1
|
Fu Z, Wang S, Zhou X, Ouyang L, Chen Z, Deng G. Harnessing the Power of Traditional Chinese Medicine in Cancer Treatment: The Role of Nanocarriers. Int J Nanomedicine 2025; 20:3147-3174. [PMID: 40103746 PMCID: PMC11913986 DOI: 10.2147/ijn.s502104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
For centuries, traditional Chinese medicine (TCM) has had certain advantages in the treatment of tumors. However, due to their poor water solubility, low bioavailability and potential toxicity, their effective delivery to target sites can be a major challenge. Nanocarriers based on the active ingredients of TCM, such as liposomes, polymer nanoparticles, inorganic nanoparticles, and organic/inorganic nanohybrids, are a promising strategy to improve the delivery of TCM, resulting in higher therapeutic outcomes and fewer side effects. Therefore, this article intends to review the application of Chinese medicine nano preparation in tumor. Firstly, we introduce the classification and synthesis of nanometer preparations of Chinese medicine. The second part mainly introduces the different responses of TCM nano-preparations in the course of treatment to introduce how TCM nano-preparations play a role in anti-tumor therapy. The third part focuses on Different response modes of Chinese medicine nano preparations in tumor therapy. The fourth part elucidates the application of Chinese medicine nano preparations in the treatment of cancer. Finally, the research direction to be explored in related fields is put forward.
Collapse
Affiliation(s)
- Ziyu Fu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410005, People’s Republic of China
| |
Collapse
|
2
|
Wang ZX, Chen X, Ni LH, Zhai JM, Zong WL, Wu YC, Li HJ. Assembly of foxtail millet prolamin/chitosan hydrochloride/carboxymethyl-beta-cyclodextrin in acetic acid aqueous solution for enhanced curcumin retention. Food Chem 2025; 464:141753. [PMID: 39504901 DOI: 10.1016/j.foodchem.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The aim of this work is to investigate the assembly of foxtail millet prolamin (FP) with chitosan hydrochloride (CHC) and carboxymethyl-beta-cyclodextrin (CMCD) in acetic acid aqueous solutions. The proportion of acetic acid has a positive impact on the disintegration of FP. With the use of 91.0 % (v/v) acetic acid, FP forms smaller particles of approximately 45 nm (naked FP particles) and 220 nm (FP - CHC - CMCD hybrid particles). In the case of using 61.5 % (v/v) acetic acid, the microstructures of bare FP particles and 570 nm composite FP nanoparticles (NPs) are looser, about 485 nm. Acetic acid inhibits the noncovalent bonds, including the hydrophobic interactions, hydrogen bonding and electrostatic attractions between FP and polysaccharides. Therefore, 3.8 % (v/v) acetic acid can nucleate FP to form more compact FP hybrid particles for delivering curcumin (Cur) with higher encapsulation efficiency, storage stability and release performance, and improve the antibacterial and anticancer activity of Cur.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Ming Zhai
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Wan-Li Zong
- Weihai Institute for Food and Drug Control, Weihai 264200, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
3
|
Fang R, Zhao Y, Lin S, Wei Y, Chen H. Promoting oral absorption of Panax notoginseng saponins via thiolated trimethyl chitosan and wheat germ agglutinin-modified nanoformulation. Drug Deliv Transl Res 2024; 14:621-636. [PMID: 37787882 DOI: 10.1007/s13346-023-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
This study aimed to enhance the oral absorption of Panax notoginseng saponins (PNS) via nanoparticles modified with thiolated trimethyl chitosan (TMC-Cys) and wheat germ agglutinin (WGA), termed PP-WT NPs. In vitro investigations revealed that PP-WT NPs exhibited delayed release of PNS and a strong tolerance to the gastric acids and digestive enzymes. Moreover, PP-WT NPs exhibited efficient cellular uptake and transport capabilities in the Caco-2/HT29-co-cultured cell model. In vivo animal experiments demonstrated that PP-WT NPs effectively overcame the mucus layer barrier, with the effective permeability coefficients of R1, Rg1, and Rb1 in the small intestine being 1.68, 1.64, and 1.63 times higher than those of free PNS, respectively. Taken together, thiolated trimethyl chitosan and wheat germ agglutinin-modified nanoparticles hold significant potential for improving the oral absorption of PNS, representing an attractive strategy for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Ruiyue Fang
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Ying Zhao
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Yue Wei
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China
| | - Hui Chen
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People's Republic of China.
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541104, People's Republic of China.
| |
Collapse
|
4
|
Bhardwaj H, Khute S, Sahu RK, Jangde RK. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr Drug Metab 2024; 25:248-265. [PMID: 38918986 DOI: 10.2174/0113892002291778240610073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Sulekha Khute
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, 249161, India
| | - Rajendra Kumar Jangde
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
5
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Wang Y, Shang Y, Tang F, Qiu K, Wei X, Wang Z. Self-Double-Emulsifying Drug Delivery System Enteric-Coated Capsules: A Novel Approach to Improve Oral Bioavailability and Anti-inflammatory Activity of Panax notoginseng Saponins. AAPS PharmSciTech 2023; 24:90. [PMID: 36977927 DOI: 10.1208/s12249-023-02549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/16/2023] [Indexed: 03/30/2023] Open
Abstract
In this work, self-double-emulsifying drug delivery system enteric-coated capsules (PNS-SDE-ECC) were used to enhance the oral bioavailability and anti-inflammatory effects of Panax notoginseng saponins (PNS), which are rapidly biodegradable, poorly membrane permeable, and highly water-soluble compounds. The PNS-SDEDDS formulated by a modified two-step method spontaneously emulsified to W/O/W double emulsions in the outer aqueous solution, which significantly promoted the absorption of PNS in the intestinal tract. The release study revealed that PNS-SDE-ECC exhibited sustained release of PNS within 24 h and the stability study indicated that PNS-SDE-ECC were stable at room temperature for up to 3 months. Furthermore, compared to PNS gastric capsules, the relative bioavailability of NGR1, GRg1, GRe, GRb1, and GRd in PNS-SDE-ECC was increased by 4.83, 10.78, 9.25, 3.58, and 4.63 times, respectively. More importantly, PNS-SDE-ECC significantly reduced OXZ-induced inflammatory damage in the colon by regulating the expression of TNF-α, IL-4, IL-13, and MPO cytokines. Overall, the prepared PNS-SDE-ECC may serve as a viable vehicle for increasing the oral bioavailability of PNS and its anti-inflammatory action on ulcerative colitis.
Collapse
Affiliation(s)
- Yaru Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Yunxia Shang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Fengyu Tang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Kun Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Xiaohui Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SHTCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
7
|
Zhang X, Li Y, Wu Z, Li J, Li J, Deng S, Liu G. Development of carboxymethyl chitosan-coated zein/soy lecithin nanoparticles for the delivery of resveratrol. Food Funct 2023; 14:1636-1647. [PMID: 36691750 DOI: 10.1039/d2fo03180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of this work is to formulate a zein-based nanocomposite for the delivery of natural polyphenols. A proprietary atomizing/antisolvent precipitation (AAP) process was used to prepare carboxymethyl chitosan (CMC)-coated zein/soy lecithin (SL) nanoparticles (ZLC NPs). At a suitable mass ratio of zein/SL/CMC (100 : 30 : 30), ZLC NPs with desirable redispersibility and physicochemical stability were successfully fabricated. After that, resveratrol (Res) as the representative natural polyphenol was encapsulated in ZLC NPs. The optimized Res/ZLC NPs exhibited a spherical morphology, small size (259.43 ± 2.47 nm), large zeta potential (-47.7 ± 0.66 mV), and high encapsulation efficiency (91.32 ± 4.01%) and loading capacity (5.27 ± 0.35%). Further characterization indicated that Res was encapsulated in the hydrophobic core of the ZLC matrix in an amorphous state. Compared to free Res, Res/ZLC NPs showed a 2.55-fold increase in the Res dissolution rate, a 2.27-fold increase in bioaccessibility, and a 1.69-fold increase in ABTS˙+ scavenging activity. Also, Res/ZLC NPs showed a higher Res retention rate (>68.0%) than free Res (<35.0%) over 45 days of storage. Therefore, ZLC NPs have promising potential as vehicles for natural polyphenols.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Yangjia Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Zhenyao Wu
- Apeloa Pharmaceutical Co., Ltd, Hangzhou, China
| | - Jie Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
8
|
Liu G, An D, Li J, Deng S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front Pharmacol 2023; 14:1120251. [PMID: 36817160 PMCID: PMC9930992 DOI: 10.3389/fphar.2023.1120251] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Zein, as one of the natural and GRAS proteins in plant, is renewable, nontoxic, biocompatible and biodegradable. Over the past decade, many research efforts have been devoted to zein-based biomaterials for several industrial applications. Combining with research experiences in our research group, the preparation methods, characterizations and pharmaceutical applications of zein-based nanoparticles were summarized in this review. Zein NPs with different particle nanostructures have been prepared by chemical crosslinking, desolvating, dispersing and micromixing strategies. The pharmaceutical applications of zein NPs are mainly focus on the drug delivery. Zein NPs can improve the drug stability, increase the oral bioavailability, control the drug release and enhance the drug targeting, thereby improving the pharmaceutical effect effectively. More efforts are required to analyze the relationship among preparation methods, particle nanostructures and pharmaceutical properties in virtue of quality by design approach, and further promote the scale-up production and clinical application of zein NPs.
Collapse
Affiliation(s)
- Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | | | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
9
|
Enhanced oral bioavailability from food protein nanoparticles: A mini review. J Control Release 2023; 354:146-154. [PMID: 36566844 DOI: 10.1016/j.jconrel.2022.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The oral route is the most desirable drug administration path. The oral bioavailability is always compromised from the poor physicochemical and/or biopharmaceutical properties of the active pharmaceutical ingredients. Food protein nanoparticles show promise for oral drug delivery, with improved biosafety and cost-effectiveness compared to polymeric nanoparticles. More importantly, diverse food proteins provide "choice and variety" to meet the challenges faced by different drugs in oral delivery resulting from low solubility, poor permeability, and gastrointestinal stability. The abundance of hydroxyl, amino, and carboxyl groups in food proteins allows easy surface modification of the nanoparticles to impart unique functions. Albeit being in its infancy, food protein nanoparticles exhibit high capability to enhance oral bioavailability of a wide range of drugs from small molecules to biomacromolecules. Considering the rapid growth of the field, the achievements and mechanisms of food protein nanoparticles in enhancing oral bioavailability are reviewed. Factors affecting the performance of food protein nanoparticles are discussed with the purpose to inspire the development of food protein nanoparticle-based oral drug delivery systems.
Collapse
|
10
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Zhao Y, Lin S, Fang R, Shi Y, Wu W, Zhang W, Chen H. Mechanism of Enhanced Oral Absorption of a Nano-Drug Delivery System Loaded with Trimethyl Chitosan Derivatives. Int J Nanomedicine 2022; 17:3313-3324. [PMID: 35937081 PMCID: PMC9346306 DOI: 10.2147/ijn.s358832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction In the previous study, nanoparticles coated with trimethyl chitosan (TMC) derivatives (PPTT-NPs) could promote the oral bioavailability of panax notoginseng saponins (PNS). Herein, we chose PPTT-NPs as a model drug to study the property and mechanism of intestinal absorption in vitro and in vivo. Methods The stability of PPTT-NPs was evaluated using simulated gastric fluid and simulated intestinal fluid. The uptake and transport of PPTT-NPs were investigated in Caco-2 and Caco-2&HT29 co-culture cells. The biosafety, intestinal permeability, adhesion, and absorption mechanism of PPTT-NPs were investigated using SD rats in vivo. The live imaging and biodistribution of PPTT-NPs were observed by IVIS. Furthermore, the effects on CYP3A4 of PPTT-NPs were investigated using testosterone as the probe substrate. Results The results of the stability assay showed that PPTT-NPs had a strong tolerance to the pH and digestive enzymes in the gastrointestinal environment. In vitro cell experiments showed that the uptake of drugs exhibited a time-dependent. When the ratio of TMC-VB12 and TMC-Cys was 1:3, the uptake capacity of PPTT-NPs was the highest. PPTT-NPs could enhance the paracellular transport of drugs by reversibly opening a tight junction. Animal experiments demonstrated that PPTT-NPs have good biological safety. PPTT-NPs had good adhesion and permeability to small intestinal mucosa. Meanwhile, PPTT-NPs needed energy and various protein to participate in the uptake of drugs. The live imaging of NPs illustrated that PPTT-NPs could prolong the residence time in the intestine. Moreover, TMC-VB12 and TMC-Cys could reduce the metabolism of drugs by inhibiting CYP3A4 to a certain extent. Conclusion The results show that TMC-VB12 and TMC-Cys are effective in the transport of PPTT-NPs. PPTT-NPs can increase the intestinal adhesion of drugs and exert high permeation by intestinal enterocytes which demonstrate significant and efficient potential for oral delivery of the BCS III drugs.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Ruiyue Fang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yaling Shi
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Wu
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wei Zhang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Correspondence: Hui Chen; Wei Zhang, College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, People’s Republic of China, Email ;
| |
Collapse
|
12
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
13
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
14
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
15
|
Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid-potassium phosphate buffer for delivery of quercetin. Food Chem 2022; 381:132268. [PMID: 35121326 DOI: 10.1016/j.foodchem.2022.132268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
Foxtail millet nanoparticles with smaller mean size at ∼130 nm and narrower polydispersity index at ∼0.05 were prepared in citric acid-potassium phosphate buffer (pH 8.0). Through lecithin (Lec)/sodium alginate (Alg) coating, a hydrophobic FP core, a Lec monolayer, and a hydrophilic Alg shell were formed spontaneously. Dissociation experiment revealed that electrostatic interaction and hydrogen bonding were main driving forces for the formation and maintenance of stable FP-Lec/Alg NPs. In addition, Lec/Alg coated NPs exerted an important role in sustaining the controlled release of the encapsulated quercetin under simulated gastrointestinal tract conditions. Cellular uptake test exhibited that FP-Lec-Alg NPs cold enter epithelial cells in a time-dependent manner, showing the maximum uptake efficiency were 22% and 24%, respectively, after 2 h of incubation. About 220 nm NPs can be recovered by adding 10% (w/v) sucrose. FP-Lec-Alg NPs were found to be promising delivery materials to deliver quercetin and improve its bioavailability.
Collapse
|
17
|
Surface-Tailored Zein Nanoparticles: Strategies and Applications. Pharmaceutics 2021; 13:pharmaceutics13091354. [PMID: 34575430 PMCID: PMC8465254 DOI: 10.3390/pharmaceutics13091354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability.
Collapse
|