1
|
Azad H, Shekaari H, Ghaffari F, Mokhtarpour M, Hokm Abad MB. Study of fluconazole drug behavior in deep eutectic solvents: thermodynamic properties, solubility measurement, and fluorescence spectroscopy. RSC Adv 2025; 15:11194-11214. [PMID: 40206360 PMCID: PMC11979694 DOI: 10.1039/d4ra09043h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Fluconazole is a crucial antifungal medication with a broad spectrum of activity against various fungal infections. This study thermodynamic properties, solubility measurements and spectrofluorometric method were used for investigating the interactions between fluconazole (FCZ) and deep eutectic solvents (DESs). Five choline chloride-based deep eutectic solvents (DESs) were synthesized. Each DES was prepared by combining choline chloride (a hydrogen bond acceptor, HBA) with a different hydrogen bond donor (HBD): oxalic acid (OX), malonic acid (MA), ethylene glycol (EG), glycerol (G), or urea (U). Subsequently, the interactions between fluconazole (FCZ) and these synthesized DESs were investigated using fluorescence spectroscopy at a temperature of 298.15 K. Fluorescence spectroscopy revealed a strong interaction between fluconazole (FCZ) and deep eutectic solvents (DESs). This was evident from the significant quenching of FCZ's intrinsic fluorescence upon DES addition. The association constant and binding sites were determined. Among the tested DESs, the choline chloride-oxalic acid mixture exhibited the strongest interaction with FCZ. Furthermore, the solubility of FCZ in DES-water mixtures studied at a temperature range of (298.15 to 313.15) K was found to increase with increasing DES concentration. The solubility data were accurately fitted using the e-NRTL and Wilson thermodynamic models. To gain deeper insights, conductor-like screening model (COSMO) calculations were performed on the studied systems. The obtained surface cavity volume and dielectric solvation energy provide valuable information about the intermolecular interactions. Finally, thermodynamic analysis using Gibbs and van't Hoff equations indicated that the dissolution of FCZ in these systems is an endothermic process.
Collapse
Affiliation(s)
- Hadi Azad
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Fariba Ghaffari
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | - Masumeh Mokhtarpour
- Department of Physical Chemistry, University of Tabriz Tabriz Iran +98-4133340191 +98-4133393094
| | | |
Collapse
|
2
|
Gondoghdi PA, Shekaari H, Mokhtarpour M, Sardroud MM, Afkari R, Khorsandi M. Effect of protic surfactant ionic liquids based on ethanolamines on solubility of acetaminophen at several temperatures: measurement and thermodynamic correlation. BMC Chem 2024; 18:136. [PMID: 39054553 PMCID: PMC11270923 DOI: 10.1186/s13065-024-01243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Absolute qualifications with the application of protic ionic liquids (PILs) and a recognition of the numerous thermophysical features of these materials are required in various processes. Due to the wonderful applications of these compounds and their high potential in the chemical and pharmaceutical industries, there is a particular eagerness to utilize these PILs in drug solubility and delivery area. The aim of this investigation was to explore the solubility of the acetaminophen (ACP) in three PILs base on ethanolamine laurate [(2-hydroxyethylammonium laurate [MEA]La), (bis(2-hydroxyethyl)ammonium laurate [DEA]La), and ( tris(2-hydroxyethyl)ammonium laurate [TEA]La)]. The shake flask method has been employed in this study, and the conditions were set at T = (298.15-313.15) K and atmospheric pressure. Moreover, the experimental solubility data was correlated using a variety of empirical and thermodynamic models, encompassing e-NRTL and Wilson activity coefficient models and the empirical models such as Van't Hoff-Jouyban-Acree and Modified Apelblat-Jouyban-Acree. Their performance for the system containing [MEA]La follow the trend for activity coefficient models and empirical respectively: the Wilson > e-NRTL and Modified Apelblat-Jouyban-Acree > Van't Hoff-Jouyban-Acree. On the other hand, [DEA]La and [TEA]La PILs followed slightly different trend for activity coefficient models and empirical respectively: the Wilson > e-NRTL and Van't Hoff-uyban-Acree > Modified Apelblat-Jouyban-Acree. The Van't Hoff and Gibbs equations were used to determine the thermodynamic properties of dissolution in the studied systems.
Collapse
Affiliation(s)
| | - Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
| | - Masumeh Mokhtarpour
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
- Research Center for Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Ramin Afkari
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Li Y, Sun M, Cao Y, Yu K, Fan Z, Cao Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. CHEMSUSCHEM 2024; 17:e202301953. [PMID: 38409620 DOI: 10.1002/cssc.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The Lithium-ion battery (LIB) is one of the main energy storage equipment. Its cathode material contains Li, Co, and other valuable metals. Therefore, recycling spent LIBs can reduce environmental pollution and resource waste, which is significant for sustainable development. However, traditional metallurgical methods are not environmentally friendly, with high cost and environmental toxicity. Recently, the concept of green chemistry gives rise to environmental and efficient recycling technology, which promotes the transition of recycling solvents from organic solvents to green solvents represented by deep eutectic solvents (DESs). DESs are considered as ideal alternative solvents in extraction processes, attracting great attention due to their low cost, low toxicity, good biodegradability, and high extraction capacity. It is very important to develop the DESs system for LIBs recycling for sustainable development of energy and green economic development of recycling technology. In this work, the applications and research progress of DESs in LIBs recovery are reviewed, and the physicochemical properties such as viscosity, toxicity and regulatory properties are summarized and discussed. In particular, the toxicity data of DESs are collected and analyzed. Finally, the guidance and prospects for future research are put forward, aiming to explore more suitable DESs for recycling valuable metals in batteries.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yanbo Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Zixuan Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
4
|
Akbarzadeh Gondoghdi P, Khorsandi M, Mokhtarpour M, Shekaari H, Hamishehkar H. Effect of 2-hydroxyethylammonium carboxylate protic ionic liquids on the solubility and cytotoxicity of indomethacin. BMC Chem 2024; 18:109. [PMID: 38831344 PMCID: PMC11145891 DOI: 10.1186/s13065-024-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Recently, there is a particular interest to utilize protic ionic liquids (PILs) in drug solubility. This study is exploring the effect of three protic ionic liquids (PILs) based on 2-hydroxyethylammonium carboxylate [2-hydroxyethylammonium acetate (MEAA), 2-hydroxyethylammonium lactate (MEAL), and 2-hydroxyethylammonium propionate (MEAP)] on the solubility of the very poorly soluble drug in water, indomethacin (IMC). The shake flask method was used to measure the experimental solubility of IMC at the different temperatures range (298.15-313.15) K. The results demonstrate significantly enhancment the solubility of IMC in PILs compared to pure water, with an approximate increase of 200 times. The experimental solubility data have been correlated using the empirical models which showed the performance as the order: Modified Apelblat-Jouyban-Acree > Van't Hoff-Jouyban-Acree > Modified Apelblat equations and also the performance for the Wilson model indicated as the order (absolute relative deviation): 2-hydroxyethylammonium acetate (3.030) > 2-hydroxyethylammonium propionate (3.239) > 2-hydroxyethylammonium lactate (7.665). Then the thermodynamic dissolution properties were obtained by usage of Gibbs and Van't Hoff equations to investigate the thermodynamic behavior of the IMC in the aqueous solution PILs. Eventually, the cytotoxicity of the co-solvents (PILs) under study was evaluated using a standard MTT assay. The results showed that the cell viability percentage increased in the following order: MEAA < MEAP < MEAL. These findings indicated that these PILs had low to moderate toxicity. It is noteworthy that the functional groups of the anions were not the only determinant factor of the cytotoxicity. Other factors encompassing concentration, exposure time, and cell line characteristics also had significant effects.
Collapse
Affiliation(s)
| | - Mohammad Khorsandi
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masumeh Mokhtarpour
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
- Research Center for Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Demmelmayer P, Ćosić M, Kienberger M. Mineral Acid Co-Extraction in Reactive Extraction of Lactic Acid Using a Thymol-Menthol Deep Eutectic Solvent as a Green Modifier. Molecules 2024; 29:1722. [PMID: 38675542 PMCID: PMC11052331 DOI: 10.3390/molecules29081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Carboxylic acids can be isolated from fermentation broths using reactive liquid-liquid extraction, offering an alternative to the environmentally harmful state-of-the-art process of precipitating calcium lactate. To enhance the sustainability of liquid-liquid extraction processes, greener solvents, such as natural deep eutectic solvents, are investigated. However, fermentation broths often exhibit pH values unsuitable for carboxylic acid extraction, which can be adjusted using mineral acids, though mineral acids may be co-extracted. In this study, we systematically examine the co-extraction of hydrochloric, nitric, sulfuric, and phosphoric acid during extraction and back-extraction of lactic acid. The solvent phase consisted of tri-n-octylamine, trioctylphosphine oxide, or tributyl phosphate diluted in a thymol-menthol deep eutectic solvent. The back-extraction was conducted using a diluent swing with p-cymene as the antisolvent and water as the receiving phase. Tri-n-octylamine showed the highest efficiency for lactic acid (up to 29.8%) but also the highest co-extraction of mineral acids (up to 50.9%). In contrast, trioctylphosphine oxide exhibited a lower but more selective lactic acid extraction (5.94%) with low mineral acids co-extraction (0.135%). Overall, the highest co-extraction was observed for phosphoric acid and the lowest for nitric acid. In conclusion, the selected solvent phase composition and mineral acid influence the co-extraction and, thus, final product purity. The successful application of the natural deep eutectic solvent as the modifier enhances the sustainability of liquid-liquid extraction processes.
Collapse
Affiliation(s)
| | | | - Marlene Kienberger
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria; (P.D.); (M.Ć.)
| |
Collapse
|
6
|
Basu M, Hassan PA, Shelar SB. Modulation of surfactant self-assembly in deep eutectic solvents and its relevance to drug delivery-A review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Zhan A, Niu D, Li K, Li J. Characterization of some sucrose-based deep eutectic solvents and their effect on the solubility of piroxicam. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Joarder S, Bansal D, Meena H, Kaushik N, Tomar J, Kumari K, Bahadur I, Ha Choi E, Kaushik NK, Singh P. Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Nourizadeh F, Mokhtarpour M, Valizadeh Ziaee Z, Khorsandi M, Sadrmousavi A, Shekaari H. Solubility enhancement and intermolecular interactions of salicylic acid in aqueous solutions of choline chloride based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Khorsandi M, Nemati-Kande E, Hosseini F, Martinez F, Shekaari H, Mokhtarpour M. Effect of choline chloride based deep eutectic solvents on the aqueous solubility of 4-hydroxycoumarin drug: Measurement and correlation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Application of COSMO-RS-DARE as a Tool for Testing Consistency of Solubility Data: Case of Coumarin in Neat Alcohols. Molecules 2022; 27:molecules27165274. [PMID: 36014510 PMCID: PMC9413568 DOI: 10.3390/molecules27165274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarin is a naturally occurring lactone-type benzopyrone with various applications in the pharmaceutical, food, perfume, and cosmetics industries. This hydrophobic compound is poorly soluble in water but dissolves well in protic organic solvents such as alcohols. Despite the extensive use of coumarin, there are only a few reports documenting its solubility in organic solvents, and some reported data are incongruent, which was the direct impulse for this study. To resolve this problem, a theoretical congruency test was formulated using COSMO-RS-DARE for the determination of intermolecular interaction parameters, which allowed for the identification of outliers as suspicious datasets. The perfect match between back-computed values of coumarin solubility and the experimental ones confirms the reliability of the formulated theoretical approach and its adequacy for testing solubility data consistency. As the final approval, the temperature-related coumarin solubility in seven neat alcohols was determined experimentally. Four solvents (methanol, ethanol, 1-propanol, and 2-propanol) were used for reproducibility purposes, and an additional three (1-butanol, 1-pentanol, and 1-octanol) were used to extend the information on the homologous series. The consistency of this extended solubility dataset is discussed in terms of the comparison of remeasured solubility values with the ones already published and within the series of structurally similar solvents. The proposed procedure extends the range of applicability of COSMO-RS-DARE and provides a real and useful tool for consistency tests of already published solubility data, allowing for the approval/disapproval of existing data and filling gaps in datasets. Linear regressions utilizing a 2D molecular descriptor, SpMin2_Bhm, or the distance between solute and solvent in the Hansen solubility space, Ra, were formulated for the estimation of COMSO-RS-DARE integration parameters.
Collapse
|
12
|
Liu Y, Wu Y, Liu J, Wang W, Yang Q, Yang G. Deep eutectic solvents: Recent advances in fabrication approaches and pharmaceutical applications. Int J Pharm 2022; 622:121811. [PMID: 35550409 DOI: 10.1016/j.ijpharm.2022.121811] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have received increasing attention in the past decade owing to their distinguished properties including biocompatibility, tunability, thermal and chemical stability. Particularly, DESs have joined forces in pharmaceutical industry, not only to efficiently separate actives from natural products, but also to dramatically increase solubility and permeability of drugs, both are critical for the drug absorption and efficacy. As a result, lately DESs have been extensively and practically adopted as versatile drug delivery systems for different routes such as nasal, transdermal and oral administration with enhanced bioavailability. This review summarizes the emerging progress of DESs by introducing applied fabrication approaches with advantages and limitations thereof, and by highlighting the pharmaceutical applications of DESs.
Collapse
Affiliation(s)
- Yiwen Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinming Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenxi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|