1
|
Saito M, Ishizuka K, Hoshino T, Toi S, Kitagawa K. Leptomeningeal anastomosis and early ischemic lesions on diffusion-weighted imaging in male murine focal cerebral ischemia. J Neurosci Res 2019; 97:752-759. [PMID: 31006898 DOI: 10.1002/jnr.24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/12/2022]
Abstract
Leptomeningeal anastomosis is a key factor for determining early ischemic lesions on diffusion-weighted imaging (DWI) in human stroke. However, few studies have validated this relationship in an experimental model. This study sought to clarify the involvement of leptomeningeal anastomosis in early ischemic lesions using a murine model. Adult male C57BL/6 mice were subjected to unilateral common carotid artery (CCA) occlusion or sham surgery. Seven or 14 days later, the middle cerebral artery (MCA) was occluded for 45 min. In the first experiment, the leptomeningeal collaterals were visualized using magnetic resonance imaging (MRI) DWI. In the second experiment, DWI was performed immediately after MCA occlusion, and the infarct sizes were determined 24 hr after recirculation. Unilateral CCA occlusion reduced the size of early ischemic lesions, enlarged the pial vessel diameter, and mitigated infarct size. The relationship between the DWI lesion size and pial vessel diameter was significant (r = 0.84, p < 0.01). The association between infarct size and DWI lesion size was also significant (r = 0.96, p < 0.01). In conclusion, involvement of the collateral circulation in early ischemic lesions was evident in the murine model. Both MRI and evaluation of leptomeningeal anastomosis could be used to develop a novel strategy targeting enhancement of the collateral circulation.
Collapse
Affiliation(s)
- Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Jiang CJ, Wang ZJ, Zhao YJ, Zhang ZY, Tao JJ, Ma JY. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging. Neural Regen Res 2016; 11:1450-1455. [PMID: 27857749 PMCID: PMC5090848 DOI: 10.4103/1673-5374.191219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/23/2022] Open
Abstract
Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Chun-juan Jiang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhong-juan Wang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yan-jun Zhao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Zhui-yang Zhang
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-jing Tao
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jian-yong Ma
- Department of Radiology, Wuxi Second People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
3
|
Liu DF, Qian C, An YL, Chang D, Ju SH, Teng GJ. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. NANOSCALE 2014; 6:15161-7. [PMID: 25374303 DOI: 10.1039/c4nr03942d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.
Collapse
Affiliation(s)
- Dong-Fang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
4
|
Huang YCK, Huang TY, Chiu HC, Kuo TS, Hsueh CJ, Kao HW, Wang CW, Hsu HH, Juan CJ. Transition into driven equilibrium of the balanced steady-state free precession as an ultrafast multisection T2-weighted imaging of the brain. AJNR Am J Neuroradiol 2014; 35:1137-44. [PMID: 24722304 DOI: 10.3174/ajnr.a3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Current T2-weighted imaging takes >3 minutes to perform, for which the ultrafast transition into driven equilibrium (TIDE) technique may be potentially helpful. This study qualitatively and quantitatively evaluates the imaging of transition into driven equilibrium of the balanced steady-state free precession (TIDE) compared with TSE and turbo gradient spin-echo on T2-weighted MR images. MATERIALS AND METHODS Thirty healthy volunteers were examined with T2-weighted images by using TIDE, TSE, and turbo gradient spin-echo sequences. Imaging was evaluated qualitatively by 2 independent observers on the basis of a 4-point rating scale regarding contrast characteristics and artifacts behavior. Image SNR and contrast-to-noise ratio were quantitatively assessed. RESULTS TIDE provided T2-weighted contrast similar to that in TSE and turbo gradient spin-echo with only one-eighth of the scan time. TIDE showed gray-white matter differentiation and iron-load sensitivity inferior that of TSE and turbo gradient spin-echo, but with improved motion artifacts reduction on qualitative scores. Nonmotion ghosting artifacts were uniquely found in TIDE images. The overall SNRs of TSE were 1.9-2.0 times those of turbo gradient spin-echo and 1.7-2.2 times of those of TIDE for brain tissue (P < .0001). TIDE had a higher contrast-to-noise ratio than TSE (P = .169) and turbo gradient spin-echo (P < .0001) regarding non-iron-containing gray matter versus white matter. TIDE had a lower contrast-to-noise ratio than turbo gradient spin-echo and TSE (P < .0001) between iron-containing gray matter and white matter. CONCLUSIONS TIDE provides T2-weighted images with reduced scan times and reduced motion artifacts compared with TSE and turbo gradient spin-echo with the trade-off of reduced SNR and poorer gray-white matter differentiation.
Collapse
Affiliation(s)
- Y-C K Huang
- From the Department of Electrical Engineering (Y.-C.K.H., T.-S.K.), National Taiwan University, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - T-Y Huang
- Department of Electrical Engineering (T.-Y.H.), National Taiwan University of Science and Technology, Taiwan, Republic of China
| | - H-C Chiu
- Graduate Institute of Design Science (H.-C.C.), Tatung University, Taipei, Taiwan, Republic of China
| | - T-S Kuo
- From the Department of Electrical Engineering (Y.-C.K.H., T.-S.K.), National Taiwan University, Taipei, Taiwan, Republic of China
| | - C-J Hsueh
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - H-W Kao
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - C-W Wang
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - H-H Hsu
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - C-J Juan
- Department of Radiology (Y.-C.K.H., C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), Tri-Service General Hospital, Taipei, Taiwan, Republic of ChinaDepartment of Radiology (C.-J.H., H.-W.K, C.-W.W., H.-H. H., C.-J.J.), National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
5
|
Chen F, Ni YC. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: An update. World J Radiol 2012; 4:63-74. [PMID: 22468186 PMCID: PMC3314930 DOI: 10.4329/wjr.v4.i3.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 02/06/2023] Open
Abstract
The concept of magnetic resonance perfusion-diffusion mismatch (PDM) provides a practical and approximate measure of the tissue at risk and has been increasingly applied for the evaluation of hyperacute and acute stroke in animals and patients. Recent studies demonstrated that PDM does not optimally define the ischemic penumbra; because early abnormality on diffusion-weighted imaging overestimates the infarct core by including part of the penumbra, and the abnormality on perfusion weighted imaging overestimates the penumbra by including regions of benign oligemia. To overcome these limitations, many efforts have been made to optimize conventional PDM. Various alternatives beyond the PDM concept are under investigation in order to better define the penumbra. The PDM theory has been applied in ischemic stroke for at least three purposes: to be used as a practical selection tool for stroke treatment; to test the hypothesis that patients with PDM pattern will benefit from treatment, while those without mismatch pattern will not; to be a surrogate measure for stroke outcome. The main patterns of PDM and its relation with clinical outcomes were also briefly reviewed. The conclusion was that patients with PDM documented more reperfusion, reduced infarct growth and better clinical outcomes compared to patients without PDM, but it was not yet clear that thrombolytic therapy is beneficial when patients were selected on PDM. Studies based on a larger cohort are currently under investigation to further validate the PDM hypothesis.
Collapse
|
6
|
Chen F. Feng Chen's work on translational and clinical imaging. World J Radiol 2011; 3:120-4. [PMID: 21532873 PMCID: PMC3084436 DOI: 10.4329/wjr.v3.i4.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023] Open
Abstract
Dr. Feng Chen is a chief medical doctor and the vice chairman of the Department of Radiology in Zhong Da Hospital at Southeast University, Nanjing, China and a senior researcher in the Department of Radiology at the Catholic University of Leuven, Belgium. His main areas of interest are translational imaging research including stroke, tumor angiogenesis, assessment of therapeutic response in solid tumors, and magnetic resonance contrast media. Dr. Feng Chen has published 44 scientific papers in peer-reviewed international journals. He and his colleagues have developed an imaging platform which includes animal models, animal preparations and multiparametric magnetic resonance imaging (MRI) protocols for translational animal imaging research using clinical machines. His MRI findings on rodent stroke are considered to "serve as a model for future laboratory investigations of treatment of acute stroke and unify the approaches developed for clinical studies". He and his colleagues have introduced a novel liver tumor model in rodents, in which a series of studies concerning the antitumor activity of vascular disrupting agents have been successively conducted and assessed by in vivo MRI, especially by diffusion weighted imaging as an imaging biomarker. His goal is to provide valuable references for clinical practice and to contribute to the translation of animal imaging research into patient applications.
Collapse
|
7
|
Use of a clinical MRI scanner for preclinical research on rats. Radiol Phys Technol 2009; 2:13-21. [DOI: 10.1007/s12194-008-0038-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
8
|
Ulmer S, Reeh M, Krause J, Herdegen T, Heldt-Feindt J, Jansen O, Rohr A. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47mm at a clinical 1.5T scanner. J Neurosci Methods 2008; 172:168-72. [DOI: 10.1016/j.jneumeth.2008.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/19/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
|
9
|
Chen F, Liu Q, Wang H, Suzuki Y, Nagai N, Yu J, Marchal G, Ni Y. Comparing two methods for assessment of perfusion-diffusion mismatch in a rodent model of ischaemic stroke: a pilot study. Br J Radiol 2008; 81:192-8. [PMID: 18180261 DOI: 10.1259/bjr/70940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This stroke experiment was designed to define the mismatch between perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in MRI by applying early or instantly acquired PWI. Eight rats were induced with stroke through photothrombotic occlusion of the middle cerebral artery and scanned serially between 1 h and day 3 after induction using DWI and PWI with a 1.5 T MR scanner. The relative lesion volumes (rLV) on MRI and triphenyl tetrazolium chloride-stained specimens were defined as the proportion of lesion volume over brain volume. Discrepancies in the rLV between PWI- and DWI-derived apparent diffusion coefficient (ADC) maps were expressed by subtraction of the ADC from PWI, resulting in three possible patterns: (i) (PWI-ADC > 10% of PWI) denoting a mismatch; (ii) (-(10% of PWI) <or= PWI-ADC <or= 10% of PWI) denoting a match; and (iii) (PWI-ADC < -(10% of PWI)) denoting a reverse mismatch. The differences were compared with the minuend being either early PWI (ePWI) or instant PWI (iPWI) and the subtrahend being instant ADC (iADC). The occurrence and evolution of PWI-ADC patterns were analysed. Over time, PWI-ADC discrepancies evolved from mismatch, through to match, to reversed mismatch. The PWI-ADC mismatch still existed 3 days after MCA occlusion in one to three of the eight cases. The rLVs and mismatch incidences between the ePWI-iADC and iPWI-iADC models were linear correlated. A higher mismatch rate occurred in iPWI-iADC within day 1 and in ePWI-iADC at day 3. Both ePWI and iPWI proved useful to define PWI-ADC patterns within day 1. At day 3, iPWI appeared more adequate.
Collapse
Affiliation(s)
- F Chen
- Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen F, De Keyzer F, Wang H, Vandecaveye V, Landuyt W, Bosmans H, Hermans R, Marchal G, Ni Y. Diffusion weighted imaging in small rodents using clinical MRI scanners. Methods 2007; 43:12-20. [PMID: 17720559 DOI: 10.1016/j.ymeth.2007.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 12/16/2022] Open
Abstract
Diffusion weighted imaging (DWI) has emerged as a unique and powerful non-invasive magnetic resonance imaging (MRI) technique with a major potential impact on imaging-based diagnosis in a variety of clinical applications including oncology and tissue viability assessment. In light of increasing demand for applying this technique in preclinical investigations using small animals, we have explored the potentials of a clinical magnet for acquiring the DWI in rats and mice with either cerebral ischemia or solid tumors. Through technical adaptation and optimization, we have been able to perform a series of clinically relevant animal studies with conclusions based on DWI quantification. Focusing more on practical aspects and cross-referencing with the current literature, this paper is aimed to summarize our ongoing DWI studies on small rodents with stroke and tumors, and to provide protocols for researchers to replicate similar techniques in their own preclinical and clinical studies.
Collapse
Affiliation(s)
- Feng Chen
- Biomedical Imaging, Interventional Therapy and Contrast Media Research, Department of Radiology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brockmann MA, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007; 43:79-87. [PMID: 17720566 DOI: 10.1016/j.ymeth.2007.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 12/16/2022] Open
Abstract
Small rodents such as mice and rats are frequently used in animal experiments for several reasons. In the past, animal experiments were frequently associated with invasive methods and groups of animals had to be killed to perform longitudinal studies. Today's modern imaging techniques such as magnetic resonance imaging (MRI) allow non-invasive longitudinal monitoring of multiple parameters. Although only a few institutions have access to dedicated small animal MR scanners, most institutions carrying out animal experiments have access to clinical MR scanners. Technological advances and the increasing field strength of clinical scanners make MRI a broadly available and viable technique in preclinical in vivo research. This review provides an overview of current concepts, limitations, and recent studies dealing with small animal imaging using clinical MR scanners.
Collapse
Affiliation(s)
- Marc A Brockmann
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 61867 Mannheim, Germany.
| | | | | |
Collapse
|
12
|
Chen F, Suzuki Y, Nagai N, Jin L, Yu J, Wang H, Marchal G, Ni Y. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol 2007; 63:68-75. [PMID: 17337149 DOI: 10.1016/j.ejrad.2007.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/20/2022]
Abstract
PURPOSE To longitudinally investigate stroke in rats after photothrombotic occlusion of proximal middle cerebral artery (MCA) with magnetic resonance imaging (MRI) in correlation with histopathology. MATERIALS AND METHODS Forty-two rats were subjected to photochemical MCA occlusion and MRI at 1.5T, and sacrificed in seven groups (n=6 each) at the following time points: 1, 3, 6 and 12h, and at day 1, 3 and 9. T2-weighted (T2WI) and diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) map was performed in all rats. Contrast-enhanced T1-weighted imaging (CE-T1WI) was compared to intravital staining with Evans blue in one group for assessing blood-brain barrier (BBB) integrity. The brain was stained histochemically with triphenyl tetrazolium chloride (TTC) and processed for pathological assessment. The evolutional changes of relative lesion volume, signal intensity (SI), and the BBB integrity on MRI with corresponding histopathology were evaluated. RESULTS The ischemic lesion volume reached a maximum around 12h to day 1 as visualized successively by DWI, ADC map and T2WI, implicating the evolving pathology from cytotoxic edema through vasogenic edema to tissue death. The ADC of brain infarction underwent a significant reversion after 12h, reflecting the colliquative necrosis. On CE-T1WI, BBB leakage peaked at 6h and at day 3 with a transitional partial recovery around 24h. The infarct volume on T2WI, DWI and ADC map matched well with that on TTC staining at 12h and at day 1 (p>0.05). CONCLUSION The evolution of the present photothrombotic stroke model in rats could be characterized by MRI. The obtained information may help longitudinal studies of cerebral ischemia and anti-stroke agents using the same model.
Collapse
Affiliation(s)
- Feng Chen
- Department of Radiology, Faculty of Medicine, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|