1
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Pallast N, Wieters F, Nill M, Fink GR, Aswendt M. Graph theoretical quantification of white matter reorganization after cortical stroke in mice. Neuroimage 2020; 217:116873. [PMID: 32380139 DOI: 10.1016/j.neuroimage.2020.116873] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023] Open
Abstract
Stroke is a devastating disease leading to cell death and disconnection between neurons both locally and remote, often resulting in severe long-term disability. Spontaneous reorganization of areas and pathways not primarily affected by ischemia is, however, associated with albeit limited recovery of function. Quantitative mapping of whole-brain changes of structural connectivity concerning the ischemia-induced sensorimotor deficit and recovery thereof would help to target structural plasticity in order to improve rehabilitation. Currently, only in vivo diffusion MRI can extract the structural whole-brain connectome noninvasively. This approach is, however, used primarily in human studies. Here, we applied atlas-based MRI analysis and graph theory to DTI in wild-type mice with cortical stroke lesions. Using a DTI network approach and graph theory, we aimed at gaining insights into the dynamics of the spontaneous reorganization after stroke related to the recovery of function. We found evidence for altered structural integrity of connections of specific brain regions, including the breakdown of connections between brain regions directly affected by stroke as well as long-range rerouting of intra- and transhemispheric connections related to improved sensorimotor behavior.
Collapse
Affiliation(s)
- Niklas Pallast
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| | - Frederique Wieters
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| | - Marieke Nill
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
| |
Collapse
|
3
|
Huang WY, Wu G, Guo SX, Geng DY, Li JJ, Yang K. Multi-parameters of Magnetic Resonance Imaging to Estimate Ischemia-Reperfusion Injury after Stroke in Hyperglycemic Rats. Sci Rep 2019; 9:2852. [PMID: 30814576 PMCID: PMC6393533 DOI: 10.1038/s41598-019-39263-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/17/2019] [Indexed: 01/12/2023] Open
Abstract
The aim of the study is to verify the effect of hyperglycemia on ischemia-reperfusion injury and to explore the feasibility of noninvasive observation of ischemic-reperfusion injury in hyperglycemic ischemic stroke by MRI technique. According to the duration of ischemia and blood glucose levels, 40 rats were divided into hyperglycemic ischemic 2-hr (H-I2h), hyperglycemic ischemic 6-hr (H-I6h), non- hyperglycemic ischemic 2-hr (NH-I2h), and non- hyperglycemic ischemic 6-hr (NH-I6h) groups. T2W imaging, DW imaging, T2 mapping, T2* mapping, DCE, and T1 mapping after enhancement sequences were acquired before reperfusion and approximately 3-hr after reperfusion. ADC, T1, T2, T2*, and Ktrans values of ischemic lesion were obtained in different groups. After reperfusion, the variation of ADC values showed no significant difference between groups with diabetes and groups without diabetes and between different recanalization time-points (2-hr vs 6-hr). After reperfusion, T2, T2*, and Ktrans values increased in different degrees in all four groups. Only the T1 value decreased in all groups. The change of all parameters in groups with hyperglycemia was more obvious than that in groups without hyperglycemia and was more obvious in groups with H-I6h versus those with H-I2h. This study confirms that hyperglycemia aggravates ischemia-reperfusion injury and may be an important risk factor for the prognosis of ischemic stroke. The Ktrans values should be noninvasive imaging indicators to monitor blood brain barrier permeability and ischemic-reperfusion injury in ischemic stroke.
Collapse
Affiliation(s)
- Wei-Yuan Huang
- Department of Radiology, Hainan General Hospital, Haikou, 570311, China
| | - Gang Wu
- Department of Radiotherapy, Hainan General Hospital, Haikou, 570311, China
| | - Shan-Xi Guo
- Department of Radiology, Hainan General Hospital, Haikou, 570311, China
| | - Dao-Ying Geng
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian-Jun Li
- Department of Radiology, Hainan General Hospital, Haikou, 570311, China.
| | - Kai Yang
- Department of Radiology, Hainan General Hospital, Haikou, 570311, China.
| |
Collapse
|
4
|
Chen CC, Chang CP, Yang CL. An adaptive fall-free rehabilitation mechanism for ischemic stroke rat patients. Sci Rep 2019; 9:984. [PMID: 30700758 PMCID: PMC6353993 DOI: 10.1038/s41598-018-37282-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Today’s commercial forced exercise platforms had been validated not as a well-designed rehabilitation environment for rats with a stroke, for the reason that rat with a stroke cannot take exercise at a constant intensity for a long period of time. In light of this, this work presented an adaptive, fall-free ischemic stroke rehabilitation mechanism in an animal model, which was implemented in an infrared-sensing adaptive feedback control running wheel (IAFCRW) platform. Consequently, rats with a stroke can be safely rehabilitated all the time, and particularly at full capacity for approximately one third of a training duration, in a completely fall-free environment according to individual physical differences by repeated use of an acceleration/deceleration mechanism. The performance of this platform was assessed using an animal ischemic stroke model. The IAFCRW therapy regimen was validated to outperform a treadmill and a conventional running wheel counterpart with respect to the reduction in the neurobehavioral deficits caused by middle cerebral artery occlusion (MCAo). IAFCRW is the first adaptive forced exercise training platform short of electrical stimulation-assistance in the literature, and ischemic stroke rats benefit more in terms of the behavioral tests run at the end of a 3-week rehabilitation program after a stroke thereby.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Lung Yang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Bøtker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Maddock H, Ovize M, Walker M, Wiart M, Yellon DM. The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol 2018; 113:43. [PMID: 30310998 PMCID: PMC6182684 DOI: 10.1007/s00395-018-0704-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sapna Arjun
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maryna V Basalay
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Robert M Bell
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Richard D Carr
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- MSD A/S, Copenhagen, Denmark
| | - John Cunningham
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Arjun K Ghosh
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Gerd Heusch
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares, Madrid, Spain
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Petra Kleinbongard
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Helen Maddock
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Marlene Wiart
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
- CNRS, Lyon, France
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
6
|
Early Detection of Cerebral Infarction After Focal Ischemia Using a New MRI Indicator. Mol Neurobiol 2018; 56:658-670. [DOI: 10.1007/s12035-018-1073-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/10/2018] [Indexed: 10/16/2022]
|
7
|
Abstract
Necrosis is a hallmark of several widespread diseases or their direct complications. In the past decade, we learned that necrosis can be a regulated process that is potentially druggable. RIPK3- and MLKL-mediated necroptosis represents by far the best studied pathway of regulated necrosis. During necroptosis, the release of damage-associated molecular patterns (DAMPs) drives a phenomenon referred to as necroinflammation, a common consequence of necrosis. However, most studies of regulated necrosis investigated cell lines in vitro in a cell autonomous manner, which represents a non-physiological situation. Conclusions based on such work might not necessarily be transferrable to disease states in which synchronized, non-cell autonomous effects occur. Here, we summarize the current knowledge of the pathophysiological relevance of necroptosis in vivo, and in light of this understanding, we reassess the morphological classification of necrosis that is generally used by pathologists. Along these lines, we discuss the paucity of data implicating necroptosis in human disease. Finally, the in vivo relevance of non-necroptotic forms of necrosis, such as ferroptosis, is addressed.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
9
|
Zhang X, Wu F, Jiao Y, Tang T, Yang L, Lu C, Zhang Y, Zhang Y, Bai Y, Chao J, Teng G, Yao H. An Increase of Sigma-1 Receptor in the Penumbra Neuron after Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26:1981-1987. [PMID: 28687423 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Penumbra salvage from infarction by early reperfusion within the time window is the target of acute ischemic stroke therapies. Although the penumbral imaging is potently usable in clinic trial, additional work needs to be performed to advancing the field with better-defined, evaluated, and validated imaging measures. METHODS Mice were subjected to permanent stroke by right middle cerebral artery (MCA) occlusion. Multimodel magnetic resonance imaging (MRI) method was assessed to define the penumbra as that brain region in which the perfusion and diffusion-weighted MR images are mismatched (perfusion-weighted imaging [PWI]-diffusion-weighted imaging [DWI] mismatch). MRI measurements were performed at 1 hour after MCA occlusion (MCAO). Sigma-1 receptor expression was assessed by immunoblotting and immunostaining in PWI-DWI-defined penumbra and core compared with sham or contralateral slice. Penumbral sigma-1 receptor identified the correlation with the neuron, astrocyte, and microglia by immuno-colocalization. RESULTS Sigma-1 receptor was significantly upregulated in penumbra or peri-infarct compared with sham and core tissue at 1 hour and 24 hours after MCAO. There was a colocalization of sigma-1 receptor and neuron in penumbra at 1 hour after stroke. Sigma-1 receptor is specifically increased in ischemic penumbral neuron at 1 hour after MCAO. CONCLUSIONS Sigma-1 receptor may act as an endogenous marker of penumbra after acute ischemic stroke.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Department of Neurology, Zhongda Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chunqiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yanhong Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Wen Z, Xu X, Xu L, Yang L, Xu X, Zhu J, Wu L, Jiang Y, Liu X. Optimization of behavioural tests for the prediction of outcomes in mouse models of focal middle cerebral artery occlusion. Brain Res 2017; 1665:88-94. [PMID: 28435084 DOI: 10.1016/j.brainres.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
Intraluminal middle cerebral artery occlusion (MCAO) is the most widely used model of stroke. We aimed to predict the outcome of MCAO using a combination of fine behavioural tests for the prediction of unsuccessful surgery in mice leading to no infarction, haemorrhage and unexpected death. MCAO was performed on adult mice under the guidance of laser-Doppler flowmetry (LDF) to warrant a decrease in regional cerebral blood flow (rCBF) in the MCA territory. Four outcomes of MCAO were defined according to histological analysis: infarction, no infarction, haemorrhage and unexpected death (death within 24h post-surgery). Fine behavioural tests including the rotarod, modified neurological severity score (mNSS), Clark general and Clark focal tests were performed separately at 6h, 12h and 24h post-stroke. A total of 94 mice were included in the analysis. The infarction rate associated with MCAO was 58.5% (55/94). After optimization of the timing and behavioural tests, we found that higher Clark focal (>17.5) or higher mNSS scores (>10) were markedly related to early death, whereas a lower mNSS score (<3.5) was indicative of a tendency to show no infarction at 6h post-stroke. After 24h post-stroke, there was a positive correlation between the infarct volume and Clark focal results. Behavioural tests could help to predict the outcomes in the MCAO mouse model.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lian Yang
- Department of Neurology, Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Juehua Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Wu
- Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
12
|
Liu NW, Ke CC, Zhao Y, Chen YA, Chan KC, Tan DTW, Lee JS, Chen YY, Hsu TW, Hsieh YJ, Chang CW, Yang BH, Huang WS, Liu RS. Evolutional Characterization of Photochemically Induced Stroke in Rats: a Multimodality Imaging and Molecular Biological Study. Transl Stroke Res 2016; 8:244-256. [PMID: 27910074 PMCID: PMC5435782 DOI: 10.1007/s12975-016-0512-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Photochemically induced cerebral ischemia is an easy-manipulated, reproducible, relatively noninvasive, and lesion controllable model for translational study of ischemic stroke. In order to longitudinally investigate the characterization of the model, magnetic resonance imaging, 18F-2-deoxy-glucose positron emission tomography, fluorescence, and bioluminescence imaging system were performed in correlation with triphenyl tetrazolium chloride (TTC), hematoxylin-eosin staining, and immunohistochemistry examinations of glial fibrillary acidic protein, CD68, NeuN, von willebrand factor, and α-smooth muscle actin in the infarct zone. The results suggested that the number of inflammatory cells, astrocytes, and neovascularization significantly elevated in peri-infarct region from day 7 and a belt of macrophage/microglial and astrocytes was formed surrounding infarct lesion at day 14. Both vasogenic and cytotoxic edema, as well as blood brain-barrier leakage, occurred since day 1 after stroke induction and gradually attenuated with time. Numerous cells other than neuronal cells infiltrated into infarct lesion, which resulted in no visible TTC negative regional existence at day 14. Furthermore, recovery of cerebral blood flow and glucose utilization in peri-infarct zone were noted and more remarkably than that in infarct core following the stroke progression. In conclusion, these characterizations may be highly beneficial to the development of therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Nai-Wei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau.
| | - Yi-An Chen
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kim-Chuan Chan
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David Tat-Wei Tan
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jhih-Shian Lee
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Medical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Ju Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Chang
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Engineering, National Yang-Ming University, Taipei, Taiwan. .,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan. .,Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
13
|
Chen CC, Yang CL, Chang CP. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance. J Vis Exp 2016. [PMID: 27684092 DOI: 10.3791/54354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology;
| | - Chin-Lung Yang
- Department of Electrical Engineering, National Cheng Kung University
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology; Department of Medical Research, Chi Mei Medical Center
| |
Collapse
|
14
|
Huang L, Merson TD, Bourne JA. In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology. Neurosci Biobehav Rev 2016; 66:104-18. [PMID: 27151822 DOI: 10.1016/j.neubiorev.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Rodents have been the principal model to study brain anatomy and function due to their well-mapped brain architecture, rapid reproduction and amenability to genetic modification. However, there are clear limitations, for example their simpler neocortex, necessitating the need to adopt a model that is closer to humans in order to understand human cognition and brain conditions. Nonhuman primates (NHPs) are ideally suited as they are our closest relatives in the animal kingdom but in vivo imaging technologies to study brain structure and function in these species can be challenging. With the surge in NHP research in recent years, scientists have begun adapting imaging technologies, such as two-photon microscopy, for these species. Here we review the various NHP models that exist as well as their use in advanced microscopic and mesoscopic studies. We discuss the challenges in the field and investigate the opportunities that lie ahead.
Collapse
Affiliation(s)
- Lieven Huang
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Tobias D Merson
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia.
| |
Collapse
|
15
|
Wouters A, Dupont P, Christensen S, Norrving B, Laage R, Thomalla G, Albers G, Thijs V, Lemmens R. Association Between Time From Stroke Onset and Fluid-Attenuated Inversion Recovery Lesion Intensity Is Modified by Status of Collateral Circulation. Stroke 2016; 47:1018-22. [PMID: 26917566 DOI: 10.1161/strokeaha.115.012010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In patients with acute stroke, the intensity of a fluid-attenuated inversion recovery (FLAIR) lesion in the region of diffusion restriction is associated with time from symptom onset. We hypothesized that collateral status as assessed by the hypoperfusion intensity ratio could modify the association between time from stroke onset and FLAIR lesion intensity. METHODS From the AX200 for ischemic stroke trial, 141 patients had appropriate FLAIR, diffusion-weighted imaging, and perfusion-weighted imaging. In the region of nonreperfused core, we calculated voxel-based relative FLAIR (rFLAIR) signal intensity. The hypoperfusion intensity ratio was defined as the ratio of the Tmax >10 s lesion over the Tmax >6 s lesion volume. A hypoperfusion intensity ratio threshold of ≤0.4 was used to dichotomize good versus poor collaterals. We studied the interaction between collateral status on the association between time from symptom onset and FLAIR intensity. RESULTS Time from symptom onset was associated with the rFLAIR intensity in the region of nonreperfused core (B=1.05; 95% confidence interval, 1.0-1.1). We identified an interaction between this association and collateral status; an association was present between time and rFLAIR intensity in patients with poor collaterals (r=0.53), but absent in patients with good collaterals (r=0.17; P=0.04). CONCLUSIONS Our findings show that the relationship between time from symptom onset and rFLAIR lesion intensity depends on collateral status. In patients with good collaterals, the development of an rFLAIR-positive lesion is less dependent on time from symptom onset compared with patients with poor collaterals.
Collapse
Affiliation(s)
- Anke Wouters
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.).
| | - Patrick Dupont
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Soren Christensen
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Bo Norrving
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Rico Laage
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Götz Thomalla
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Greg Albers
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Vincent Thijs
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| | - Robin Lemmens
- From the Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, Leuven, Belgium (A.W., R.L.); Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium (A.W., R.L.); Department of Neurology, University Hospitals Leuven, Leuven, Belgium (A.W., R.L.); Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium (P.D.); Department of Neurology, Stroke Center, Stanford University, Palo Alto, CA (S.C., G.A.); Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden (B.N.); Guided Development GmbH, Heidelberg, Germany (R.L.); Uinversitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie, Kopf-und Neurozentrum, Hamburg, Germany (G.T.); and Department of Neurology Austin Health, Melbourne Brain Center, Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia (V.T.)
| |
Collapse
|
16
|
Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 2015; 10:e0124362. [PMID: 25884837 PMCID: PMC4401453 DOI: 10.1371/journal.pone.0124362] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
Collapse
|
17
|
Nguemeni C, Gomez-Smith M, Jeffers MS, Schuch CP, Corbett D. Time course of neuronal death following endothelin-1 induced focal ischemia in rats. J Neurosci Methods 2015; 242:72-6. [PMID: 25583382 DOI: 10.1016/j.jneumeth.2015.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) induced focal ischemia is increasingly being used as a preclinical model of stroke. Here, we described for the first time, the time course of neuronal death and infarct evolution during the first 7 days following ischemia. NEW METHOD We used hematoxylin and eosin (H&E) staining to evaluate infarct progression and Fluoro-Jade C (FJC) to quantify neuronal degeneration at 24, 48, 72h and 7 days after ET-1 injection to the forelimb motor cortex in Sprague-Dawley rats. RESULTS We found that infarct volume and neuronal degeneration are maximal at 24h post-stroke. Neuronal degeneration is also significantly reduced within 7 days of stroke induction. COMPARISON WITH EXISTING METHOD This study is the first to provide a direct evaluation of both infarct volume evolution and neuronal death time course following ET-1 induced focal ischemia in the forelimb motor cortex. CONCLUSION This study describes the short-term time course of neuronal death and brain injury in the ET-1 stroke model, which provides a significant reference when determining the appropriate time to commence neuroprotective or recovery promoting strategies.
Collapse
Affiliation(s)
- Carine Nguemeni
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Mariana Gomez-Smith
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | | | - Dale Corbett
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Guan J, Zhang B, Zhang J, Ding W, Xiao Z, Zhu Z, Han Q, Wu C, Sun Y, Tong W, Dai J, Wang R. Nerve regeneration and functional recovery by collagen-binding brain-derived neurotrophic factor in an intracerebral hemorrhage model. Tissue Eng Part A 2015; 21:62-74. [PMID: 24941993 DOI: 10.1089/ten.tea.2014.0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) exerts therapeutic effects following intracerebral hemorrhage (ICH). However, it is difficult to maintain sufficient concentrations in the hemorrhage hemisphere. We demonstrated previously that BDNF fused to a collagen-binding domain (CBD) could bind to collagen in the ventricular ependyma and stimulate cell proliferation in the subventricular zone (SVZ). In this study, we verified the therapeutic effects of CBD-BDNF in the rat ICH model induced by bacterial collagenase by injecting CBD-BDNF into the lateral ventricle of ICH rats. The results demonstrated that CBD-BDNF was retained at high levels in the hemorrhage hemisphere, where it promoted neural regeneration and angiogenesis, reduced tissue loss, and improved functional recovery.
Collapse
Affiliation(s)
- Jian Guan
- 1 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen CC, Chang MW, Chang CP, Chan SC, Chang WY, Yang CL, Lin MT. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. ACTA ACUST UNITED AC 2014; 47:858-68. [PMID: 25140816 PMCID: PMC4181221 DOI: 10.1590/1414-431x20143754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
Abstract
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Collapse
Affiliation(s)
- C C Chen
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - M W Chang
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - C P Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - S C Chan
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - W Y Chang
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - C L Yang
- Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - M T Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
20
|
Teo L, Bourne JA. A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. Brain Pathol 2014; 24:459-74. [PMID: 25469561 DOI: 10.1111/bpa.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Models of ischemic brain injury in the nonhuman primate (NHP) are advantageous for investigating mechanisms of central nervous system (CNS) injuries and testing of new therapeutic strategies. However, issues of reproducibility and survivability persist in NHP models of CNS injuries. Furthermore, there are currently no pediatric NHP models of ischemic brain injury. Therefore, we have developed a NHP model of cortical focal ischemia that is highly reproducible throughout life to enable better understanding of downstream consequences of injury. Posterior cerebral arterial occlusion was induced through intracortical injections of endothelin-1 in adult (n = 5) and neonatal (n = 3) marmosets, followed by magnetic resonance imaging (MRI), histology and immunohistochemistry. MRI revealed tissue hyperintensity at the lesion site at 1-7 days followed by isointensity at 14-21 days. Peripheral macrophage and serum albumin infiltration was detected at 1 day, persisting at 21 days. The proportional loss of total V1 as a result of infarction was consistent in adults and neonates. Minor hemorrhagic transformation was detected at 21 days at the lesion core, while neovascularization was detected in neonates, but not in adults. We have developed a highly reproducible and survivable model of focal ischemia in the adult and neonatal marmoset primary visual cortex, demonstrating similar downstream anatomical and cellular pathology to those observed in post-ischemic humans.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
21
|
Comparative study of the relative signal intensity on DWI, FLAIR, and T2 images in identifying the onset time of stroke in an embolic canine model. Neurol Sci 2014; 35:1059-65. [PMID: 24493372 DOI: 10.1007/s10072-014-1643-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
In acute stroke magnetic resonance imaging, many attempts have been made to identify the onset time of ischemic events using the simply quantitative judgment of relative signal intensity (rSI) from various MR images. However, no uniform opinion has been achieved broadly till now. The controversy might derive from the potential patients' selection bias of clinical retrospective study, the discrepant MR parameters, and the various sample sizes among different studies. Thus, we evaluated the temporal change of the relative DWI signal intensity (rDWI), relative ADC value (rADC), relative FLAIR signal intensity (rFLAIR), and relative T2 signal intensity (rT2), and further compare their diagnostic value in identifying the hyperacute lesions based on our embolic canine model with clear onset time. Twenty ischemic models were successfully established. All rSI values were linearly correlated to time with significance until 24 h after model establishment (P < 0.05). Paired comparison of ROC curves showed that significant difference was found between rADC and other three rSIs (P < 0.0001). However, no significant difference was found among rDWI, rT2 and rFLAIR. Our results indicated that rDWI, rFLAIR and rT2 may be helpful to predict the onset time of ischemic events with the similar diagnostic value. However, the rADC does not have comparable predictive value in our embolic canine model.
Collapse
|
22
|
Bix GJ, Gowing EK, Clarkson AN. Perlecan domain V is neuroprotective and affords functional improvement in a photothrombotic stroke model in young and aged mice. Transl Stroke Res 2013; 4:515-23. [PMID: 24323378 DOI: 10.1007/s12975-013-0266-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/12/2013] [Accepted: 05/22/2013] [Indexed: 01/11/2023]
Abstract
With the failure of so many pre-clinical stroke studies to translate into the clinic, there is a need to find new therapeutics to minimize the extent of cellular damage and aid in functional recovery. Domain V (DV), the c-terminal protein fragment of the vascular basement membrane component, perlecan, was recently shown to afford significant protection in multiple transient middle cerebral artery occlusion stroke models. We sought here to determine whether DV might have similar therapeutic properties in a focal photothrombosis stroke model in both young and aged mice. Young (3-month old) and aged (24-month old) mice underwent photothrombotic stroke to the motor cortex and were then treated with DV or phosphate buffered saline vehicle at different initial time points up to 7 days. Stroke volume was analyzed histologically using cresyl violet and functional recovery assessed behaviorally on both the grid-walking and cylinder tasks. In young mice, DV administration resulted in a significant decrease in infarct volume when treatment started 3 or 6 h post-stroke. In aged mice, DV administration was only protective when started 3 h post-stroke. In addition to a decrease in the area of infarction, DV treatment was effective in significantly decreasing the number of foot-faults on the grid-walking task and improving use of the stroke-affected limb in the cylinder task in both young and aged. Previously, we have shown that DV can alter the expression profile of various astroglial markers. Consistent with our previous finding, treatment groups that showed therapeutic potential in both young and aged mice also showed an elevation in glial fibrillary acidic protein (GFAP) expression in peri-infarct regions. We conclude that DV is neuroprotective and affords significant improvements in functional recovery in both young and aged mice after focal ischemia. These data also highlight a therapeutic time-window shift that is narrower in aged compared with young mice and is associated with an elevation in GFAP expression and heightened astrogliosis.
Collapse
Affiliation(s)
- Gregory J Bix
- Anatomy and Neurobiology, University of Kentucky College of Medicine, Sanders Brown Center for Aging, Lexington, KY, 40536, USA
| | | | | |
Collapse
|
23
|
Dias EDM, Giollo LT, Martinelli DD, Mazeti C, Júnior HM, Vilela-Martin JF, Yugar-Toledo JC. Carotid intima-media thickness is associated with cognitive deficiency in hypertensive patients with elevated central systolic blood pressure. Cardiovasc Ultrasound 2012; 10:41. [PMID: 23078629 PMCID: PMC3495224 DOI: 10.1186/1476-7120-10-41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 09/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background The role of hypertension in the loss of cognitive function is controversial. Relationships between hypertension and increases in cerebral vascular resistance, diffused lesions and multiple lacunar infarcts of the white matter are well known. Thus, the objectives of this study were: to evaluate the relationship between hypertension and cognitive dysfunction (CD), identify risk factors and determine the association between early markers of vascular disease and CD in hypertensive individuals. Methods Two hundred individuals aged between 40 and 80 years old were evaluated in this cross-sectional prospective study. Fifty participants were controls (CT). The remaining 150 hypertensive patients were subdivided into two groups, those with CD (HCD) and those without CD (HNCD). All participants underwent clinical evaluations and biochemical blood tests were performed. CD was investigated using the Mini Mental State Examination (MMSE) following the guidelines for its use in Brazil. The impact of hypertension on the arterial bed was assessed by identifying and measuring changes in the intima-media thickness (IMT) by vascular ultrasonography of the carotid arteries and analyses of the central blood pressure and Augmentation Index by applanation tonometry of the radial artery. Results There were no significant differences in the total cholesterol, high-density lipoprotein cholesterol and triglycerides plasma concentrations between the three groups. The serum creatinine and estimated glomerular filtration rate were within normal ranges for all three groups. A significantly lower MMSE score was recorded for the HCD Group compared to the HNCD and CT Groups (p-value < 0.05). The IMT was significantly different between the HNCD and HCD Groups (p-value = 0.0124). A significant difference in the IMT was also observed between hypertensive patients and the CT Group (p-value < 0.0001). Age, low-density cholesterol, high-density cholesterol, triglycerides and IMT increased the Odds Ratio for cognitive dysfunction. The central systolic pressure was significantly higher in the HCD and HNCD Groups compared to CT Group (p-value < 0.0001). Conclusions Hypertensive patients with CD have changes in the vascular morphology characterized by an increased carotid IMT, enhanced atherosclerotic lipid profile and impaired hemodynamic functional manifested by elevated central systolic blood pressure.
Collapse
Affiliation(s)
- Eros da Mota Dias
- Hypertension Clinic, Department of Internal Medicine, State Medical School of São José do Rio Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Animal Models of Stroke for Preclinical Drug Development: A Comparative Study of Flavonols for Cytoprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Quantitative proton MRI and MRS of the rat brain with a 3T clinical MR scanner. J Neuroradiol 2011; 38:90-7. [DOI: 10.1016/j.neurad.2009.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/03/2009] [Accepted: 11/13/2009] [Indexed: 11/21/2022]
|
26
|
Chen F. Feng Chen's work on translational and clinical imaging. World J Radiol 2011; 3:120-4. [PMID: 21532873 PMCID: PMC3084436 DOI: 10.4329/wjr.v3.i4.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023] Open
Abstract
Dr. Feng Chen is a chief medical doctor and the vice chairman of the Department of Radiology in Zhong Da Hospital at Southeast University, Nanjing, China and a senior researcher in the Department of Radiology at the Catholic University of Leuven, Belgium. His main areas of interest are translational imaging research including stroke, tumor angiogenesis, assessment of therapeutic response in solid tumors, and magnetic resonance contrast media. Dr. Feng Chen has published 44 scientific papers in peer-reviewed international journals. He and his colleagues have developed an imaging platform which includes animal models, animal preparations and multiparametric magnetic resonance imaging (MRI) protocols for translational animal imaging research using clinical machines. His MRI findings on rodent stroke are considered to "serve as a model for future laboratory investigations of treatment of acute stroke and unify the approaches developed for clinical studies". He and his colleagues have introduced a novel liver tumor model in rodents, in which a series of studies concerning the antitumor activity of vascular disrupting agents have been successively conducted and assessed by in vivo MRI, especially by diffusion weighted imaging as an imaging biomarker. His goal is to provide valuable references for clinical practice and to contribute to the translation of animal imaging research into patient applications.
Collapse
|
27
|
Senda DM, Franzin S, Mori MA, Oliveira RMWD, Milani H. Acute, post-ischemic sensorimotor deficits correlate positively with infarct size but fail to predict its occurrence and magnitude after middle cerebral artery occlusion in rats. Behav Brain Res 2011; 216:29-35. [DOI: 10.1016/j.bbr.2010.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/13/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
|
28
|
Sandhu GS, Solorio L, Broome AM, Salem N, Kolthammer J, Shah T, Flask C, Duerk JL. Whole animal imaging. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:398-421. [PMID: 20836038 DOI: 10.1002/wsbm.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research.
Collapse
Affiliation(s)
- Gurpreet Singh Sandhu
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ann-Marie Broome
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicolas Salem
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeff Kolthammer
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tejas Shah
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris Flask
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey L Duerk
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Axonal damage in acute cerebral infarction showing ADC reduction. J Neurol 2010; 257:1559-61. [DOI: 10.1007/s00415-010-5537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
30
|
Paulson JR, Yang T, Selvaraj PK, Mdzinarishvili A, Van der Schyf CJ, Klein J, Bickel U, Abbruscato TJ. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther 2010; 332:371-9. [PMID: 19889792 PMCID: PMC2812118 DOI: 10.1124/jpet.109.157776] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that nicotine, the addictive component of tobacco products, alters the blood-brain barrier (BBB) Na(+),K(+),2Cl(-) cotransporter (NKCC) during in vitro hypoxia-aglycemia exposure. Attenuation of abluminal NKCC suggests that accumulation of ions in the brain extracellular fluid would result in an increase of fluid or cytotoxic edema in the brain during hypoxia-aglycemia or stroke conditions. To further investigate whether nicotine products have the potential to worsen stroke outcome by increasing edema formation, two separate models to mimic stroke conditions were utilized to decipher the effects of short-term and long-term administrations of nicotine products on brain edema following stroke. Oxygen glucose deprivation (OGD) was studied in rat hippocampal slices with short-term or long-term exposure to nicotine and cigarette smoke constituents. During short-term exposure, the presence of nicotine at a concentration mimicking heavy smokers increased water content of hippocampal slices during OGD. Furthermore, long-term 1-week administration of nicotine increased water content in hippocampal slices that could be attenuated with nicotine acetylcholine receptor (nAChR) antagonists, suggesting nicotine increase edema during OGD via nAChRs. A second model of focal ischemia, middle cerebral artery occlusion, showed an increase of infarct size during short-term exposure to nicotine and an increase of edema during both short-term and long-term administration of nicotine, compared with saline controls. These findings support the paradigm that nicotine products not only increase the incidence of stroke but also have the potential to worsen stroke outcome by increased edema formation.
Collapse
Affiliation(s)
- Jennifer R Paulson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Planas AM. Noninvasive Brain Imaging in Small Animal Stroke Models: MRI and PET. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-750-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Sánchez-Pérez R, Jørgensen K, Motawia MS, Dicenta F, Møller BL. Tissue and cellular localization of individual beta-glycosidases using a substrate-specific sugar reducing assay. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:894-906. [PMID: 19682295 DOI: 10.1111/j.1365-313x.2009.03997.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Traditional methods to localize beta-glycosidase activity in tissue sections have been based on incubation with the general substrate 6-bromo-2-naphthyl-beta-d-glucopyranoside. When hydrolysed in the presence of salt zinc compounds, 6-bromo-2-naphthyl-beta-d-glucopyranoside affords the formation of an insoluble coloured product. This technique does not distinguish between different beta-glycosidases present in the tissue. To be able to monitor the occurrence of individual beta-glycosidases in different tissues and cell types, we have developed a versatile histochemical method that can be used for localization of any beta-glycosidase that upon incubation with its specific substrate releases a reducing sugar. Experimentally, the method is based on hydrolysis of the specific substrate followed by oxidation of the sugar released by a tetrazolium salt (2,3,5-triphenyltetrazolium chloride) that forms a red insoluble product when reduced. The applicability of the method was demonstrated by tissue and cellular localization of two beta-glucosidases, amygdalin hydrolase and prunasin hydrolase, in different tissues and cell types of almond. In those cases where the analysed tissue had a high content of reducing sugars, this resulted in strong staining of the background. This interfering staining of the background was avoided by prior incubation with sodium borohydride. The specificity of the devised method was demonstrated in a parallel localization study using a specific antibody towards prunasin hydrolase.
Collapse
Affiliation(s)
- Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Chen F, Liu Q, Wang H, Suzuki Y, Nagai N, Yu J, Marchal G, Ni Y. Comparing two methods for assessment of perfusion-diffusion mismatch in a rodent model of ischaemic stroke: a pilot study. Br J Radiol 2008; 81:192-8. [PMID: 18180261 DOI: 10.1259/bjr/70940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This stroke experiment was designed to define the mismatch between perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in MRI by applying early or instantly acquired PWI. Eight rats were induced with stroke through photothrombotic occlusion of the middle cerebral artery and scanned serially between 1 h and day 3 after induction using DWI and PWI with a 1.5 T MR scanner. The relative lesion volumes (rLV) on MRI and triphenyl tetrazolium chloride-stained specimens were defined as the proportion of lesion volume over brain volume. Discrepancies in the rLV between PWI- and DWI-derived apparent diffusion coefficient (ADC) maps were expressed by subtraction of the ADC from PWI, resulting in three possible patterns: (i) (PWI-ADC > 10% of PWI) denoting a mismatch; (ii) (-(10% of PWI) <or= PWI-ADC <or= 10% of PWI) denoting a match; and (iii) (PWI-ADC < -(10% of PWI)) denoting a reverse mismatch. The differences were compared with the minuend being either early PWI (ePWI) or instant PWI (iPWI) and the subtrahend being instant ADC (iADC). The occurrence and evolution of PWI-ADC patterns were analysed. Over time, PWI-ADC discrepancies evolved from mismatch, through to match, to reversed mismatch. The PWI-ADC mismatch still existed 3 days after MCA occlusion in one to three of the eight cases. The rLVs and mismatch incidences between the ePWI-iADC and iPWI-iADC models were linear correlated. A higher mismatch rate occurred in iPWI-iADC within day 1 and in ePWI-iADC at day 3. Both ePWI and iPWI proved useful to define PWI-ADC patterns within day 1. At day 3, iPWI appeared more adequate.
Collapse
Affiliation(s)
- F Chen
- Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|