1
|
Chen Y, Xu S, Ren S, Zhang J, Xu J, Song Y, Peng J, Zhang S, Du Q, Chen Y. Design of a targeted dual drug delivery system for boosting the efficacy of photoimmunotherapy against melanoma proliferation and metastasis. J Adv Res 2025; 71:533-550. [PMID: 38768811 DOI: 10.1016/j.jare.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The combination of a photosensitizer and indoleamine-2,3 dioxygenase (IDO) inhibitor provides a promising photoimmunotherapy (PIT) strategy for melanoma treatment. A dual drug delivery system offers a potential approach for optimizing the inhibitory effects of PIT on melanoma proliferation and metastasis. OBJECTIVE To develop a dual drug delivery system based on PIT and to study its efficacy in inhibiting melanoma proliferation and metastasis. METHODS We constructed a multifunctional nano-porphyrin material (P18-APBA-HA) using the photosensitizer-purpurin 18 (P18), hyaluronic acid (HA), and 4-(aminomethyl) phenylboronic acid (APBA). The resulting P18-APBA-HA was inserted into a phospholipid membrane and the IDO inhibitor epacadostat (EPA) was loaded into the internal phase to prepare a dual drug delivery system (Lip\EPA\P18-APBA-HA). Moreover, we also investigated its physicochemical properties, targeting, anti-tumor immunity, and anti-tumor proliferation and metastasis effects. RESULTS The designed system utilized the pH sensitivity of borate ester to realize an enhanced-targeting strategy to facilitate the drug distribution in tumor lesions and efficient receptor-mediated cellular endocytosis. The intracellular release of EPA from Lip\EPA\P18-APBA-HA was triggered by thermal radiation, thereby inhibiting IDO activity in the tumor microenvironment, and promoting activation of the immune response. Intravenous administration of Lip\EPA\P18-APBA-HA effectively induced anti-tumor immunity by promoting dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression, and regulating cytokine secretion, to inhibit the proliferation of melanoma and lung metastasis. CONCLUSION The proposed nano-drug delivery system holds promise as offers a promising strategy to enhance the inhibitory effects of the combination of EPA and P18 on melanoma proliferation and metastasis.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuang Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinzhuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
2
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024; 21:1719-1733. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Khoshkhabar R, Yazdani M, Hoda Alavizadeh S, Saberi Z, Arabi L, Reza Jaafari M. Chemo-immunotherapy by nanoliposomal epacadostat and docetaxel combination to IDO1 inhibition and tumor microenvironment suppression. Int Immunopharmacol 2024; 137:112437. [PMID: 38870880 DOI: 10.1016/j.intimp.2024.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The over-activation of tryptophan (Trp) metabolism to kynurenine (Kyn) catalyzed by Indoleamine 2,3-dioxygenase-1 (IDO1) enzyme, is one of the main metabolic pathways involved in tumor microenvironment (TME) immune escape and cancer treatment failure. The most efficient of IDO1 inhibitors is Epacadostat (EPA). Since monotherapy with single-agent IDO1 inhibitor regimen has led to an insufficient anti-tumor activity, we examined the efficacy of simultaneous treatment by Liposomal epacadostat (Lip-EPA) as a potent IDO inhibitor, in combination with docetaxel (DTX) as a complement immunogenic cell death (ICD) agent against B16F10 model. First, the in vitro combination index (CI) of epacadostat (EPA) and DTX was investigated by using the unified theory. Then, the in vivo efficacy of the combination therapy was assessed. Results indicated the synergestic cytotoxic effect of the combination on B16F10 compared to normal fibroblast cells (NIH). The immune profiling demonstrated a significant increase in the percentage of infiltrated T lymphocytes and IFN-γ release, a significant decrease in the percentage of regulatory T cells (Treg) population and the subsequent low levels of IL-10 generation in mice treated with Lip-EPA + DTX. Further, a significant tumor growth delay (TGD = 69.15 %) and an increased life span (ILS > 47.83 %) was observed with the combination strategy. Histopathology analysis revealed a remarkable increase in the Trp concentration following combination treatment, while Kyn levels significantly decreased. Results showed that the nano-liposomal form of IDO1 inhibitor in combination with chemotherapy could significantly improve the imunity response and dominate the tumor immuno-suppressive micro-environment, which merits further investigations.
Collapse
Affiliation(s)
- Rahimeh Khoshkhabar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wang Z, Li W, Jiang Y, Tran TB, Cordova LE, Chung J, Kim M, Wondrak G, Erdrich J, Lu J. Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy. Nat Commun 2023; 14:7235. [PMID: 37945606 PMCID: PMC10636136 DOI: 10.1038/s41467-023-43079-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA. Epacasome shows improved pharmacokinetics and tumour accumulation with efficient intratumoural drug release and deep tumour penetration. Additionally, it outperforms free EPA for anticancer efficacy, potentiating PD-1 blockade with boosted cytotoxic T lymphocytes (CTLs) and reduced regulatory T cells and myeloid-derived suppressor cells responses in a B16-F10 melanoma model in female mice. By co-encapsulating immunogenic dacarbazine, Epacasome further enhances anti-tumor effects and immune responses through the upregulation of NKG2D-mediated CTLs and natural killer cells responses particularly when combined with the PD-1 inhibitor in the late-stage metastatic B16-F10-Luc2 model in female mice. Furthermore, this combination prevents tumour recurrence and prolongs mouse survival in a clinically relevant, post-surgical melanoma model in female mice. Epacasome demonstrates potential to synergize with PD-1 blockade for improved response to melanoma immunotherapy.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Georg Wondrak
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, 85721, USA
| | - Jennifer Erdrich
- Department of Surgery, Division of Surgical Oncology, The University of Arizona College of Medicine, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Tahaghoghi-Hajghorbani S, Yazdani M, Nikpoor AR, Hatamipour M, Ajami A, Jaafari MR, Badiee A, Rafiei A. Targeting the tumor microenvironment by liposomal Epacadostat in combination with liposomal gp100 vaccine. Sci Rep 2023; 13:5802. [PMID: 37037839 PMCID: PMC10086071 DOI: 10.1038/s41598-023-31007-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) pathway has vital role in cancer immune escape and its upregulation leads to immunosuppressive environment which is associated with poor prognosis and progression in various cancers like melanoma. Previously, we showed the antitumoral efficacy of nanoliposomal form of Epacadostat (Lip-EPA), as an IDO1 inhibitor. Herein, we used Lip-EPA as a combination approach with liposomal gp100 (Lip-gp100) anti-cancer vaccine in melanoma model. Here, we showed that B16F10 tumor express IDO1 so using Lip-EPA will enhance the efficacy of vaccine therapy. The biodistribution of ICG-labelled liposomal form of EPA showed the remarkable accumulation of drug at tumor site. In an in vivo study, Lip-EPA enhanced the antitumor efficacy of Lip-gp100 in which the IDO mRNA expression was decreased (~ fourfold) in tumor samples. Also, we identified a significant increase in the number of infiltrated T lymphocytes (p < 0.0001) with enhanced in interferon gamma (IFN-γ) production (p < 0.0001). Additionally, Lip-EPA + Lip-gp100 significantly modulated intratumoral regulatory T cells which altogether resulted in the highest delay in tumor growth (TGD = 56.54%) and increased life span (ILS > 47.36%) in treated mice. Our study demonstrated that novel combination of Lip-EPA and Lip-gp100 was effective treatment with capability of being used in further clinical studies.
Collapse
Affiliation(s)
- Sahar Tahaghoghi-Hajghorbani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|