R, Carrieri A, Corbo F, Limongelli F, Fumarola L, Fracchiolla G, Carocci A. Antibiofilm Effects of Plant Extracts Against Staphylococcus aureus. Microorganisms 2025; 13:454. [PMID: 40005818 PMCID: PMC11858306 DOI: 10.3390/microorganisms13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global rise in antimicrobial resistance poses a significant threat to public health, necessitating alternative therapeutic options. One critical challenge is treating infections caused by biofilm-forming bacteria, which are notably resistant to conventional antibiotics. Staphylococcus aureus, including methicillin-resistant strains (MRSA), is a major pathogen in biofilm-related infections, complicating treatment and leading to chronic cases. Plant extracts have emerged as promising alternatives, offering new avenues for effective treatment. This study evaluated the antibacterial and antibiofilm activities of commercial extracts of Vitis vinifera L. (grape), Camellia sinensis L. (green tea), Olea europaea L. (olive), Quercus robur (oak), and Coffea arabica L. (coffee) against S. aureus strains from ATCC collections and clinical isolates. Preliminary screening using the disk diffusion test assessed the zones of inhibition, which was followed by minimum inhibitory concentration (MIC) determination via broth microdilution, with Quercus robur L. showing the best overall MIC results. The results obtained demonstrate the strong antibacterial activity of the extracts, with the MIC values ranging from 0.2 to 12.4 mg/mL. Using the XTT reduction assay, the extracts inhibited biofilm growth by 80-85% after 24 h of incubation, with Coffea arabica L. achieving interesting antibiofilm activities. These findings suggest that the investigated plant extracts hold potential as antimicrobial agents and biofilm inhibitors, offering an alternative approach to tackling antimicrobial resistance. Further research is needed to explore their potential applications in developing novel adjuvant therapies.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Francesco Limongelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (R.T.); (A.C.); (F.C.); (F.L.); (G.F.)
| |
Collapse
|
4
|
Xie P, Gao Y, Wu C, Li X, Yang Y. The inhibitory mechanism of echinacoside against Staphylococcus aureus Ser/Thr phosphatase Stp1 by virtual screening and molecular modeling. J Mol Model 2023; 29:320. [PMID: 37725157 DOI: 10.1007/s00894-023-05723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT Stp1 is a new potential target closely related to the pathogenicity of Staphylococcus aureus (S. aureus). In this study, effective Stp1 inhibitors were screened via virtual screening and enzyme activity experiments, and the inhibition mechanism was analyzed using molecular dynamics simulation. METHODS AutoDock Vina 4.0 software was used for virtual screening. The molecular structures of Stp1 and ligands were obtained from the RCSB Protein Data Bank and Zinc database, respectively. The molecular dynamics simulation used the Gromacs 4.5.5 software package with the Amberff99sb force field and TIP3P water model. AutoDock Tools was used to add polar hydrogen atoms to Stp1 and distribute part of the charge generated by Kollman's combined atoms. The binding free energies were calculated using the Amber 10 package. RESULTS The theoretical calculation results are consistent with the experimental results. We found that echinacoside (ECH) substantially inhibits the hydrolytic activity of Stp1. ECH competes with the substrate by binding to the active center of Stp1, resulting in a decrease in Stp1 activity. In addition, Met39, Gly41, Asp120, Asn162, and Ile163 were identified to play key roles in the binding of Stp1 to ECH. The benzene ring of ECH also plays an important role in complex binding. These findings provide a robust foundation for the development of innovative anti-infection drugs.
Collapse
Affiliation(s)
- Peng Xie
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Yue Gao
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Chenqi Wu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Xuenan Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanan Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| |
Collapse
|
5
|
Fang Z, Xu Y, Liu G, Shao Q, Niu X, Tai W, Shen T, Fan M, Chen M, Lei L, Gao W, Song Y, Wang Z, Du X, Li X. Narirutin activates TFEB (transcription factor EB) to protect against Acetaminophen-induced liver injury by targeting PPP3/calcineurin. Autophagy 2023; 19:2240-2256. [PMID: 36779633 PMCID: PMC10351474 DOI: 10.1080/15548627.2023.2179781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Qi Shao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Taiyu Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Minghe Fan
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Meng Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, ChangchunJilin, China
| |
Collapse
|
6
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Huemer M, Mairpady Shambat S, Hertegonne S, Bergada-Pijuan J, Chang CC, Pereira S, Gómez-Mejia A, Van Gestel L, Bär J, Vulin C, Pfammatter S, Stinear TP, Monk IR, Dworkin J, Zinkernagel AS. Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence and antibiotic tolerance in Staphylococcus aureus. Sci Signal 2023; 16:eabj8194. [PMID: 36595572 DOI: 10.1126/scisignal.abj8194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus can cause infections that are often chronic and difficult to treat, even when the bacteria are not antibiotic resistant because most antibiotics act only on metabolically active cells. Subpopulations of persister cells are metabolically quiescent, a state associated with delayed growth, reduced protein synthesis, and increased tolerance to antibiotics. Serine-threonine kinases and phosphatases similar to those found in eukaryotes can fine-tune essential bacterial cellular processes, such as metabolism and stress signaling. We found that acid stress-mimicking conditions that S. aureus experiences in host tissues delayed growth, globally altered the serine and threonine phosphoproteome, and increased threonine phosphorylation of the activation loop of the serine-threonine protein kinase B (PknB). The deletion of stp, which encodes the only annotated functional serine-threonine phosphatase in S. aureus, increased the growth delay and phenotypic heterogeneity under different stress challenges, including growth in acidic conditions, the intracellular milieu of human cells, and abscesses in mice. This growth delay was associated with reduced protein translation and intracellular ATP concentrations and increased antibiotic tolerance. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified targets of serine-threonine phosphorylation that may regulate bacterial growth and metabolism. Together, our findings highlight the importance of phosphoregulation in mediating bacterial quiescence and antibiotic tolerance and suggest that targeting PknB or Stp might offer a future therapeutic strategy to prevent persister formation during S. aureus infections.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Judith Bergada-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sandro Pereira
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lies Van Gestel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, ETH/University of Zurich, Zurich, Switzerland
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Xiao Y, Ren Q, Wu L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed Pharmacother 2022; 153:113296. [PMID: 35724511 PMCID: PMC9212779 DOI: 10.1016/j.biopha.2022.113296] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its mediation in many signaling pathways, such as MAPK, NF-κB, PI3K/AKT, TGFβ/Smad, and AMPK/mTOR. Interestingly, docking simulation study indicates that AC can be an effective candidate to inhibit the activity of SARS-CoV2 main protease and protect against COVID-19. Many clinical trials for AC have been investigated, and it shows great potentials in drug development.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Liu L, Wang H, Lin L, Gao Y, Niu X. Mulberrin inhibits Botrytis cinerea for strawberry storage by interfering with the bioactivity of 14α-demethylase (CYP51). Food Funct 2022; 13:4032-4046. [PMID: 35315482 DOI: 10.1039/d2fo00295g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, chemical agents hold great promise in preventing and combating Botrytis cinerea. However, the antifungal mechanism of some agents for B. cinerea remains rather vague, imposing restrictions on the research and development of novel antifungal inhibitors. In this work, we discovered that mulberrin (MBN), a natural compound from the root bark of Ramulus Mori, with an IC50 of 1.38 μM together, demonstrated marked anti-14α-demethylase (CYP51) activity through high throughput virtual screening and in vitro bioactivity assay. The computational biology results demonstrated that MBN and its derivatives were bound to the catalytic activity region of CYP51, but only MBN could form a strong π-cation interaction with the Fe ion of heme in CYP51 via the 2-methylpent-2-ene moiety at atom C9. MBN had a stronger binding free energy than the other three compounds with CYP51, implying that the 2-methylpent-2-ene moiety at atom C9 is a critical pharmacophore for CYP51 inhibitors. Subsequently, through an antifungal test, MBN demonstrated excellent anti-B. cinerea activity by inhibiting CYP51 activity. The EC50 values of MBN toward hyphal growth and spore germination in B. cinerea were 17.27 and 9.56 μg mL-1, respectively. The bioactivity loss of CYP51 by direct interaction with MBN induced the increase of cell membrane permeability, membrane destruction, and cell death. Meanwhile, in the B. cinerea infection model, MBN significantly prolonged the preservation of strawberries by preventing B. cinerea from infecting strawberries and could be used as a potential natural preserving agent for storing fruits.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy–lysosomal pathway. Acta Pharm Sin B 2021; 12:2869-2886. [PMID: 35755273 PMCID: PMC9214335 DOI: 10.1016/j.apsb.2021.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and insulin resistance and there are currently no approved drugs for its treatment. Hyperactivation of mTOR complex 1 (mTORC1) and subsequent impairment of the transcription factor EB (TFEB)-mediated autophagy–lysosomal pathway (ALP) are implicated in the development of NAFLD. Accordingly, agents that augment hepatic TFEB transcriptional activity may have therapeutic potential against NAFLD. The objective of this study was to investigate the effects of nuciferine, a major active component from lotus leaf, on NAFLD and its underlying mechanism of action. Here we show that nuciferine activated ALP and alleviated steatosis, insulin resistance in the livers of NAFLD mice and palmitic acid-challenged hepatocytes in a TFEB-dependent manner. Mechanistic investigation revealed that nuciferine interacts with the Ragulator subunit hepatitis B X-interacting protein and impairs the interaction of the Ragulator complex with Rag GTPases, thereby suppressing lysosomal localization and activity of mTORC1, which activates TFEB-mediated ALP and further ameliorates hepatic steatosis and insulin resistance. Our present results indicate that nuciferine may be a potential agent for treating NAFLD and that regulation of the mTORC1–TFEB–ALP axis could represent a novel pharmacological strategy to combat NAFLD.
Collapse
|
11
|
Fu Y, Yang Z, Zhang H, Liu Y, Hao B, Shang R. 14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin inhibits α-hemolysin and protects Raw264.7 cells from injury induced by methicillin-resistant S. aureus. Microb Pathog 2021; 161:105229. [PMID: 34624494 DOI: 10.1016/j.micpath.2021.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
A new pleuromutilin derivative, 14-O-[(4,6-Diaminopyrimidine-2-yl) thioacetyl] mutilin (DPTM), has been synthesized and proven to be a potent agent against Gram-positive pathogens, especially for Staphylococcus aureus (S. aureus). However, its pharmacological activities against α-hemolysin (Hla), a major virulence factor produced by S. aureus, and inflammations related to S. aureus are still unknown. In the present study, we investigated the DPTM inhibition activities against methicillin-resistant S. aureus (MRSA) Hla and protective efficacy of Raw264.7 cells from injury induced by MRSA. The results showed that DPTM with sub-inhibitory concentrations significantly inhibited Hla on the hemolysis of rabbit erythrocytes and down-regulated the gene expressions of Hla and agrA with a dose-dependent fashion. In Raw264.7 cells infected with MRSA, DPTM efficiently attenuated the productions of lactate dehydrogenase (LDH), nitric oxide (NO) and pro-inflammatory cytokines, as well as the express levels of nuclear factor-kappaB (NF-κB), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, DPTM inhibited the translocation of p-65 to nucleus in RAW264.7 cells infected by MRSA.
Collapse
Affiliation(s)
- Yunxing Fu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China; College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, 730050, Lanzhou, PR China.
| |
Collapse
|
12
|
Hanachi R, Ben Said R, Allal H, Rahali S, Alkhalifah MAM, Alresheedi F, Tangour B, Hochlaf M. Structural, QSAR, machine learning and molecular docking studies of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 receptor antagonists. NEW J CHEM 2021. [DOI: 10.1039/d1nj02261j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We performed a structural study followed by theoretical analysis of the chemical descriptors and biological activity of a series of 5-thiophen-2-yl pyrazole derivatives as potent and selective cannabinoid-1 (CB1) receptor antagonists.
Collapse
Affiliation(s)
- Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - Hamza Allal
- Department of Technology, Faculty of Technology, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000 Skikda, Algeria
- Research Unit of Environmental Chemistry and Molecular Structural (CHEMS), University of Constantine-1, 25000, Constantine, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | | | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Bahoueddine Tangour
- Research Unit of Modelization on Fundamental Sciences and Didactics. Universitéde Tunis El Manar, Tunis 2092, Tunisia
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| |
Collapse
|