1
|
Chitnis K, Narala N, Vemula SK, Narala S, Munnangi S, Repka MA. Formulation, Development, and Characterization of AMB-Based Subcutaneous Implants using PCL and PLGA via Hot-Melt Extrusion. AAPS PharmSciTech 2024; 26:16. [PMID: 39690379 DOI: 10.1208/s12249-024-03004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The hot-melt extrusion process is currently considered a prominent manufacturing technique in the pharmaceutical industry. The present study is intended to develop amlodipine besylate (AMB)-loaded subcutaneous implants to reduce the frequency of administration, thus improving patient compliance during hypertension management. AMB subcutaneous implants were prepared using continuous hot-melt extrusion technology using poly(caprolactone) and poly(lactic-co-glycolic acid) with dimensions of 3.70 cm (length) by 2.00 mm (diameter). The implants were characterized for thermal characteristics, drug-excipient incompatibilities, surface morphology, fracturability, in vitro drug release, and stability studies. Differential scanning calorimetry study confirmed the drug's crystalline state within the fabricated implants, while textural analysis demonstrated good fracturability in the lead formulation. Scanning electron microscopy revealed the smooth surface morphology of the lead subcutaneous implant. The lead formulation showed an extended drug release profile over 30 days (~ 2.25 mg per day) and followed zero-order release kinetics (R2 value to 0.9999) with a mean dissolution time of 14.96 days. The lead formulation remained stable for 30 days at accelerated stability conditions of 40°C and 75% relative humidity. In conclusion, developing hot-melt extruded implants could be an alternative to the conventional amlodipine besylate (AMB) formulation.
Collapse
Affiliation(s)
- Kshitij Chitnis
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sivaram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
2
|
Zgouro P, Katsamenis OL, Moschakis T, Eleftheriadis GK, Kyriakidis AS, Chachlioutaki K, Kyriaki Monou P, Ntorkou M, Zacharis CK, Bouropoulos N, Fatouros DG, Karavasili C, Gioumouxouzis CI. A floating 3D printed polypill formulation for the coadministration and sustained release of antihypertensive drugs. Int J Pharm 2024; 655:124058. [PMID: 38552754 DOI: 10.1016/j.ijpharm.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release. The dosage forms (polypills) containing three anti-hypertensive API's (diltiazem (DIL), propranolol (PRP) and hydrochlorothiazide (HCTZ)) were created via Fused Deposition Modelling 3D printing. A multitude of the dosage forms were loaded into a capsule and the resulting formulation achieved prolonged retention times over a 12-hour period in vitro, by leveraging both the buoyancy of the dosage forms, and the "cheerios effect" that facilitates the aggregation and retention of the dosage forms via a combination of surface tension and shape of the objects. Physicochemical characterization methods and imaging techniques were employed to investigate the properties and the internal and external structure of the dosage forms. Furthermore, an ex vivo porcine stomach model revealed substantial aggregation, adhesion and retention of the 3D printed dosage forms in porcine stomach. In vitro dissolution testing demonstrated almost complete first-order release of PRP and DIL (93.52 % and 99.9 %, respectively) and partial release of HCTZ (65.22 %) in the 12 h timeframe. Finally, a convolution-based single-stage approach was employed in order to predict the pharmacokinetic (PK) parameters of the API's of the formulation and the resemblance of their PK behavior with previously reported data.
Collapse
Affiliation(s)
- Paola Zgouro
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Orestis L Katsamenis
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Georgios K Eleftheriadis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Athanasios S Kyriakidis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Konstantina Chachlioutaki
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science,University of Patras, 26504 Rio, Patras,Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christos I Gioumouxouzis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
3
|
Salave S, Patel P, Desai N, Rana D, Benival D, Khunt D, Thanawuth K, Prajapati BG, Sriamornsak P. Recent advances in dosage form design for the elderly: a review. Expert Opin Drug Deliv 2023; 20:1553-1571. [PMID: 37978899 DOI: 10.1080/17425247.2023.2286368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION With the increase in the elderly population and the prevalence of multiple medical conditions, medication adherence, and efficacy have become crucial for the effective management of their health. The aging population faces unique challenges that need to be addressed through advancements in drug delivery systems and formulation technologies. AREAS COVERED The current review highlights the recent advances in dosage form design for older individuals, with consideration of their specific physiological and cognitive changes. Various dosage forms, such as modified-release tablets/capsules, chewable tablets, and transdermal patches, can be tailored to meet the specific needs of elderly patients. Advancements in drug delivery systems, such as nanotherapeutics, additive manufacturing (three-dimensional printing), and drug-food combinations, improve drug delivery and efficacy and overcome challenges, such as dysphagia and medication adherence. EXPERT OPINION Regulatory guidelines and considerations are crucial in ensuring the safe utilization of medications among older adults. Important factors to consider include geriatric-specific guidelines, safety considerations, labeling requirements, clinical trial considerations, and adherence and accessibility considerations.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Pranav Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar, Gujarat, India
| | | | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
| | - Pornsak Sriamornsak
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|