2
|
Megantara S, Rusdin A, Budiman A, Shamsuddin S, Mohtar N, Muchtaridi M. Revolutionizing Antiviral Therapeutics: Unveiling Innovative Approaches for Enhanced Drug Efficacy. Int J Nanomedicine 2024; 19:2889-2915. [PMID: 38525012 PMCID: PMC10961067 DOI: 10.2147/ijn.s447721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.
Collapse
Affiliation(s)
- Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Yu YM, Bu FZ, Yu Y, Yan CW, Wu ZY, Li YT. 5-fluorouracil-caffeic acid cocrystal delivery agent with long-term and synergistic high-performance antitumor effects. Nanomedicine (Lond) 2023; 17:2215-2229. [PMID: 36927097 DOI: 10.2217/nnm-2022-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Aim: To explore how to transform cocrystals of the anticancer drug 5-fluorouracil (FL) with caffeic acid (CF; FL-CF-2H2O) into a nanoformulation, a self-assembly strategy of cocrystal-loaded micelles is proposed. Methods: Nanomicelles were assembled to deliver cocrystal FL-CF-2H2O with synergistic activity, and their in vitro/vivo properties were evaluated by combining theoretical and experimental methods. Result: More cocrystal was packed into the polymers due to the stronger interaction energy during micellar assembly, producing excellent cytotoxicity and pharmacokinetic behavior, especially synergistic abilities and long-term therapy. Conclusion: This case exemplifies the particular benefits of the self-assembly strategy of cocrystal-loaded micelles in keeping a delicate balance between long-term effects and high efficiency for FL, and offers a feasible technical scheme for cocrystal delivery agents for antitumor drugs.
Collapse
Affiliation(s)
- Yue-Ming Yu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| | - Fan-Zhi Bu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yu Yu
- Qingdao Institute for Food & Drug Control, Qingdao, Shandong, 266071, China
| | - Cui-Wei Yan
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zhi-Yong Wu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| | - Yan-Tuan Li
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| |
Collapse
|
6
|
Morais ÁCB, Borges ID, Rodrigues JPM, Aguiar ASN, Dias LD, Camargo AJ, Martins JLR, Oliveira SS, Napolitano HB. Theoretical analysis of the effects of counterions on the supramolecular arrangement of sulfamethoxazole. J Mol Model 2022; 28:338. [PMID: 36181566 DOI: 10.1007/s00894-022-05300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/29/2022] [Indexed: 10/06/2022]
Abstract
Active pharmaceutical ingredients are formulated as the salt form, aiming to modulate their physicochemical properties. In this regard, the optimization and choice of the salt former have a strong influence on toxicity, therapeutic efficiency, and bioavailability. Sulfamethoxazole (SMZ) salts with Na+, Cl-, and Br- counterions influence in the supramolecular arrangement as well as in their thermodynamic and kinetic parameters. Herein, we analyzed the interactions of the Na+, Cl-, and Br- counterions on the supramolecular arrangement of the sulfamethoxazole salts by Hirshfeld surfaces, fingerprint plots, and theoretical methods-quantum theory of atoms in molecules and natural bond orbitals. Moreover, we evaluated their electronic structure by density functional theory using calculation of the frontier molecular orbitals. Molecular electrostatic potential maps were also obtained to predict the interactions of the counterions along crystalline arrangements. We observed that the structures of [SMZ]+ and [SMZ]- ions differ slightly from the SMZ. The chemical reactivity indices show that the SMZ is kinetically more stable than its respective ions, while its anion is more polarizable, and its cation has a higher global electrophilicity index. The molecular electrostatic potential maps show high charge density in the sulfonyl group (nucleophilic region) and the heterocyclic amino group (electrophilic region). Although the molecular skeleton is identical among the three SMZ species and the presence of different counterions in the formation of the crystalline structure of the salts results in supramolecular arrangements with different patterns of intermolecular interactions, despite being very similar in terms of intensities.
Collapse
Affiliation(s)
- Álice C B Morais
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil.,Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - Igor D Borges
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil.,Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - João P M Rodrigues
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil
| | - Antônio S N Aguiar
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil
| | - Lucas D Dias
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil.,Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil
| | - José L R Martins
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - Solemar S Oliveira
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil.
| | - Hamilton B Napolitano
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, GO, Anápolis, Brazil.,Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| |
Collapse
|
10
|
Tang BH, Guan Z, Allegaert K, Wu YE, Manolis E, Leroux S, Yao BF, Shi HY, Li X, Huang X, Wang WQ, Shen AD, Wang XL, Wang TY, Kou C, Xu HY, Zhou Y, Zheng Y, Hao GX, Xu BP, Thomson AH, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Burggraaf J, Jacqz-Aigrain E, van den Anker J, Zhao W. Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction. Clin Pharmacokinet 2021; 60:1435-1448. [PMID: 34041714 DOI: 10.1007/s40262-021-01033-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Population pharmacokinetic evaluations have been widely used in neonatal pharmacokinetic studies, while machine learning has become a popular approach to solving complex problems in the current era of big data. OBJECTIVE The aim of this proof-of-concept study was to evaluate whether combining population pharmacokinetic and machine learning approaches could provide a more accurate prediction of the clearance of renally eliminated drugs in individual neonates. METHODS Six drugs that are primarily eliminated by the kidneys were selected (vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, and amoxicillin) as 'proof of concept' compounds. Individual estimates of clearance obtained from population pharmacokinetic models were used as reference clearances, and diverse machine learning methods and nested cross-validation were adopted and evaluated against these reference clearances. The predictive performance of these combined methods was compared with the performance of two other predictive methods: a covariate-based maturation model and a postmenstrual age and body weight scaling model. Relative error was used to evaluate the different methods. RESULTS The extra tree regressor was selected as the best-fit machine learning method. Using the combined method, more than 95% of predictions for all six drugs had a relative error of < 50% and the mean relative error was reduced by an average of 44.3% and 71.3% compared with the other two predictive methods. CONCLUSION A combined population pharmacokinetic and machine learning approach provided improved predictions of individual clearances of renally cleared drugs in neonates. For a new patient treated in clinical practice, individual clearance can be predicted a priori using our model code combined with demographic data.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Zheng Guan
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Efthymios Manolis
- Modelling and Simulation Working Party, European Medicines Agency, Amsterdam, The Netherlands
| | | | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Hai-Yan Shi
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Xiao Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Xin Huang
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.,Clinical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Wen-Qi Wang
- Clinical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - A-Dong Shen
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiao-Ling Wang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tian-You Wang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chen Kou
- Department of Neonatology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hai-Yan Xu
- Department of Pediatrics, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Bao-Ping Xu
- Department of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Edmund V Capparelli
- Pediatric Pharmacology and Drug Discovery, University of California, San Diego, CA, USA
| | - Valerie Biran
- Neonatal Intensive Care Unit, Hospital Robert Debre, Paris, France
| | - Nicolas Simon
- Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Service de Pharmacologie Clinique, CAP-TV, Marseille, France
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Remedios Marques
- Department of Pharmacy Services, La Fe Hospital, Valencia, Spain
| | - Jose-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu, Estonia
| | - Jumpei Saito
- Department of Pharmacy, National Children's Hospital National Center for Child Health and Development, Tokyo, Japan
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Hospital Robert Debre, APHP, Paris, France.,Clinical Investigation Center CIC1426, Hoŝpital Robert Debre, Paris, France.,University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA.,Departments of Pediatrics, Pharmacology and Physiology, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China. .,Modelling and Simulation Working Party, European Medicines Agency, Amsterdam, The Netherlands. .,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China. .,Clinical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|