1
|
dos Santos J, Balbinot GDS, Buchner S, Collares FM, Windbergs M, Deon M, Beck RCR. 3D printed matrix solid forms: Can the drug solubility and dose customisation affect their controlled release behaviour? Int J Pharm X 2023; 5:100153. [PMID: 36632070 PMCID: PMC9827047 DOI: 10.1016/j.ijpx.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The use of 3D printing in pharmaceutics has grown over the last years, along with the number of studies on the impact of the composition of these formulations on their pharmaceutical and biopharmaceutical properties. Recently, we reported the combined effect of the infill percentage and the presence of a pore former on the drug release behaviour of 3D printed matrix solid forms prepared by fused deposition modelling. However, there are some open questions about the effect of the drug solubility and the size of these dosage forms on their controlled release properties. Therefore, we produced poly(Ɛ-caprolactone) filaments containing different soluble forms of dexamethasone (free acid, DEX; acetate ester, DEX-A; and phosphate salt, DEX-P), which showed suitable mechanical properties and printability. 3D printed solid forms were produced in two different sizes. The formulations composed of DEX-P released about 50% of drug after 10 h, while those containing DEX or DEX-A released about 9%. The drug release profiles from the 3D printed forms containing the same drug form but with different sizes were almost completely overlapped. Therefore, these 3D printed matrix solid forms can have their drug content customised by adjusting their size, without changing their controlled release behaviour.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Silvio Buchner
- Laboratório de Altas Pressões e Materiais Avançados (LAPMA), Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
2
|
Pothupitiya JU, Zheng C, Saltzman WM. Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opin Drug Deliv 2022; 19:1351-1364. [PMID: 36197839 DOI: 10.1080/17425247.2022.2131768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Implantable devices can be designed to release drugs to localized regions of tissue at sustained and reliable rates. Advances in polymer engineering have led to the design and development of drug-loaded implants with predictable, desirable release profiles. Biodegradable polyesters exhibit chemical, physical, and biological properties suitable for developing implants for pain management, cancer therapy, contraception, antiviral therapy, and other applications. AREAS COVERED : This article reviews the use of biodegradable polyesters for drug-loaded implants by discussing the properties of commonly used polymers, techniques for implant formulation and manufacturing, mechanisms of drug release, and clinical applications of implants as drug delivery devices. EXPERT OPINION : Drug delivery implants are unique systems for safe and sustained drug release, providing high bioavailability and low toxicity. Depending on the implant design and tissue site of deployment, implants can offer either localized or systemic drug release. Due to the long history of use of degradable polyesters in medical devices, polyester-based implants represent an important class of controlled release technologies. Further, polyester-based implants are the largest category of drug delivery implants to reach the point of testing in humans or approval for human use.
Collapse
Affiliation(s)
- Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| |
Collapse
|
3
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|