1
|
Schilling KG, Howard AFD, Grussu F, Ianus A, Hansen B, Barrett RLC, Aggarwal M, Michielse S, Nasrallah F, Syeda W, Wang N, Veraart J, Roebroeck A, Bagdasarian AF, Eichner C, Sepehrband F, Zimmermann J, Soustelle L, Bowman C, Tendler BC, Hertanu A, Jeurissen B, Verhoye M, Frydman L, van de Looij Y, Hike D, Dunn JF, Miller K, Landman BA, Shemesh N, Anderson A, McKinnon E, Farquharson S, Dell'Acqua F, Pierpaoli C, Drobnjak I, Leemans A, Harkins KD, Descoteaux M, Xu D, Huang H, Santin MD, Grant SC, Obenaus A, Kim GS, Wu D, Le Bihan D, Blackband SJ, Ciobanu L, Fieremans E, Bai R, Leergaard TB, Zhang J, Dyrby TB, Johnson GA, Cohen‐Adad J, Budde MD, Jelescu IO. Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography. Magn Reson Med 2025; 93:2561-2582. [PMID: 40008460 PMCID: PMC11971500 DOI: 10.1002/mrm.30424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025]
Abstract
Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Amy F. D. Howard
- Department of BioengineeringImperial College LondonLondonUK
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of OncologyVall d'Hebron Barcelona Hospital CampusBarcelonaSpain
- Queen Square MS Centre, Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Andrada Ianus
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonEngland
- Champalimaud ResearchChampalimaud FoundationLisbonPortugal
| | - Brian Hansen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Rachel L. C. Barrett
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- NatBrainLab, Department of Forensics and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stijn Michielse
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS)Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Fatima Nasrallah
- The Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Warda Syeda
- Melbourne Neuropsychiatry CentreThe University of MelbourneParkvilleVictoriaAustralia
| | - Nian Wang
- Department of Radiology and Imaging SciencesIndiana UniversityBloomingtonIndianaUSA
- Stark Neurosciences Research InstituteIndiana University School of MedicineBloomingtonIndianaUSA
| | - Jelle Veraart
- Center for Biomedical ImagingNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Alard Roebroeck
- Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| | - Andrew F. Bagdasarian
- Department of Chemical & Biomedical EngineeringFAMU‐FSU College of Engineering, Florida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Cornelius Eichner
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Christien Bowman
- Bio‐Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpAntwerpBelgium
- μNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Andreea Hertanu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Ben Jeurissen
- imec Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
- Lab for Equilibrium Investigations and Aerospace, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Marleen Verhoye
- Bio‐Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpAntwerpBelgium
- μNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Lucio Frydman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, Gynaecology & Obstetrics, School of MedicineUniversité de GenèveGenèveSwitzerland
| | - David Hike
- Department of Chemical & Biomedical EngineeringFAMU‐FSU College of Engineering, Florida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Karla Miller
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Bennett A. Landman
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud FoundationLisbonPortugal
| | - Adam Anderson
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Emilie McKinnon
- Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shawna Farquharson
- National Imaging FacilityThe University of QueenslandBrisbaneQueenslandAustralia
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental SciencesKing's College LondonLondonUK
| | - Carlo Pierpaoli
- Laboratory on Quantitative Medical Imaging, NIBIB, National Institutes of HealthBethesdaMarylandUSA
| | - Ivana Drobnjak
- Department of Computer ScienceUniversity College LondonLondonUK
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Kevin D. Harkins
- Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaing Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
- Imeka SolutionsSherbrookeQuebecCanada
| | - Duan Xu
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hao Huang
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Mathieu D. Santin
- Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225Sorbonne UniversitéParisFrance
- Paris Brain InstituteParisFrance
| | - Samuel C. Grant
- Department of Chemical & Biomedical EngineeringFAMU‐FSU College of Engineering, Florida State UniversityTallahasseeFloridaUSA
- Center for Interdisciplinary Magnetic ResonanceNational HIgh Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Andre Obenaus
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
- Preclinical and Translational Imaging CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Gene S. Kim
- Department of RadiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Denis Le Bihan
- CEA, DRF, JOLIOT, NeuroSpinGif‐sur‐YvetteFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Stephen J. Blackband
- Department of NeuroscienceUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Luisa Ciobanu
- NeuroSpin, UMR CEA/CNRS 9027Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Els Fieremans
- Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of MedicineZhejiang UniversityHangzhouChina
- Frontier Center of Brain Science and Brain‐machine IntegrationZhejiang University
| | - Trygve B. Leergaard
- Department of Molecular Biology, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jiangyang Zhang
- Department of RadiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager & HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Department of RadiologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical EngineeringPolytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
- Mila ‐ Quebec AI InstituteMontrealQuebecCanada
| | - Matthew D. Budde
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Clement J Zablocki VA Medical CenterMilwaukeeWisconsinUSA
| | - Ileana O. Jelescu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- CIBM Center for Biomedical ImagingEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
2
|
Perera MR, Su P, Holdsworth S, Handsfield G. Changes to muscle and fascia tissue after eighteen days of ankle immobilization post-ankle sprain injury: an MRI case study. BMC Musculoskelet Disord 2025; 26:34. [PMID: 39789535 PMCID: PMC11716319 DOI: 10.1186/s12891-024-08254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains. MATERIAL AND METHODS In this case study, a participant who suffered an ankle sprain underwent initial MRI scans and, after 21 days (18 of which included immobilization), a follow-up MRI. Techniques used included proton density, 3D stack of spirals, and diffusion tensor imaging to analyse muscle and fascia changes pre- and post-injury. RESULTS Results showed muscle atrophy in most shank muscles, with volume loss ranging from no change in the lateral gastrocnemius to 12.11% in the popliteus. Thigh muscles displayed hypertrophy of 6% in the hamstrings, while the quadriceps atrophied by 2.5%. Additionally, fascia thickness increased from 0.94 mm to 1.03 mm. Diffusion tensor imaging indicated that the biceps femoris experienced the most significant changes in physiological cross-sectional area, while the rectus femoris showed minimal change. CONCLUSION The findings highlight the variable responses of muscles and a notable thickening of deep fascia post-injury, underscoring its role in recovery from ankle sprains.
Collapse
Affiliation(s)
| | - Pan Su
- Siemens Medical Solutions, USA, Inc., Malvern, PA, USA
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
- Department of Orthopaedics and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Duraffourg M, Rougereau G, Fawaz R, Ltaief A, Jacquesson T, Freydier M, Baude C, Robert R, Mertens P. Lumbosacral plexus and pudendal nerve magnetic resonance tractography: A systematic review of the clinical applications for pudendal neuralgia. Magn Reson Imaging 2024; 112:18-26. [PMID: 38797289 DOI: 10.1016/j.mri.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Diffusion tensor imaging (DTI) is commonly used to establish three-dimensional mapping of white-matter bundles in the supraspinal central nervous system. DTI has also been the subject of many studies on cranial and peripheral nerves. This non-invasive imaging technique enables virtual dissection of nerves in vivo and provides specific measurements of microstructural integrity. Adverse effects on the lumbosacral plexus may be traumatic, compressive, tumoral, or malformative and thus require dedicated treatment. DTI could lead to new perspectives in pudendal neuralgia diagnosis and management. We performed a systematic review of all articles or posters reporting results and protocols for lumbosacral plexus mapping using the DTI technique between January 2011 and December 2023. Twenty-nine articles published were included. Ten studies with a total of 351 participants were able to track the lumbosacral plexus in a physiological context and 19 studies with a total of 402 subjects tracked lumbosacral plexus in a pathological context. Tractography was performed on a 1.5T or 3T MRI system. DTI applied to the lumbosacral plexus and pudendal nerve is feasible but no microstructural normative value has been proposed for the pudendal nerve. The most frequently tracking parameters used in our review are: 3T MRI, b-value of 800 s/mm2, 33 directions, 3 × 3 × 3 mm3, AF threshold of 0.1, minimum fiber length of 10 mm, bending angle of 30°, and 3DT2 TSE anatomical resolution. Increased use of DTI could lead to new perspectives in the management of pudendal neuralgia due to entrapment syndrome, whether at the diagnostic, prognostic, or preoperative planning level. Prospective studies of healthy subjects and patients with the optimal acquisition parameters described above are needed to establish the accuracy of MR tractography for diagnosing pudendal neuralgia and other intrapelvic nerve entrapments.
Collapse
Affiliation(s)
- M Duraffourg
- Unité de Neuromodulation Polyvalente, Service de Neurochirurgie fonctionnelle de la moelle et des nerfs périphériques - Hospices Civils de Lyon, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Centre d'Évaluation et de Traitement de la Douleur, Hospices Civils de Lyon- Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France
| | - G Rougereau
- Service de chirurgie orthopédique et traumatologique Hôpital Pitié Salpetrière, Paris, France
| | - R Fawaz
- Unité de Neuromodulation Polyvalente, Service de Neurochirurgie fonctionnelle de la moelle et des nerfs périphériques - Hospices Civils de Lyon, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Centre d'Évaluation et de Traitement de la Douleur, Hospices Civils de Lyon- Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Service de Neurochirurgie - Hôpital d'Instruction des Armées Percy, Clamart, France.
| | - A Ltaief
- Service d'imagerie médicale et interventionnelle - Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - T Jacquesson
- Service de Neurochirurgie crânienne générale, tumorale et vasculaire - Hospices Civils de Lyon- Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Faculté de Médecine Lyon Est, Université Claude Bernard, Lyon, France
| | - M Freydier
- Centre d'Évaluation et de Traitement de la Douleur - Centre Hospitalier de Macon, Macon, France; Centre d'Évaluation et de Traitement de la Douleur - Médipôle Hôpital Mutualiste, Villeurbanne, France
| | - C Baude
- Centre d'Évaluation et de Traitement de la Douleur - Médipôle Hôpital Mutualiste, Villeurbanne, France
| | - R Robert
- Service de chirurgie - Hôpital Privé du Confluent, Nantes, France; Faculté de Médecine de Nantes, Nantes, France
| | - P Mertens
- Unité de Neuromodulation Polyvalente, Service de Neurochirurgie fonctionnelle de la moelle et des nerfs périphériques - Hospices Civils de Lyon, Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Centre d'Évaluation et de Traitement de la Douleur, Hospices Civils de Lyon- Hôpital neurologique et neurochirurgical Pierre Wertheimer, Bron, France; Faculté de Médecine Lyon Est, Université Claude Bernard, Lyon, France
| |
Collapse
|
4
|
Bougia CΚ, Astrakas L, Pappa O, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. Diffusion tensor imaging and fiber tractography of the normal epididymis. Abdom Radiol (NY) 2024; 49:2932-2941. [PMID: 38836882 DOI: 10.1007/s00261-024-04372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE To evaluate the feasibility of diffusion tensor imaging (DTI) and fiber tractography (FT) of the normal epididymis and to determine normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values. METHODS Twenty-eight healthy volunteers underwent MRI of the scrotum, including DTI on a 3.0 T system. For each anatomic part of the epididymis (head, body and tail) free-hand regions of interest were drawn and the mean ADC and FA were measured by two radiologists in consensus. Parametric statistical tests were used to determine intersubject differences in ADC and FA between the anatomic parts of each normal epididymis and between bilateral epididymides. Fiber tracts of the epididymis were reconstructed using the MR Diffusion tool. RESULTS The mean ADC and FA of the normal epididymis was 1.31 × 10-3 mm2/s and 0.20, respectively. No differences in ADC (p = 0.736) and FA (p = 0.628) between the anatomic parts of each normal epididymis were found. Differences (p = 0.020) were observed in FA of the body between the right and the left epididymis. FT showed the fiber tracts of the normal epididymis. Main study's limitations include the following: small number of participants with narrow age range, absence of histologic confirmation and lack of quantitative assessment of the FT reconstructions. CONCLUSION DTI and FT of the normal epididymis is feasible and allow the noninvasive assessment of the structural and geometric organization of the organ.
Collapse
Affiliation(s)
- Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos, 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
5
|
Aggarwal A, Das CJ, Khanna N, Sharma R, Srivastava DN, Goyal V, Netaji A. Role of diffusion tensor imaging in the evaluation of ulnar nerve involvement in leprosy. Br J Radiol 2022; 95:20210290. [PMID: 34558292 PMCID: PMC8722232 DOI: 10.1259/bjr.20210290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Early detection of peripheral neuropathy is extremely important as leprosy is one of the treatable causes of peripheral neuropathy. The study was undertaken to assess the role of diffusion tensor imaging (DTI) in ulnar neuropathy in leprosy patients. METHODS This was a case-control study including 38 patients (72 nerves) and 5 controls (10 nerves) done between January 2017 and June 2019. Skin biopsy proven cases of leprosy, having symptoms of ulnar neuropathy (proven on nerve conduction study) were included. MRI was performed on a 3 T MR system. Mean cross-sectional area, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of ulnar nerve at cubital tunnel were calculated. Additional ancillary findings and appearance of base sequences were evaluated. RESULTS Ulnar nerve showed thickening with altered T2W signal in all the affected nerves, having an average cross-sectional area of 0.26 cm2. Low FA with mean of 0.397 ± 0.19 and high ADC with mean of 1.28 ± 0.427 x 10 -3 mm2/s of ulnar nerve in retrocondylar groove was obtained. In the control group, mean cross-sectional area was 0.71cm2 with mean FA and ADC of 0.53 ± 0.088 and 1.03 ± 0.24 x 10 -3 mm2/s respectively. Statistically no significant difference was seen in diseased and control group. Cut-off to detect neuropathy for FA and ADC is 0.4835 and 1.1020 × 10 -3 mm2/s respectively. CONCLUSION DTI though is challenging in peripheral nerves, however, is proving to be a powerful complementary tool for assessment of peripheral neuropathy. Our study validates its utility in infective neuropathies. ADVANCES IN KNOWLEDGE 1. DTI is a potential complementary tool for detection of peripheral neuropathies and can be incorporated in standard MR neurography protocol.2. In leprosy-related ulnar neuropathy, altered signal intensity with thickening or abscess of the nerve is appreciated along with locoregional nodes and secondary denervation changes along with reduction of FA and rise in ADC value.3. Best cut-offs obtained in our study for FA and ADC are 0.4835 and 1.1020 × 10 -3 mm2/s respectively.
Collapse
Affiliation(s)
| | | | - Neena Khanna
- Department of Dermatology, AIIMS, New Delhi, India
| | - Raju Sharma
- Department of Radiology, AIIMS, New Delhi, India
| | | | - Vinay Goyal
- Department of Neurology, AIIMS, New Delhi, India
| | | |
Collapse
|
6
|
Wang X, Luo L, Xing J, Wang J, Shi B, Li YM, Li YG. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging. Quant Imaging Med Surg 2022; 12:395-405. [PMID: 34993088 DOI: 10.21037/qims-21-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To evaluate the diagnostic accuracy of diffusion tensor imaging (DTI) in diabetic peripheral neuropathy (DPN) for patients with type 2 diabetes and detect the correlations with electrophysiology. METHODS A total of 27 patients with type 2 diabetes with DPN, 24 patients with type 2 diabetes without peripheral neuropathy (NDPN), as well as 32 healthy controls (HC) were enrolled in this study. Clinical examinations and neurophysiologic tests were used to determine the presence of DPN. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of peripheral nerves, including the tibial nerve (TN) and common peroneal nerve (CPN), were calculated. Receiver operating characteristic (ROC) analysis was performed for FA and ADC values. Pearson's correlation coefficient was used to assess the correlation between DTI and electrophysiology parameters in the patient group. RESULTS The tibial and common peroneal nerve FAs were lowest (P=0.003, 0.001, respectively) and ADC was highest (P=0.004, 0.005, respectively) in the DPN group. The FA value of the axonal injury group was lower than that in the demyelination group (P=0.035, 0.01, respectively), while the ADC value was higher (P=0.02, 0.01, respectively). In the DPN group, FA value was positively correlated with motor conduction velocity (MCV) (tibial nerve: r=0.420, P=0.007; common peroneal nerve: r=0.581, P<0.001) and motor amplitude (MA) (tibial nerve: r=0.623, P<0.001; common peroneal nerve: r=0.513; P=0.001), while ADC values was negatively correlated with MCV (tibial nerve: r=-0.320, P=0.044; common peroneal nerve: r=-0.569; P<0.001), and MA (tibial nerve: r=-0.491, P=0.001; common peroneal nerve: r=-0.524; P=0.001). CONCLUSIONS With a lower FA value and higher ADC value, DTI accurately discriminated DPN. The DTI multi-parameter quantitative analysis of peripheral nerves differentiated DPN axonal injury from the demyelinating lesion, and hence, could be applied in the diagnosis of DPN.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Luo
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiology, First Peoples Hospital of Kunshan, Suzhou, China
| | - Jianming Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianliang Wang
- Department of Radiology, First Peoples Hospital of Kunshan, Suzhou, China
| | - Bimin Shi
- Department of Endocrinology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin-Min Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong-Gang Li
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Evans V, Behr M, Gangwar A, Noseworthy MD, Kumbhare D. Potential Role of MRI Imaging for Myofascial Pain: A Scoping Review for the Clinicians and Theoretical Considerations. J Pain Res 2021; 14:1505-1514. [PMID: 34079365 PMCID: PMC8166277 DOI: 10.2147/jpr.s302683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cause of chronic musculoskeletal pain is chronic myofascial pain syndrome (MPS). MPS often presents with increased muscle stiffness, and the myofascial trigger point (MTrP). Imaging modalities have been used to identify the MTrP, but their role in the detection and diagnosis of MPS remains unclear. The purpose of this review was to identify evidence in literature for the use of imaging in the role of classifying and explaining the physiology of MTrPs. Since few imaging techniques have been performed on MTrPs, we explored the imaging techniques that can effectively image complex skeletal muscle microstructure, and how they could be used. As part of a scoping review, we conducted a systematic search from three medical databases (CINAHL, EMBASE and MEDLINE) from year to year to analyze past MTrP imaging, as well as analyzing imaging techniques performed on the microstructure of muscle. Previously, ultrasound has been used to differentiate active, latent MTrPs, but these studies do not adequately address their underlying anatomical structure. MRI remains the standard method of imaging skeletal muscle. The existing MRI literature suggests that the DTI technique can quantify muscle injury, strain, and structure. However, theoretically, HARDI and DKI techniques seem to provide more information for complex structural areas, although these modalities have a disadvantage of longer scan times and have not been widely used on skeletal muscle. Our review suggests that DTI is the most effective imaging modality that has been used to define the microstructure of muscle and hence, could be optimal to image the MTrP. HARDI and DKI are techniques with theoretical potential for analysis of muscle, which may provide more detailed information representative of finer muscle structural features. Future research utilizing MRI techniques to image muscle are necessary to provide a more robust means of imaging skeletal muscle and the MTrP.
Collapse
Affiliation(s)
- Valerie Evans
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- University Health Network – Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Michael Behr
- University Health Network – Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Anshika Gangwar
- University Health Network – Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- University Health Network – Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Advances in imaging technologies for the assessment of peripheral neuropathies in rheumatoid arthritis. Rheumatol Int 2021; 41:519-528. [PMID: 33427917 DOI: 10.1007/s00296-020-04780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy in patients with rheumatoid arthritis is associated with a maladaptive autoimmune response that may cause chronic pain and disability. Nerve conduction studies are the routine method performed when rheumatologists presume its presence. However, this approach is invasive, may not reveal subtle malfunctions in the early stages of the disease, and does not expose abnormalities in structures surrounding the nerves and muscles, limiting the possibility of a timely diagnosis. This work aims to present a narrative review of new technologies for the clinical assessment of peripheral neuropathy in Rheumatoid Arthritis. Through a bibliographic search carried out in five repositories, from 1990 to 2020, we identified three technologies that could detect peripheral nerve lesions and perform quantitative evaluations: (1) magnetic resonance neurography, (2) functional magnetic resonance imaging, and (3) high-resolution ultrasonography of peripheral nerves. We found these tools can overcome the main constraints imposed by the previous electrophysiologic methods, enabling early diagnosis.
Collapse
|
9
|
Carolus AE, Möller J, Hofmann MR, van de Nes JAP, Welp H, Schmieder K, Brenke C. Comparison between optical coherence tomography imaging and histological sections of peripheral nerves. J Neurosurg 2021; 134:270-277. [PMID: 31756711 DOI: 10.3171/2019.8.jns191278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/29/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Optical coherence tomography (OCT) is an imaging technique that uses the light-backscattering properties of different tissue types to generate an image. In an earlier feasibility study the authors showed that it can be applied to visualize human peripheral nerves. As a follow-up, this paper focuses on the interpretation of the images obtained. METHODS Ten different short peripheral nerve specimens were retained following surgery. In a first step they were examined by OCT during, or directly after, surgery. In a second step the nerve specimens were subjected to histological examination. Various steps of image processing were applied to the OCT raw data acquired. The improved OCT images were compared with the sections stained by H & E. The authors assigned the structures in the images to the various nerve components including perineurium, fascicles, and intrafascicular microstructures. RESULTS The results show that OCT is able to resolve the myelinated axons. A weighted averaging filter helps in identifying the borders of structural features and reduces artifacts at the same time. Tissue-remodeling processes due to injury (perineural fibrosis or neuroma) led to more homogeneous light backscattering. Anterograde axonal degeneration due to sharp injury led to a loss of visible axons and to an increase of light-backscattering tissue as well. However, the depth of light penetration is too small to allow generation of a complete picture of the nerve. CONCLUSIONS OCT is the first in vivo imaging technique that is able to resolve a nerve's structures down to the level of myelinated axons. It can yield information about focal and segmental pathologies.
Collapse
Affiliation(s)
- Anne E Carolus
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum
| | - Jens Möller
- 2Department of Photonics and Terahertz Technology, Ruhr University Bochum
| | - Martin R Hofmann
- 2Department of Photonics and Terahertz Technology, Ruhr University Bochum
| | - Johannes A P van de Nes
- 3Department of Pathology, University Hospital Bergmannsheil Bochum, Ruhr University Bochum; and
| | - Hubert Welp
- 4Technische Hochschule Georg Agricola, Bochum, Germany
| | - Kirsten Schmieder
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum
| | - Christopher Brenke
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum
| |
Collapse
|
10
|
Schmid FA, Gomolka RS, Hötker AM, Boss A, Kessler TM, Rossi C, Eberli D. Evaluation of Urinary Sphincter Function by Rapid Magnetic Resonance Diffusion Tensor Imaging. Int Neurourol J 2020; 24:349-357. [PMID: 33401356 PMCID: PMC7788323 DOI: 10.5213/inj.2040208.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 12/02/2022] Open
Abstract
PURPOSE This study aimed to assess the feasibility of a rapid diffusion tensor imaging (DTI) for evaluation of the female urinary sphincter function based on differentiation between rest and muscle contraction. METHODS Magnetic resonance imaging (MRI) of the lower pelvis was performed at 3 Tesla in 10 healthy female volunteers (21-36 years; body mass index, 20.8±3.6 kg/m2) between June and July 2019. High-resolution T1- and T2-weighted images were acquired for anatomical reference, and following DTI performed in 4 experiment phases: twice during rest (denoted rest-1, rest-2) and contraction (contraction-1, contraction-2). Manual segmentation of the urinary sphincter and the levator ani muscles were performed by 2 independent readers. Mean diffusivity (MD) and fractional anisotropy (FA) values derived from DTI volumes were compared in search for significant differences between the experiment phases. Interreader agreement was assessed by intraclass correlation coefficient (ICC). RESULTS Kruskal-Wallis test showed significant differences between MD values among all the experiment phases, by both independent readers (1st: X2 [3,76]=17.16, P<0.001 and 2nd: X2 [3,76]=15.88, P<0.01). Post hoc analysis revealed differences in MD values by both readers between: rest-1 vs. contraction-1 (least P<0.05), rest-1 vs. contraction-2 (P<0.01), rest-2 vs. contraction-1 (P<0.03), rest-2 vs. contraction-2 (P=0.02) with overall mean 'rest' to 'contraction' ΔMD=20.6%. No MD or FA differences were found between rest-1 vs. rest-2 and contraction-1 vs. contraction-2 among all the experiment phases, and interreader agreement was ICC=0.85 (MD) and ICC=0.79 (FA). CONCLUSION Rapid DTI might prospectively act as a supporting tool for the evaluation of female pelvic floor muscle function, and incontinence assessment.
Collapse
Affiliation(s)
- Florian A. Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ryszard S. Gomolka
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas M. Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Cristina Rossi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Verde ASC, Santinha J, Carrasquinha E, Loucao N, Gaivao A, Fonseca J, Matos C, Papanikolaou N. Diffusion tensor-based fiber tracking of the male urethral sphincter complex in patients undergoing radical prostatectomy: a feasibility study. Insights Imaging 2020; 11:126. [PMID: 33245443 PMCID: PMC7695769 DOI: 10.1186/s13244-020-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives To study the diffusion tensor-based fiber tracking feasibility to access the male urethral sphincter complex of patients with prostate cancer undergoing Retzius-sparing robot-assisted laparoscopic radical prostatectomy (RS-RARP).
Methods Twenty-eight patients (median age of 64.5 years old) underwent 3 T multiparametric-MRI of the prostate, including an additional echo-planar diffusion tensor imaging (DTI) sequence, using 15 diffusion-encoding directions and a b value = 600 s/mm2. Acquisition parameters, together with patient motion and eddy currents corrections, were evaluated. The proximal and distal sphincters, and membranous urethra were reconstructed using the deterministic fiber assignment by continuous tracking (FACT) algorithm, optimizing fiber tracking parameters. Tract length and density, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) were computed. Regional differences between structures were accessed by ANOVA, or nonparametric Kruskal–Wallis test, and post-hoc tests were employed, respectively, TukeyHSD or Dunn’s. Results The structures of the male urethral sphincter complex were clearly depicted by fiber tractography using optimized acquisition and fiber tracking parameters. The use of eddy currents and subject motion corrections did not yield statistically significant differences on the reported DTI metrics. Regional differences were found between all structures studied among patients, suggesting a quantitative differentiation on the structures based on DTI metrics. Conclusions The current study demonstrates the technical feasibility of the proposed methodology, to study in a preoperative setting the male urethral sphincter complex of prostate cancer patients candidates for surgical treatment. These findings may play a role on a more accurate prediction of the RS-RARP post-surgical urinary continence recovery rate.
Collapse
Affiliation(s)
- Ana S C Verde
- Head of Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, 1400-038, Lisbon, Portugal
| | - Joao Santinha
- Head of Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, 1400-038, Lisbon, Portugal
| | - Eunice Carrasquinha
- Head of Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, 1400-038, Lisbon, Portugal
| | | | - Ana Gaivao
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Fonseca
- Urology Unit, Champalimaud Foundation, Lisbon, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - Celso Matos
- Radiology Department, Champalimaud Foundation, Lisbon, Portugal
| | - Nikolaos Papanikolaou
- Head of Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Av. Brasilia, 1400-038, Lisbon, Portugal.
| |
Collapse
|
12
|
Papenkort S, Böl M, Siebert T. Three-dimensional architecture of rabbit M. soleus during growth. J Biomech 2020; 112:110054. [DOI: 10.1016/j.jbiomech.2020.110054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
|
13
|
Diffusion Magnetic Resonance Imaging Predicts Peripheral Nerve Recovery in a Rat Sciatic Nerve Injury Model. Plast Reconstr Surg 2020; 145:949-956. [PMID: 32221212 DOI: 10.1097/prs.0000000000006638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nerve regeneration after an injury should occur in a timely fashion for function to be restored. Current methods cannot monitor regeneration prior to muscle reinnervation. Diffusion tensor imaging has been previously shown to provide quantitative indices after nerve recovery. The goal of this study was to validate the use of this technology following nerve injury via a series of rat sciatic nerve injury/repair studies. METHODS Sprague-Dawley rats were prospectively divided by procedure (sham, crush, or cut/repair) and time points (1, 2, 4, and 12 weeks after surgery). At the appropriate time point, each animal was euthanized and the sciatic nerve was harvested and fixed. Data were obtained using a 7-Tesla magnetic resonance imaging system. For validation, findings were compared to behavioral testing (foot fault asymmetry and sciatic function index) and cross-sectional axonal counting of toluidine blue-stained sections examined under light microscopy. RESULTS Sixty-three rats were divided into three treatment groups (sham, n = 21; crush, n = 23; and cut/repair, n = 19). Fractional anisotropy was able to differentiate between recovery following sham, crush, and cut/repair injuries as early as 2 weeks (p < 0.05), with more accurate differentiation thereafter. More importantly, the difference in anisotropy between distal and proximal regions recognized animals with successful and failed recoveries according to behavioral analysis, especially at 12 weeks. In addition, diffusion tension imaging-based tractography provided a visual representation of nerve continuity in all treatment groups. CONCLUSIONS Diffuse tensor imaging is an objective and noninvasive tool for monitoring nerve regeneration. Its use could facilitate earlier detection of failed repairs to potentially help improve outcomes.
Collapse
|
14
|
Carolus AE, Lenz M, Hofmann M, Welp H, Schmieder K, Brenke C. High-resolution in vivo imaging of peripheral nerves using optical coherence tomography: a feasibility study. J Neurosurg 2020; 132:1907-1913. [PMID: 31026830 DOI: 10.3171/2019.2.jns183542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Because of their complex topography, long courses, and small diameters, peripheral nerves are challenging structures for radiological diagnostics. However, imaging techniques in the area of peripheral nerve diseases have undergone unexpected development in recent decades. They include MRI and high-resolution sonography (HRS). Yet none of those imaging techniques reaches a resolution comparable to that of histological sections. Fascicles are the smallest discernable structure. Optical coherence tomography (OCT) is the first imaging technique that is able to depict a nerve's ultrastructure at micrometer resolution. In the current study, the authors present an in vivo assessment of human peripheral nerves using OCT. METHODS OCT measurement was performed in 34 patients with different peripheral nerve pathologies, i.e., nerve compression syndromes. The nerves were examined during surgery after their exposure. Only the sural nerve was twice examined ex vivo. The Thorlabs OCT systems Callisto and Ganymede were used. For intraoperative use, a hand probe was covered with a sterile foil. Different postprocessing imaging techniques were applied and evaluated. In order to highlight certain structures, five texture parameters based on gray-level co-occurrence matrices were calculated according to Haralick. RESULTS The intraoperative use of OCT is easy and intuitive. Image artifacts are mainly caused by motion and the sterile foil. If the artifacts are kept at a low level, the hyporeflecting bundles of nerve fascicles and their inner parts can be displayed. In the Haralick evaluation, the second angular moment is most suitable to depict the connective tissue. CONCLUSIONS OCT is a new imaging technique that has shown promise in peripheral nerve surgery for particular questions. Its resolution exceeds that provided by recent radiological possibilities such as MRI and HRS. Since its field of view is relatively small, faster acquisition times would be highly desirable and have already been demonstrated by other groups. Currently, the method resembles an optical biopsy and can be a supplement to intraoperative sonography, giving high-resolution insight into a suspect area that has been located by sonography in advance.
Collapse
Affiliation(s)
- Anne E Carolus
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum
| | - Marcel Lenz
- 2Department of Photonics and Terahertz Technology, Ruhr University of Bochum; and
| | - Martin Hofmann
- 2Department of Photonics and Terahertz Technology, Ruhr University of Bochum; and
| | - Hubert Welp
- 3Technische Hochschule Georg Agricola, Bochum, Germany
| | - Kirsten Schmieder
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum
| | - Christopher Brenke
- 1Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum
| |
Collapse
|
15
|
Sakai T, Aoki Y, Watanabe A, Yoneyama M, Ochi S, Miyati T. Functional Assessment of Lumbar Nerve Roots Using Coronal-plane Single-shot Turbo Spin-echo Diffusion Tensor Imaging. Magn Reson Med Sci 2019; 19:159-165. [PMID: 31189790 PMCID: PMC7232038 DOI: 10.2463/mrms.tn.2019-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We investigated the usefulness of diffusion tensor imaging using single-shot turbo spin-echo sequence (TSE–DTI) in detecting the responsible nerve root by multipoint measurements of fractional anisotropy (FA) values. Five patients with bilateral lumbar spinal stenosis showing unilateral neurological symptoms were examined using TSE–DTI. In the spinal canal, FA values in the symptomatic side were lower than those in the asymptomatic side. TSE–DTI using multipoint measurements of FA values can differentiate the responsible lumbar nerve root.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Radiology, Eastern Chiba Medical Center.,Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yasuchika Aoki
- Department of General Medical Services, Graduate School of Medicine, Chiba University.,Department of Orthopedic Surgery, Eastern Chiba Medical Center
| | - Atsuya Watanabe
- Department of General Medical Services, Graduate School of Medicine, Chiba University.,Department of Orthopedic Surgery, Eastern Chiba Medical Center
| | | | | | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
16
|
Bruno F, Arrigoni F, Mariani S, Patriarca L, Palumbo P, Natella R, Ma L, Guglielmi G, Galzio RJ, Splendiani A, Di Cesare E, Masciocchi C, Barile A. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:68-76. [PMID: 31085975 PMCID: PMC6625568 DOI: 10.23750/abm.v90i5-s.8326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Peripheral nerves can be affected by a variety of benign and malignant tumour and tumour-like lesions. Besides clinical evaluation and electrophysiologic studies, MRI is the imaging modality of choice for the assessment of these soft tissue tumours. Conventional MR sequences, however, can fail to assess the histologic features of the lesions. Moreover, the precise topographical relationship between the peripheral nerve and the tumor must be delineated preoperatively for complete tumour resection minimizing nerve damage. Using Diffusion tensor imaging (DTI) and tractography, it is possible to obtain functional information on tumour and nerve structures, allowing the assess anatomy, function and biological features. In this article, we review the technical aspects and clinical application of DTI for the evaluation of peripheral nerve tumours. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Farinas AF, Pollins AC, Stephanides M, O’Neill D, Al-Kassis S, Esteve IVM, Colazo JM, Keller PR, Rankin T, Wormer BA, Kaoutzanis C, Dortch RD, Thayer WP. Diffusion tensor tractography to visualize axonal outgrowth and regeneration in a 4-cm reverse autograft sciatic nerve rabbit injury model. Neurol Res 2019; 41:257-264. [PMID: 30582740 PMCID: PMC6435384 DOI: 10.1080/01616412.2018.1554284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/24/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Diffusion tensor tractography (DTT) has recently been shown to accurately detect nerve injury and regeneration. This study assesses whether 7-tesla (7T) DTT imaging is a viable modality to observe axonal outgrowth in a 4 cm rabbit sciatic nerve injury model fixed by a reverse autograft (RA) surgical technique. METHODS Transection injury of unilateral sciatic nerve (4 cm long) was performed in 25 rabbits and repaired using a RA surgical technique. Analysis of the nerve autograft was performed at 3, 6, and 11 weeks postoperatively and compared to normal contralateral sciatic nerve, used as control group. High-resolution DTT from ex vivo sciatic nerves were obtained using 3D diffusion-weighted spin-echo acquisitions at 7-T. Total axons and motor and sensory axons were counted at defined lengths along the graft. RESULTS At 11 weeks, histologically, the total axon count of the RA group was equivalent to the contralateral uninjured nerve control group. Similarly, by qualitative DTT visualization, the 11-week RA group showed increased fiber tracts compared to the 3 and 6 weeks counterparts. Upon immunohistochemical evaluation, 11-week motor axon counts did not significantly differ between RA and control; but significantly decreased sensory axon counts remained. Nerves explanted at 3 weeks and 6 weeks showed decreased motor and sensory axon counts. DISCUSSION 7-T DTT is an effective imaging modality that may be used qualitatively to visualize axonal outgrowth and regeneration. This has implications for the development of technology that non-invasively monitors peripheral nerve regeneration in a variety of clinical settings.
Collapse
Affiliation(s)
- Angel F. Farinas
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
| | - Alonda C. Pollins
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
| | | | - Dillon O’Neill
- University of Utah, Department of Orthopedics, Salt Lake
City, UT
| | - Salam Al-Kassis
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Medical Center, Department Radiology
and Radiological Sciences, Nashville, TN
- Vanderbilt University Medical Center, Institute of Imaging
Science, Nashville, TN
| | | | | | - Timothy Rankin
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
| | - Blair A. Wormer
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
| | | | - Richard D. Dortch
- Vanderbilt University, Department of Biomedical
Engineering, Nashville, TN
- Vanderbilt University Medical Center, Department Radiology
and Radiological Sciences, Nashville, TN
- Vanderbilt University Medical Center, Institute of Imaging
Science, Nashville, TN
| | - Wesley P. Thayer
- Vanderbilt University Medical Center, Department of Plastic
Surgery, Nashville, TN
- Vanderbilt University, Department of Biomedical
Engineering, Nashville, TN
| |
Collapse
|
18
|
Oudeman J, Verhamme C, Engbersen MP, Caan MWA, Maas M, Froeling M, Nederveen AJ, Strijkers GJ. Diffusion tensor MRI of the healthy brachial plexus. PLoS One 2018; 13:e0196975. [PMID: 29742154 PMCID: PMC5942843 DOI: 10.1371/journal.pone.0196975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Diffusion Tensor MRI (DT-MRI) is a promising tool for the evaluation of brachial plexus pathology. Therefore, we introduce and evaluate a fast DT-MRI protocol (8min33s scanning with 5–10 min postprocessing time) for the brachial plexus. Materials and methods Thirty healthy volunteers within three age-groups (18–35, 36–55, and > 56) received DT-MRI of the brachial-plexus twice. Means of fractional-anisotropy (FA), mean-diffusivity (MD), axial-diffusivity (AD), and radial-diffusivity (RD) for the individual roots and trunks were evaluated. A stepwise forward approach was applied to test for correlations with age, sex, body-mass-index (BMI), bodysurface, height, and bodyweight. Within-subject, intra-rater, and inter-rater repeatability were assessed using Bland-Altman analysis, coefficient of variation (CV), intraclass-correlation (ICC), and minimal detectable difference (MDD). Results No differences between sides and root levels were found. MD, AD, and RD correlated (P < 0.05) with bodyweight. Within-subject quantification proved repeatable with CVs for FA, MD, AD, and RD of 16%, 12%, 11%, and 14%, respectively. Discussion The DT-MRI protocol was fast and repeatable. Found correlations should be considered in future studies of brachial plexus pathology.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Mattan W. A. Caan
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Keller S, Wang ZJ, Golsari A, Kim AC, Kooijman H, Adam G, Yamamura J. Feasibility of peripheral nerve MR neurography using diffusion tensor imaging adapted to skeletal muscle disease. Acta Radiol 2018; 59:560-568. [PMID: 28795588 DOI: 10.1177/0284185117726100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Diffusion tensor imaging (DTI) of peripheral nerves may provide additional information about nerve involvement in muscular disorders, but is considered difficult due to different optimal scan parameters tailored to magnetic resonance (MR) signal properties of muscle and neural tissues. Purpose To assess the feasibility of sciatic nerve DTI using two different approaches of region of interest (ROI)-localization in DTI scans with b-values 500 s/mm2, in participants with muscular disorders and in controls. Material and Methods DTI of the thigh was conducted on a 3T system in ten patients (6 men, 4 women; mean age =54 ± 15 years) with neuromuscular disorders and ten controls. T1-weighted (T1W) images were co-registered to fractional anisotropy (FA) color-encoded images. The apparent diffusion coefficient (ADC), FA, and fiber track length (FTL) were analyzed by two operators using a freehand ROI and a single-point ROI covering the sciatic nerve. Interclass correlation coefficient (ICC) and Bland-Altman analysis were used for evaluation of inter-operator and inter-technical agreement, respectively. Results Three-dimensional visualization of sciatic nerve fiber was achievable using both techniques. The ICC of DTI metrics showed excellent inter-operator agreement both in patients and controls. Bland-Altman analysis revealed good agreement of both techniques. A maximum FTL was achieved using the single-point ROI technique, but with a lower inter-operator agreement (ICC = 0.99 vs. 0.83). The ADC and maximum FTL were significantly decreased in patients compared to controls. Conclusion Both ROI localization techniques are feasible to analyze the sciatic nerve in the setting of muscular disease. A maximum FTL is reached using the single-point ROI, however, at the cost of lower inter-operator agreement.
Collapse
Affiliation(s)
- Sarah Keller
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zhiyue J Wang
- Childrens Medical Center Dallas, Department of Radiology, University of Texas Southwestern Medical Center, TX, USA
| | - Amir Golsari
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anne Catherine Kim
- The Permanente Medical Group, Department Stroke and Neurovascular Imaging, San Francisco, CA, USA
| | - Hendrik Kooijman
- Philips Medical Systems, MR Clinical Science SMC, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
20
|
Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques. Invest Radiol 2018; 52:488-497. [PMID: 28240621 DOI: 10.1097/rli.0000000000000364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. MATERIALS AND METHODS Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. RESULTS Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact correction in region of interest- and mask-based analyses (P < 0.05 each). Iteratively reweighted linear least squares and iRESTORE showed equivalent results, but WMSI was faster than iRESTORE. Muscle delineation and artifact load significantly improved after correction (P < 0.05 each). CONCLUSIONS Weighted mean of signal intensity correction significantly improved STEAM-based quantitative DTI analyses and fiber tracking of lower-limb muscles, providing a robust tool for musculoskeletal applications.
Collapse
|
21
|
Sakai T, Doi K, Yoneyama M, Watanabe A, Miyati T, Yanagawa N. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence. Magn Reson Imaging 2018; 49:78-85. [PMID: 29408676 DOI: 10.1016/j.mri.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 01/21/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. MATERIALS AND METHODS First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. RESULTS TSE-DTI with b-value of 400 s/mm2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). CONCLUSION Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Radiology, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 2838686, Japan; Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 9200942, Japan.
| | - Kunio Doi
- The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA; Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 3710052, Japan
| | - Masami Yoneyama
- Philips Japan, 2-13-37 Konan, Minato-ku, Tokyo 1088507, Japan
| | - Atsuya Watanabe
- Department of General Medical Services, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 2600856, Japan; Department of Orthopedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 2838686, Japan
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 9200942, Japan
| | - Noriyuki Yanagawa
- Department of Radiology, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 2838686, Japan
| |
Collapse
|
22
|
Oudeman J, Mazzoli V, Marra MA, Nicolay K, Maas M, Verdonschot N, Sprengers AM, Nederveen AJ, Strijkers GJ, Froeling M. A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements. Physiol Rep 2017; 4:4/24/e13012. [PMID: 28003562 PMCID: PMC5210383 DOI: 10.14814/phy2.13012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022] Open
Abstract
Musculoskeletal (dys‐)function relies for a large part on muscle architecture which can be obtained using Diffusion‐Tensor MRI (DT‐MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT‐MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland–Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland–Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Valentina Mazzoli
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands.,Orthopedic Research Lab, Radboud UMC, Nijmegen, the Netherlands.,Biomedical NMR, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Marco A Marra
- Orthopedic Research Lab, Radboud UMC, Nijmegen, the Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Nico Verdonschot
- Orthopedic Research Lab, Radboud UMC, Nijmegen, the Netherlands.,Laboratory of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Andre M Sprengers
- Orthopedic Research Lab, Radboud UMC, Nijmegen, the Netherlands.,Laboratory of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
23
|
Tsili AC, Ntorkou A, Astrakas L, Boukali E, Giannakis D, Maliakas V, Sofikitis N, Argyropoulou MI. Magnetic resonance diffusion tensor imaging of the testis: Preliminary observations. Eur J Radiol 2017; 95:265-270. [DOI: 10.1016/j.ejrad.2017.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/28/2017] [Indexed: 01/30/2023]
|
24
|
Snoj Ž, Riegler G, Moritz T, Bodner G. Brachial plexus ultrasound in a patient with myelodysplastic syndrome and myelosarcoma. Muscle Nerve 2017; 56:E170-E172. [DOI: 10.1002/mus.25753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/07/2017] [Accepted: 07/22/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ž. Snoj
- Institute of Radiology; University Medical Centre Ljubljana; Ljubljana Slovenia
| | - G. Riegler
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy; Medical University of Vienna; Vienna Austria
| | - T. Moritz
- Institute for Pediatric and Gynecologic Radiology; Kepler University Hospital; Linz Austria
| | - G. Bodner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy; Medical University of Vienna; Vienna Austria
| |
Collapse
|
25
|
Stacy MR, Dearth CL. Multimodality Imaging Approaches for Evaluating Traumatic Extremity Injuries: Implications for Military Medicine. Adv Wound Care (New Rochelle) 2017; 6:241-251. [PMID: 28736684 DOI: 10.1089/wound.2016.0716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
Significance: Military service members are susceptible to traumatic extremity injuries that often result in limb loss. Tremendous efforts have been made to improve medical treatment that supports residual limb function and health. Despite recent improvements in treatment and novel prosthetic devices, many patients experience a wide range of clinical problems within residual limbs that can negatively impact the progress of rehabilitation programs while also impairing functional capacity and overall quality of life. Recent Advances: In addition to existing standard imaging modalities that are used for clinical evaluation of patients suffering from traumatic extremity injury, novel noninvasive imaging techniques are in development that may facilitate rapid and sensitive assessment of various aspects of traumatic extremity injuries and residual limb health. Critical Issues: Despite recent advances, there remains a clinical need for noninvasive quantitative imaging techniques that are capable of providing rapid objective assessments of residual limb health at the time of initial presentation as well as after various forms of medical treatment. Future Directions: Ongoing development of imaging techniques that allow for assessment of anatomical and physiological characteristics of extremities exposed to traumatic injury should greatly enhance the quality of patient care and assist in optimizing clinical outcomes.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher L. Dearth
- DOD-VA Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland
- Regenerative Biosciences Laboratory, Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
26
|
Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Magnetic Resonance Neurography Visualizes Abnormalities in Sciatic and Tibial Nerves in Patients With Type 1 Diabetes and Neuropathy. Diabetes 2017; 66:1779-1788. [PMID: 28432188 DOI: 10.2337/db16-1049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022]
Abstract
This study evaluates whether diffusion tensor imaging magnetic resonance neurography (DTI-MRN), T2 relaxation time, and proton spin density can detect and grade neuropathic abnormalities in patients with type 1 diabetes. Patients with type 1 diabetes (n = 49) were included-11 with severe polyneuropathy (sDPN), 13 with mild polyneuropathy (mDPN), and 25 without polyneuropathy (nDPN)-along with 30 healthy control subjects (HCs). Clinical examinations, nerve conduction studies, and vibratory perception thresholds determined the presence and severity of DPN. DTI-MRN covered proximal (sciatic nerve) and distal (tibial nerve) nerve segments of the lower extremity. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were calculated, as were T2 relaxation time and proton spin density obtained from DTI-MRN. All magnetic resonance findings were related to the presence and severity of neuropathy. FA of the sciatic and tibial nerves was lowest in the sDPN group. Corresponding with this, proximal and distal ADCs were highest in patients with sDPN compared with patients with mDPN and nDPN, as well as the HCs. DTI-MRN correlated closely with the severity of neuropathy, demonstrating strong associations with sciatic and tibial nerve findings. Quantitative group differences in proton spin density were also significant, but less pronounced than those for DTI-MRN. In conclusion, DTI-MRN enables detection in peripheral nerves of abnormalities related to DPN, more so than proton spin density or T2 relaxation time. These abnormalities are likely to reflect pathology in sciatic and tibial nerve fibers.
Collapse
Affiliation(s)
- Michael Vaeggemose
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Mirko Pham
- Department of Neuroradiology, Würzburg University Hospital, Würzburg, Germany
| | | | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Ejskjaer
- Departments of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Per L Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Handsfield GG, Bolsterlee B, Inouye JM, Herbert RD, Besier TF, Fernandez JW. Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging. Biomech Model Mechanobiol 2017; 16:1845-1855. [DOI: 10.1007/s10237-017-0923-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
28
|
Oh J, Jung JY, Ko YJ. Can diffusion tensor imaging and tractography represent cross-sectional area of lumbar multifidus in patients with LUMBAR spine disease? Muscle Nerve 2017; 57:200-205. [PMID: 28271516 DOI: 10.1002/mus.25639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cross-sectional area (CSA) is a useful measurement to evaluate the lumbar multifidus, but it cannot reflect the morphological characteristics of the entire muscle. Recently, diffusion tensor imaging (DTI) and tractography (DTT) have been used to assess 3-dimensional muscle structures both qualitatively and quantitatively. In this study we investigate the correlation between CSA and multifidus volume and the clinical utility of DTI and DTT. METHODS Twenty-eight lumbar multifidi from 14 subjects with lumbar spine disease were analyzed. We conducted correlation analysis between CSA from conventional magnetic resonance images and DTI-derived parameters, including muscle volume, fractional anisotropy (FA), and mean diffusivity (MD); we performed morphological assessment using DTT. RESULTS Multifidus volume had a strong positive correlation with CSA (r = 0.760, P < 0.001). Neither FA nor MD correlated with CSA. Multifidi spanning fewer vertebral segments were smaller in volume. DISCUSSION DTT can be a valuable tool to visualize and quantify the lumbar multifidus in lumbar spine disease. Muscle Nerve 57: 200-205, 2018.
Collapse
Affiliation(s)
- Jeehae Oh
- Department of Rehabilitation Medicine, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Jin Ko
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
29
|
Marquez Neto OR, Leite MS, Freitas T, Mendelovitz P, Villela EA, Kessler IM. The role of magnetic resonance imaging in the evaluation of peripheral nerves following traumatic lesion: where do we stand? Acta Neurochir (Wien) 2017; 159:281-290. [PMID: 27999953 DOI: 10.1007/s00701-016-3055-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Peripheral nerve injury is a common and important cause of morbidity and disability in patients who have suffered a traumatic injury, particularly younger people. Various different injuries can result in damage to specific nerves. In patients with multiple trauma, the prevalence of peripheral nerve injury is estimated at 2.8%, but can reach 5% with the inclusion of brachial plexus involvement. Physical examination, as well as the origin and location of the trauma, can indicate the nerve involved and the type of nerve damage. However, the depth and severity of damage, and the structures involved often cannot be determined initially, but depend on longer periods of observation to reach a definitive and accurate diagnosis for which treatment can be proposed. Current approaches to locate and assess the severity of traumatic nerve injury involve clinical and electrodiagnostic studies. From a clinical and neurophysiological point of view, nerve injuries are classified in an attempt to correlate the degree of injury with symptoms, type of pathology, and prognosis, as well as to determine the therapy to be adopted. OBJECTIVES MRI in the diagnosis of traumatic peripheral nerve injury has increasingly been used by surgeons in clinical practice. In this article, we analyze the use of magnetic resonance (MR) for the evaluation of traumatic peripheral nerve diseases that are surgically treatable. We also consider basic concepts in the evaluation of technical and MR signs of peripheral nerve injuries. MATERIALS AND METHODS Studies were identified following a computerized search of MEDLINE (1950 to present), EMBASE (1980 to present), and the Cochrane database. The MEDLINE search was conducted on PUBMED, the EMBASE search was conducted on OVID, and the Cochrane database was conducted using their online library. A set was created using the terms: 'traumatic', 'nerve', and 'resonance'. RESULTS The included articles were identified using a computerized search and the resulting databases were then sorted according to the inclusion and exclusion criteria. This yielded 10,340 articles (MEDLINE, n = 758; EMBASE, n = 9564; and Cochrane, n = 18). A search strategy was then built by excluding articles that only concern plexus injury and adding the terms 'neuropathies', 'DTI' and 'neurotmesis'. In total, seven studies were included in the review effectively addressing the role of MRI in the evaluation of traumatic peripheral nerve injury. We extracted all relevant information on the imaging findings and the use of magnetic resonance in trauma. We did not include technical or specific radiological aspects of the imaging techniques. CONCLUSIONS These seven articles were subsequently evaluated by analyzing their results, methodological approach, and conclusions presented.
Collapse
Affiliation(s)
- Oswaldo Ribeiro Marquez Neto
- Department of Neurosurgery, University Hospital of Brasilia, UnB, Secretaria de Clínica Cirurgica SGAN 605, Av. L2 Norte, Brasilia, DF, CEP: 70.830200, Brazil.
| | - Matheus Silva Leite
- Department of Neurosurgery, Hospital de Base do Distrito Federal, SMHS - Área Especial- Q. 101, Brasília, DF, CEP :70330-150, Brazil
| | - Tiago Freitas
- Department of Neurosurgery, Hospital de Base do Distrito Federal, SMHS - Área Especial- Q. 101, Brasília, DF, CEP :70330-150, Brazil
| | - Paulo Mendelovitz
- Department of Radiology, University Hospital of Brasilia, UnB, Radiologia SGAN 605, Av. L2 Norte, Brasilia, DF, CEP: 70.830200, Brazil
| | - Eric Arruda Villela
- Department of Hand Surgery, Hospital de Base do Distrito Federal, SMHS - Área Especial- Q. 101, Brasília, DF, CEP :70330-150, Brazil
| | - Iruena Moraes Kessler
- Department of Neurosurgery, University Hospital of Brasilia, UnB, Secretaria de Clínica Cirurgica SGAN 605, Av. L2 Norte, Brasilia, DF, CEP: 70.830200, Brazil
| |
Collapse
|
30
|
De Luca A, Bertoldo A, Froeling M. Effects of perfusion on DTI and DKI estimates in the skeletal muscle. Magn Reson Med 2016; 78:233-246. [PMID: 27538923 DOI: 10.1002/mrm.26373] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/28/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE In this study, we evaluated the effects of perfusion of the skeletal muscle on diffusion tensor imaging (DTI) and diffusional kurtosis imaging (DKI) parameters and their reproducibility. METHODS Diffusion tensor imaging and DKI models, with and without intravoxel incoherent motion (IVIM) correction, were applied to simulated data at different physiological conditions and signal-to-noise ratio levels. Next, the same models were applied to data of the right calf of five healthy volunteers, acquired twice at 3 telsa. For six muscles, we evaluated the correlation of the perfusion signal fraction, with parameters derived from DTI and DKI, and performed repeatability analysis with and without IVIM correction. Additionally, the IVIM correction was compared to a multishell acquisition approach that minimizes perfusion effects on DTI estimates. RESULTS Simulations and acquired data showed that DTI and DKI estimates were biased proportionally to the perfusion signal fraction, and that IVIM correction was needed for accurate estimation of the DTI and DKI parameters. However, taking perfusion into account did not improve repeatability. CONCLUSION Blood perfusion has an effect on DTI and DKI estimations, but it can be minimized with IVIM correction or multishell acquisition strategies. Magn Reson Med 78:233-246, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Alberto De Luca
- Department of Information Engineering, University of Padova, Padova, Italy.,Department of Radiology, University Medical Center, Utrecht, The Netherlands.,Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | | | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
31
|
Qiang B, Brigham JC, McGough RJ, Greenleaf JF, Urban MW. Mapped Chebyshev pseudo-spectral method for simulating the shear wave propagation in the plane of symmetry of a transversely isotropic viscoelastic medium. Med Biol Eng Comput 2016; 55:389-401. [PMID: 27221812 DOI: 10.1007/s11517-016-1522-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/06/2016] [Indexed: 11/26/2022]
Abstract
Shear wave elastography is a versatile technique that is being applied to many organs. However, in tissues that exhibit anisotropic material properties, special care must be taken to estimate shear wave propagation accurately and efficiently. A two-dimensional simulation method is implemented to simulate the shear wave propagation in the plane of symmetry in transversely isotropic viscoelastic media. The method uses a mapped Chebyshev pseudo-spectral method to calculate the spatial derivatives and an Adams-Bashforth-Moulton integrator with variable step sizes for time marching. The boundaries of the two-dimensional domain are surrounded by perfectly matched layers to approximate an infinite domain and minimize reflection errors. In an earlier work, we proposed a solution for estimating the apparent shear wave elasticity and viscosity of the spatial group velocity as a function of rotation angle through a low-frequency approximation by a Taylor expansion. With the solver implemented in MATLAB, the simulated results in this paper match well with the theory. Compared to the finite element method simulations we used before, the pseudo-spectral solver consumes less memory and is faster and achieves better accuracy.
Collapse
Affiliation(s)
- Bo Qiang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- The Nielsen Company, Oldsmar, FL, 34677, USA.
| | - John C Brigham
- Department of Civil and Environmental Engineering, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
32
|
Abstract
The elbow is a complex joint. Magnetic resonance imaging (MRI) is often the imaging modality of choice in the workup of elbow pain, especially in sports injuries and younger patients who often have either a history of a chronic repetitive strain such as the throwing athlete or a distinct traumatic injury. Traumatic injuries and alternative musculoskeletal pathologies can affect the ligaments, musculotendinous, cartilaginous, and osseous structures of the elbow as well as the 3 main nerves to the upper limb, and these structures are best assessed with MRI.Knowledge of the complex anatomy of the elbow joint as well as patterns of injury and disease is important for the radiologist to make an accurate diagnosis in the setting of elbow pain. This chapter will outline elbow anatomy, basic imaging parameters, compartmental pathology, and finally applications of some novel MRI techniques.
Collapse
|
33
|
Deniel A, Causeret A, Moser T, Rolland Y, Dréano T, Guillin R. Entrapment and traumatic neuropathies of the elbow and hand: An imaging approach. Diagn Interv Imaging 2015; 96:1261-78. [PMID: 26573067 DOI: 10.1016/j.diii.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
Ultrasound and magnetic resonance imaging currently offer a detailed analysis of the peripheral nerves. Compressive and traumatic nerve injuries are the two main indications for imaging investigation of nerves with several publications describing the indications, technique and diagnostic capabilities of imaging signs. Investigation of entrapment neuropathies has three main goals, which are to confirm neuronal distress, search for the cause of nerve compression and exclude a differential diagnosis on the entire nerve. For traumatic nerve injuries, imaging, predominantly ultrasound, occasionally provides essential information for management including the type of nerve lesion, its exact site and local extension.
Collapse
Affiliation(s)
- A Deniel
- Department of Medical Imaging, Rennes University Hospitals, Sud Hospital, 16, boulevard de Bulgarie, 35203 Rennes cedex 2, France.
| | - A Causeret
- Department of Medical Imaging, Rennes University Hospitals, Sud Hospital, 16, boulevard de Bulgarie, 35203 Rennes cedex 2, France
| | - T Moser
- Department of Radiology, Montreal University Hospital Centre, 1560, rue Sherbrooke-Est, Montreal, Quebec H2 4M1, Canada
| | - Y Rolland
- Department of Medical Imaging, Eugène Marquis Centre, avenue de la Bataille-Flandres-Dunkerque, 35000 Rennes, France
| | - T Dréano
- Department of Orthopaedics and Traumatology, Rennes University Hospitals, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - R Guillin
- Department of Medical Imaging, Rennes University Hospitals, Sud Hospital, 16, boulevard de Bulgarie, 35203 Rennes cedex 2, France
| |
Collapse
|
34
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
Heckel A, Weiler M, Xia A, Ruetters M, Pham M, Bendszus M, Heiland S, Baeumer P. Peripheral Nerve Diffusion Tensor Imaging: Assessment of Axon and Myelin Sheath Integrity. PLoS One 2015; 10:e0130833. [PMID: 26114630 PMCID: PMC4482724 DOI: 10.1371/journal.pone.0130833] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the potential of diffusion tensor imaging (DTI) parameters as in-vivo biomarkers of axon and myelin sheath integrity of the median nerve in the carpal tunnel as validated by correlation with electrophysiology. Methods MRI examinations at 3T including DTI were conducted on wrists in 30 healthy subjects. After manual segmentation of the median nerve quantitative analysis of fractional anisotropy (FA) as well as axial, radial and mean diffusivity (AD, RD, and MD) was carried out. Pairwise Pearson correlations with electrophysiological parameters comprising sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) as markers of axon integrity, and distal motor latency (dml) and sensory nerve conduction velocity (sNCV) as markers of myelin sheath integrity were computed. The significance criterion was set at P=0.05, Bonferroni corrected for multiple comparisons. Results DTI parameters showed a distinct proximal-to-distal profile with FA, MD, and RD extrema coinciding in the center of the carpal tunnel. AD correlated with CMAP (r=0.50, p=0.04, Bonf. corr.) but not with markers of myelin sheath integrity. RD correlated with sNCV (r=-0.53, p=0.02, Bonf. corr.) but not with markers of axon integrity. FA correlated with dml (r=-0.63, p=0.002, Bonf. corr.) and sNCV (r=0.68, p=0.001, Bonf. corr.) but not with markers of axon integrity. Conclusion AD reflects axon integrity, while RD (and FA) reflect myelin sheath integrity as validated by correlation with electrophysiology. DTI parameters consistently indicate a slight decrease of structural integrity in the carpal tunnel as a physiological site of median nerve entrapment. DTI is particularly sensitive, since these findings are observed in healthy participants. Our results encourage future studies to evaluate the potential of DTI in differentiating axon from myelin sheath injury in patients with manifest peripheral neuropathies.
Collapse
Affiliation(s)
- A Heckel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany; Department of Diagnostic Radiology, Freiburg University Hospital, Freiburg, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Xia
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Ruetters
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - S Heiland
- Section of Experimental Neuroradiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - P Baeumer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Shi Y, Zong M, Xu X, Zou Y, Feng Y, Liu W, Wang C, Wang D. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica. Eur J Radiol 2015; 84:690-5. [DOI: 10.1016/j.ejrad.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/28/2022]
|
37
|
Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 2014; 273:185-93. [PMID: 24844471 DOI: 10.1148/radiol.14132837] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the ability of diffusion-tensor imaging (DTI) and T2 to help detect the mildest nerve lesion conceivable, that is, subclinical ulnar neuropathy at the elbow. MATERIALS AND METHODS This prospective study was approved by the institutional ethics board. Written informed consent was obtained from all participants. Magnetic resonance neurography was performed at 3.0 T by using proton density- and T2-weighted relaxometry and DTI on elbows in 30 healthy subjects without clinical evidence of neuropathy. Quantitative analysis of ulnar nerve T2 and fractional anisotropy (FA) was performed, and T2 and FA values were correlated to electrical nerve conduction velocities (NCVs) with Pearson correlation analysis. Additional qualitative assessment of T2-weighted and FA images was performed by two readers, and sensitivity and specificity were calculated. RESULTS Ten of the 30 subjects (33%) had NCV slowing across the elbow segment. Compared with subjects without NCV slowing, subjects with slowing had decreased FA values (0.51 ± 0.09 vs 0.41 ± 0.07, respectively; P = .006) and increased T2 values (64.2 msec ± 10.9 vs 76.2 msec ± 13.7, respectively; P = .01) in the proximal ulnar sulcus. FA values showed a significant correlation (P = .01) with NCV slowing over the sulcus as an electrophysiologic indicator of myelin sheath damage. Qualitative assessment of FA maps and T2-weighted images helped identify subjects with conduction slowing with a sensitivity of 80% and 55%, respectively, and a specificity of 83% and 63%. CONCLUSION FA maps can accurately depict even mild peripheral neuropathy and perform better than the current standard of reference, T2-weighted images. DTI may therefore add diagnostic value as a highly sensitive technique for the detection of peripheral neuropathy.
Collapse
Affiliation(s)
- Philipp Bäumer
- From the Department of Neuroradiology (P.B., M.P., M.R., A.H., A.R., M.B.), Section of Experimental Neuroradiology, Department of Neuroradiology (S.H.), and Department of Neurology (M.W.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; and Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany (M.W.)
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Budzik JF, Balbi V, Verclytte S, Pansini V, Thuc VL, Cotten A. Diffusion Tensor Imaging in Musculoskeletal Disorders. Radiographics 2014; 34:E56-72. [DOI: 10.1148/rg.343125062] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Kim B, Srinivasan A, Sabb B, Feldman EL, Pop-Busui R. Diffusion tensor imaging of the sural nerve in normal controls. Clin Imaging 2014; 38:648-54. [PMID: 24908367 DOI: 10.1016/j.clinimag.2014.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To develop a diffusion tensor imaging (DTI) protocol for assessing the sural nerve in healthy subjects. METHODS Sural nerves in 25 controls were imaged using DTI at 3T with 6, 15, and 32 gradient directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed from nerve regions of interest co-registered with T2-weighted images. RESULTS Coronal images with 0.5(RL)× 2.0(FH)× 0.5(AP)mm(3) resolution successfully localized the sural nerve. FA maps showed less variability with 32 directions (0.559 ± 0.071) compared to 15(0.590 ± 0.080) and 6(0.659 ± 0.109). CONCLUSIONS Our DTI protocol was effective in imaging sural nerves in controls to establish normative FA/ADC, with potential to be used non-invasively in diseased nerves of patients.
Collapse
Affiliation(s)
- Boklye Kim
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, Ann Arbor, Michigan.
| | - Brian Sabb
- Botsford General Hospital, 28050 Grand River Avenue, Farmington Hills, Michigan
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Hiepe P, Herrmann KH, Güllmar D, Ros C, Siebert T, Blickhan R, Hahn K, Reichenbach JR. Fast low-angle shot diffusion tensor imaging with stimulated echo encoding in the muscle of rabbit shank. NMR IN BIOMEDICINE 2014; 27:146-157. [PMID: 24151092 DOI: 10.1002/nbm.3046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
In the past, spin-echo (SE) echo planar imaging(EPI)-based diffusion tensor imaging (DTI) has been widely used to study the fiber structure of skeletal muscles in vivo. However, this sequence has several shortcomings when measuring restricted diffusion in small animals, such as its sensitivity to susceptibility-related distortions and a relatively short applicable diffusion time. To address these limitations, in the current work, a stimulated echo acquisition mode (STEAM) MRI technique, in combination with fast low-angle shot (FLASH) readout (turbo-STEAM MRI), was implemented and adjusted for DTI in skeletal muscles. Signal preparation using stimulated echoes enables longer effective diffusion times, and thus the detection of restricted diffusion within muscular tissue with intracellular distances up to 100 µm. Furthermore, it has a reduced penalty for fast T2 muscle signal decay, but at the expense of 50% signal loss compared with a SE preparation. Turbo-STEAM MRI facilitates high-resolution DTI of skeletal muscle without introducing susceptibility-related distortions. To demonstrate its applicability, we carried out rabbit in vivo measurements on a human whole-body 3 T scanner. DTI parameters of the shank muscles were extracted, including the apparent diffusion coefficient, fractional anisotropy, eigenvalues and eigenvectors. Eigenvectors were used to calculate maps of structural parameters, such as the planar index and the polar coordinates θ and ϕ of the largest eigenvector. These parameters were compared between three muscles. θ and ϕ showed clear differences between the three muscles, reflecting different pennation angles of the underlying fiber structures. Fiber tractography was performed to visualize and analyze the architecture of skeletal pennate muscles. Optimization of tracking parameters and utilization of T2 -weighted images for improved muscle boundary detection enabled the determination of additional parameters, such as the mean fiber length. The presented results support the applicability of turbo-STEAM MRI as a promising method for quantitative DTI analysis and fiber tractography in skeletal muscles.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Naraghi A, da Gama Lobo L, Menezes R, Khanna M, Sussman M, Anastakis D, White LM. Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Skeletal Radiol 2013; 42:1403-12. [PMID: 23842572 DOI: 10.1007/s00256-013-1670-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate diffusion tensor imaging (DTI) indices of the median nerve pre and postoperatively in patients with carpal tunnel syndrome (CTS) to determine whether indices acquired prior to surgery differ from those acquired postoperatively. METHODS Following IRB approval, ten patients with a diagnosis of CTS were prospectively recruited. Eight patients completed the study (seven women, one man). All had bilateral asymmetric symptoms, with subsequent carpal tunnel release on the more symptomatic side. DTI of both wrists were performed using single-shot spin-echo echo-planar imaging (TR/TE, 7,000/103 ms; b value 1,025 s/mm(2)) preoperatively, 6 weeks and 6 months after carpal tunnel release. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the median nerve at the level of the distal radioulnar joint and pisiform were determined by one investigator blinded to clinical data, side, and time relative to surgery. RESULTS All patients had resolution of symptoms on the surgical side at 6 months. A significant increase in FA (p = 0.018) and decrease in ADC (p = 0.017) were found proximally at 6 months compared to baseline on the operative side. A significant increase in FA was observed on the operative side distally at 6 weeks (p = 0.012) and 6 months (p = 0.017). There was a significant difference in the percentage change in FA values from baseline to 6 months on the operative side in comparison with the non-operative side (p = 0.017). CONCLUSIONS A significant increase in FA and decrease in ADC of the median nerve are seen following decompression surgery in patients with CTS.
Collapse
Affiliation(s)
- Ali Naraghi
- Department of Medical Imaging, University of Toronto, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 2013; 24:245-56. [PMID: 24210323 DOI: 10.1016/j.nic.2013.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance (MR) neurography has progressed in the past 2 decades because of rapid technological developments in both hardware and software. In addition to improvements in high-resolution anatomic pulse sequences, functional techniques are becoming feasible. This article presents the current state-of-the-art three-dimensional anatomic techniques, discusses the advantages of functional techniques being exploited, and portrays novel contrast types and molecular techniques that are under development and promise a bright future for this rapidly evolving technique.
Collapse
Affiliation(s)
- Patrick Eppenberger
- Department of Radiology, University Hospital Zurich, Ramistrasse 100, Zurich CH - 8091, Switzerland
| | | | | |
Collapse
|
43
|
Schenk P, Siebert T, Hiepe P, Güllmar D, Reichenbach JR, Wick C, Blickhan R, Böl M. Determination of three-dimensional muscle architectures: validation of the DTI-based fiber tractography method by manual digitization. J Anat 2013; 223:61-8. [PMID: 23678961 DOI: 10.1111/joa.12062] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2013] [Indexed: 11/29/2022] Open
Abstract
In the last decade, diffusion tensor imaging (DTI) has been used increasingly to investigate three-dimensional (3D) muscle architectures. So far there is no study that has proved the validity of this method to determine fascicle lengths and pennation angles within a whole muscle. To verify the DTI method, fascicle lengths of m. soleus as well as their pennation angles have been measured using two different methods. First, the 3D muscle architecture was analyzed in vivo applying the DTI method with subsequent deterministic fiber tractography. In a second step, the muscle architecture of the same muscle was analyzed using a standard manual digitization system (MicroScribe MLX). Comparing both methods, we found differences for the median pennation angles (P < 0.001) but not for the median fascicle lengths (P = 0.216). Despite the statistical results, we conclude that the DTI method is appropriate to determine the global fiber orientation. The difference in median pennation angles determined with both methods is only about 1.2° (median pennation angle of MicroScribe: 9.7°; DTI: 8.5°) and probably has no practical relevance for muscle simulation studies. Determining fascicle lengths requires additional restriction and further development of the DTI method.
Collapse
Affiliation(s)
- P Schenk
- Institute of Motion Science, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chhabra A. Magnetic Resonance Neurography—Simple Guide to Performance and Interpretation. Semin Roentgenol 2013; 48:111-25. [DOI: 10.1053/j.ro.2012.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Chhabra A, Thakkar RS, Andreisek G, Chalian M, Belzberg AJ, Blakeley J, Hoke A, Thawait GK, Eng J, Carrino JA. Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 2013; 34:802-7. [PMID: 23124644 DOI: 10.3174/ajnr.a3316] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE A number of benign and malignant peripheral nerve tumor and tumorlike conditions produce similar imaging features on conventional anatomic MR imaging. Functional MR imaging using DTI can increment the diagnostic performance in differentiation of these lesions. Our aim was to evaluate the role of 3T anatomic MR imaging and DTI in the characterization of peripheral nerve tumor and tumorlike conditions. MATERIALS AND METHODS Twenty-nine patients (13 men, 16 women; mean age, 41±18 years; range, 11-83 years) with a nerve tumor or tumorlike condition (25 benign, 5 malignant) underwent 3T MR imaging by using anatomic (n=29), functional diffusion, DWI (n=21), and DTI (n=24) techniques. Images were evaluated for image quality (3-point scale), ADC of the lesion, tractography, and fractional anisotropy of nerves with interobserver reliability in ADC and FA measurements. RESULTS No significant differences were observed in age (benign, 40±18 versus malignant, 45±19 years) and sex (benign, male/female=12:12 versus malignant, male/female=3:2) (P>.05). All anatomic (29/29, 100%) MR imaging studies received "good" quality; 20/21 (95%) DWI and 21/24 (79%) DTI studies received "good" quality. ADC of benign lesions (1.848±0.40×10(-3) mm2/s) differed from that of malignant lesions (0.900±0.25×10(-3) mm2/s, P<.001) with excellent interobserver reliability (ICC=0.988 [95% CI, 0.976-0.994]). There were no FA or ADC differences between men and women (P>.05). FA of involved nerves was lower than that in contralateral healthy nerves (P<.001) with excellent interobserver reliability (ICC=0.970 [95% CI, 0.946-0.991]). ADC on DTI and DWI was not statistically different (P>.05), with excellent intermethod reliability (ICC=0.943 [95% CI, 0.836-0.980]). Tractography differences were observed in benign and malignant lesions. CONCLUSIONS 3T MR imaging and DTI are valuable methods for anatomic and functional evaluation of peripheral nerve lesions with excellent interobserver reliability. While tractography and low FA provide insight into neural integrity, low diffusivity values indicate malignancy in neural masses.
Collapse
Affiliation(s)
- A Chhabra
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration.
Collapse
|
47
|
Zijta FM, Froeling M, Nederveen AJ, Stoker J. Diffusion tensor imaging and fiber tractography for the visualization of the female pelvic floor. Clin Anat 2012; 26:110-4. [PMID: 23168612 DOI: 10.1002/ca.22184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/19/2012] [Indexed: 12/22/2022]
Abstract
In the past decade, the evaluation of the pelvic support for understanding pelvic floor dysfunction by means of magnetic resonance imaging (MRI) has been an emerging area of research. Both static and dynamic MRI techniques have been effectively applied as a diagnostic resource to reveal abnormalities to the muscular pelvic support, but fail to unravel the precise pathophysiology of this complex disorder. Diffusion tensor imaging (DTI) and tractography comprise enhanced MRI techniques that enable the three-dimensional visualization of anisotropic tissue, such as muscle fibers, and provide a quantitative description of tissue organization and integrity. Quantifying DTI and fiber tractography might be able to reveal microstructural abnormalities in the pelvic support that are not noticeable using conventional MRI techniques. In this article, we discuss relevant anatomy, the current state of DTI and tractography in the evaluation of the female pelvic floor, and their potential future clinical applications.
Collapse
Affiliation(s)
- Frank M Zijta
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Assessment of reduced field of view in diffusion tensor imaging of the lumbar nerve roots at 3 T. Eur Radiol 2012. [DOI: 10.1007/s00330-012-2710-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Diffusion tensor imaging of the median nerve: intra-, inter-reader agreement, and agreement between two software packages. Skeletal Radiol 2012; 41:971-80. [PMID: 22048666 DOI: 10.1007/s00256-011-1310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/01/2011] [Accepted: 10/12/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess intra-, inter-reader agreement, and the agreement between two software packages for magnetic resonance diffusion tensor imaging (DTI) measurements of the median nerve. MATERIALS AND METHODS Fifteen healthy volunteers (seven men, eight women; mean age, 31.2 years) underwent DTI of both wrists at 1.5 T. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the median nerve were measured by three readers using two commonly used software packages. Measurements were repeated by two readers after 6 weeks. Intraclass correlation coefficients (ICC) and Bland-Altman analysis were used for statistical analysis. RESULTS ICCs for intra-reader agreement ranged from 0.87 to 0.99, for inter-reader agreement from 0.62 to 0.83, and between the two software packages from 0.63 to 0.82. Bland-Altman analysis showed no differences for intra- and inter-reader agreement and agreement between software packages. CONCLUSION The intra-, inter-reader, and agreement between software packages for DTI measurements of the median nerve were moderate to substantial suggesting that user- and software-dependent factors contribute little to variance in DTI measurements.
Collapse
|
50
|
Zijta FM, Lakeman MME, Froeling M, van der Paardt MP, Borstlap CSV, Bipat S, Montauban van Swijndregt AD, Strijkers GJ, Roovers JP, Nederveen AJ, Stoker J. Evaluation of the female pelvic floor in pelvic organ prolapse using 3.0-Tesla diffusion tensor imaging and fibre tractography. Eur Radiol 2012; 22:2806-13. [PMID: 22797954 PMCID: PMC3486990 DOI: 10.1007/s00330-012-2548-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/19/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
Objectives To prospectively explore the clinical application of diffusion tensor imaging (DTI) and fibre tractography in evaluating the pelvic floor. Methods Ten patients with pelvic organ prolapse, ten with pelvic floor symptoms and ten asymptomatic women were included. A two-dimensional (2D) spin-echo (SE) echo-planar imaging (EPI) sequence of the pelvic floor was acquired. Offline fibre tractography and morphological analysis of pelvic magnetic resonance imaging (MRI) were performed. Inter-rater agreement for quality assessment of fibre tracking results was evaluated using weighted kappa (κ). From agreed tracking results, eigen values (λ1, λ2, λ3), mean diffusivity (MD) and fractional anisotropy (FA) were calculated. MD and FA values were compared using ANOVA. Inter-rater reliability of DTI parameters was interpreted using the intra-class correlation coefficient (ICC). Results Substantial inter-rater agreement was found (κ = 0.71 [95% CI 0.63–0.78]). Four anatomical structures were reliably identified. Substantial inter-rater agreement was found for MD and FA (ICC 0.60–0.91). No significant differences between groups were observed for anal sphincter, perineal body and puboperineal muscle. A significant difference in FA was found for internal obturator muscle between the prolapse group and the asymptomatic group (0.27 ± 0.05 vs 0.22 ± 0.03; P = 0.015). Conclusion DTI with fibre tractography permits identification of part of the clinically relevant pelvic structures. Overall, no significant differences in DTI parameters were found between groups. Key Points • Diffusion tensor MRI offers new insights into female pelvic floor problems. • DTI allows 3D visualisation and quantification of female pelvic floor anatomy. • DTI parameters from pelvic floor structures can be reliably determined. • No significant differences in DTI parameters between groups with/without prolapse.
Collapse
Affiliation(s)
- F M Zijta
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|