1
|
Léonet J, Vicente J, De Masi-Jacquier M, Deplano V. Aortic thrombi microstructure through contrast-enhanced X-ray microtomography. Sci Rep 2025; 15:11808. [PMID: 40189631 PMCID: PMC11973190 DOI: 10.1038/s41598-025-95724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The intraluminal thrombus (ILT) is a heterogeneous porous medium made up of three layers (luminal, medial, abluminal), found in most abdominal aortic aneurysms (AAA). Few morphological studies exist, and its role in disease progression remains controversial. Histological investigations suggest a harmful effect, leading to aortic wall hypoxia and potential rupture. However, 2D morphological studies cannot provide precise answers due to the complexity of ILT porosity. This study aims to provide reliable quantitative 3D morphological data using contrast-enhanced X-ray micro-computed tomography (micro-CT). We propose a validation pipeline for micro-CT image segmentation using virtual tomography. Our results show a decrease in porosity from the luminal to the abluminal layer, with similar pore diameters but more interconnected pores in the luminal region. The size of interconnected pores around 15-20 [Formula: see text] suggests cell passage is facilitated through the ILT's porous network. Finally, pore anisotropy was observed across the ILT thickness. This work suggests further studies on ILT permeability to validate its involvement in wall hypoxia.
Collapse
Affiliation(s)
- Joris Léonet
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France
| | - Jérôme Vicente
- CNRS, IUSTI UMR 7343, Aix-Marseille Univ, Marseille, France
| | - Mariangela De Masi-Jacquier
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France
- Department of Vascular Surgery, AP-HM, Timone Hospital, Timone Aortic Center, Marseille, France
| | - Valérie Deplano
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
2
|
Ristow I, Riedel C, Lenz A, Well L, Adam G, Panuccio G, Kölbel T, Bannas P. Current Imaging Strategies in Patients with Abdominal Aortic Aneurysms. ROFO-FORTSCHR RONTG 2024; 196:52-61. [PMID: 37699431 DOI: 10.1055/a-2119-6448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND An abdominal aortic aneurysm (AAA) is defined as a localized dilatation of the abdominal aorta of ≥ 3 cm. With a prevalence of 4-8 %, AAA is one of the most common vascular diseases in Western society. Radiological imaging is an elementary component in the diagnosis, monitoring, and treatment planning of AAA patients. METHOD This is a narrative review article on preoperative imaging strategies of AAA, incorporating expert opinions based on the current literature and standard-of-care practices from our own center. Examples are provided to illustrate clinical cases from our institution. RESULTS AND CONCLUSION Radiological imaging plays a pivotal role in the initial diagnosis and monitoring of patients with AAA. Ultrasound is the mainstay imaging modality for AAA screening and surveillance. Contrast-enhanced CT angiography is currently considered the gold standard for preoperative imaging and image-based treatment planning in AAA repair. New non-contrast MR angiography techniques are robustly applicable and allow precise determination of aortic diameters, which is of critical importance, particularly with regard to current diameter-based surgical treatment guidelines. 3D imaging with multiplanar reformation and automatic centerline positioning enables more accurate assessment of the maximum aortic diameter. Modern imaging techniques such as 4D flow MRI have the potential to further improve individualized risk stratification in patients with AAA. KEY POINTS · Ultrasound is the mainstay imaging modality for AAA screening and monitoring. · Contrast-enhanced CT angiography is the gold standard for preoperative imaging in AAA repair. · Non-contrast MR angiography allows for accurate monitoring of aortic diameters in AAA patients. · Measurement of aortic diameters is more accurate with 3D-CT/MRI compared to ultrasound. · Research seeks new quantitative imaging biomarkers for AAA risk stratification, e. g., using 4D flow MRI.
Collapse
Affiliation(s)
- Inka Ristow
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppe Panuccio
- German Aortic Center Hamburg, Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Germany
| | - Tilo Kölbel
- German Aortic Center Hamburg, Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf University Heart & Vascular Center, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Correlation Between Proteolytic Activity and Abdominal Aortic Aneurysm Wall Morphology with Intraluminal Thrombus Volume. Ann Vasc Surg 2022; 87:487-494. [PMID: 35779804 DOI: 10.1016/j.avsg.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The aim of this study was to examine the influence of intraluminal thrombus (ILT) volume on the level of proteolytic activity and the content of abdominal aortic aneurysm (AAA) wall. METHODS The research was designed as a cross-sectional study at the Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia in the period from April 2017 to February 2018. During this period, a total of 155 patients with asymptomatic AAA underwent open surgical treatment and 50 were included in the study based on inclusion and exclusion criteria. Before surgery, patients included in the study were examined by MRI. During the operation, samples of ILT and AAA wall were taken for biochemical analysis. RESULTS A statistically significant correlation was found between the volume of the ILT and largest AAA diameter (ρ = 0.56; P < 0.001). The correlation of the ILT volume on the anterior wall and the concentration of MMP-9, MMP-2 and NE/ELA in the wall did not find statistical significance. Also, no statistically significant association was found between the volume of ILT and the concentration of ECM proteins (collagen type 3, elastin, proteoglycan) in the corresponding part of the wall. The association of ILT volume with MDA was also of no statistical significance. There was a positive statistical significance found in correlation of volume of ILT and catalase activity in the wall of AAA (ρ = 0.28, P = 0.049). CONCLUSIONS The volume of ILT in the aneurysmal sac seemed not to affect the level of proteolytic activity and the content of the aneurysm wall. However, a positive correlation was found between the ILT and the catalase activity. The effect of ILT on the aneurysm wall and its role in the progression of aneurysmal disease should be examined in future studies.
Collapse
|
4
|
Computer-aided quantification of non-contrast 3D black blood MRI as an efficient alternative to reference standard manual CT angiography measurements of abdominal aortic aneurysms. Eur J Radiol 2020; 134:109396. [PMID: 33217686 DOI: 10.1016/j.ejrad.2020.109396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Non-contrast 3D black blood MRI is a promising tool for abdominal aortic aneurysm (AAA) surveillance, permitting accurate aneurysm diameter measurements needed for patient management. PURPOSE To evaluate whether automated AAA volume and diameter measurements obtained from computer-aided segmentation of non-contrast 3D black blood MRI are accurate, and whether they can supplant reference standard manual measurements from contrast-enhanced CT angiography (CTA). MATERIALS AND METHODS Thirty AAA patients (mean age, 71.9 ± 7.9 years) were recruited between 2014 and 2017. Participants underwent both non-contrast black blood MRI and CTA within 3 months of each other. Semi-automatic (computer-aided) MRI and CTA segmentations utilizing deformable registration methods were compared against manual segmentations of the same modality using the Dice similarity coefficient (DSC). AAA lumen and total aneurysm volumes and AAA maximum diameter, quantified automatically from these segmentations, were compared against manual measurements using Pearson correlation and Bland-Altman analyses. Finally, automated measurements from non-contrast 3D black blood MRI were evaluated against manual CTA measurements using the Wilcoxon test, Pearson correlation and Bland-Altman analyses. RESULTS Semi-automatic segmentations had excellent agreement with manual segmentations (lumen DSC: 0.91 ± 0.03 and 0.94 ± 0.03; total aneurysm DSC: 0.92 ± 0.02 and 0.94 ± 0.03, for black blood MRI and CTA, respectively). Automated volume and maximum diameter measurements also had excellent correlation to their manual counterparts for both black blood MRI (volume: r = 0.99, P < 0.001; diameter: r = 0.97, P < 0.001) and CTA (volume: r = 0.99, P < 0.001; diameter: r = 0.97, P < 0.001). Compared to manual CTA measurements, bias and limits of agreement (LOA) for automated MRI measurements (lumen volume: 1.49, [-4.19 7.17] cm3; outer wall volume: -2.46, [-14.05 9.13] cm3; maximal diameter: 0.08, [-6.51 6.67] mm) were largely equivalent to those of manual MRI measurements, particularly for maximum AAA diameter (lumen volume: 0.73, [-6.47 7.93] cm3; outer wall volume: 0.98, [-10.54 12.5] cm3; maximal diameter: 0.08, [-3.67 3.83] mm). CONCLUSION Semi-automatic segmentation of non-contrast 3D black blood MRI efficiently provides reproducible morphologic AAA assessment yielding accurate AAA diameters and volumes with no clinically relevant differences compared to either automatic or manual measurements based on CTA.
Collapse
|
5
|
Magnetic resonance imaging assessment of proteolytic enzyme concentrations and biologic properties of intraluminal thrombus in abdominal aortic aneurysms. J Vasc Surg 2020; 72:1025-1034. [PMID: 32067878 DOI: 10.1016/j.jvs.2019.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the study was to determine whether magnetic resonance imaging (MRI) can be used in assessment of biologic activity of intraluminal thrombus (ILT) and proteolytic processes of the abdominal aortic aneurysm wall. METHODS Using MRI, 50 patients with asymptomatic infrarenal abdominal aortic aneurysm were analyzed at the maximum aneurysm diameter on T1-weighted images in the arterial phase after administration of contrast material. Relative ILT signal intensity (SI) was determined as the ratio between ILT SI and psoas muscle SI. During surgery, the full thickness of the ILT and the adjacent part of the aneurysm wall were harvested at the maximal diameter for biochemical analysis. The concentrations of matrix metalloproteinase 9 and neutrophil elastase (NE/ELA) were analyzed in harvested thrombi, and the concentrations of collagen type III, elastin, and proteoglycans were analyzed in harvested aneurysm walls. RESULTS A significant positive correlation was found between the NE/ELA concentration of the ILT and the relative SI (ρ = 0.309; P = .029). Furthermore, a negative correlation was observed between the elastin content of the aneurysm wall and the relative SI (ρ = -0.300; P = .034). No correlations were found between relative SI and concentration of matrix metalloproteinase 9, NE/ELA, collagen type III, or proteoglycan 4 in the aneurysm wall. CONCLUSIONS These findings indicate a potential novel use of MRI in prediction of thrombus proteolytic enzyme concentrations and the extracellular matrix content of the aneurysm wall, thus providing additional information for the risk of potential aneurysm rupture.
Collapse
|
6
|
Leach JR, Kao E, Zhu C, Saloner D, Hope MD. On the Relative Impact of Intraluminal Thrombus Heterogeneity on Abdominal Aortic Aneurysm Mechanics. J Biomech Eng 2019; 141:111010. [PMID: 31253989 PMCID: PMC6808003 DOI: 10.1115/1.4044143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/14/2019] [Indexed: 01/31/2023]
Abstract
Intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms (AAA) of a size warranting consideration for surgical or endovascular intervention. The rupture risk of AAAs is thought to be related to the balance of vessel wall strength and the mechanical stress caused by systemic blood pressure. Previous finite element analyses of AAAs have shown that ILT can reduce and homogenize aneurysm wall stress. These works have largely considered ILT to be homogeneous in mechanical character or have idealized a stiffness distribution through the thrombus thickness. In this work, we use magnetic resonance imaging (MRI) to delineate the heterogeneous composition of ILT in 7 AAAs and perform patient-specific finite element analysis under multiple conditions of ILT layer stiffness disparity. We find that explicit incorporation of ILT heterogeneity in the finite element analysis is unlikely to substantially alter major stress analysis predictions regarding aneurysm rupture risk in comparison to models assuming a homogenous thrombus, provided that the maximal ILT stiffness is the same between models. Our results also show that under a homogeneous ILT assumption, the choice of ILT stiffness from values common in the literature can result in significantly larger variations in stress predictions compared to the effects of thrombus heterogeneity.
Collapse
Affiliation(s)
- Joseph R Leach
- Department of Radiology andBiomedical Imaging,University of California, San Francisco,513 Parnassus Avenue Suite S-261,Box 0628,San Francisco, CA 94143e-mail:
| | - Evan Kao
- Department of Radiology andBiomedical Imaging,University of California, San Francisco,San Francisco, CA 94143e-mail:
| | - Chengcheng Zhu
- Department of Radiology andBiomedical Imaging,University of California, San Francisco,San Francisco, CA 94143e-mail:
| | - David Saloner
- Department of Radiology andBiomedical Imaging,University of California, San Francisco,San Francisco, CA 94143e-mail:
| | - Michael D Hope
- Department of Radiology andBiomedical Imaging,University of California, San Francisco,San Francisco, CA 94143e-mail:
| |
Collapse
|
7
|
On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J Vasc Surg 2018; 67:1234-1246.e2. [DOI: 10.1016/j.jvs.2017.05.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023]
|
8
|
Piacentino F, Fontana F, Micieli C, Angeretti MG, Cardim LN, Coppola A, Molinelli V, Piffaretti G, Novario R, Fugazzola C. Nonenhanced MRI Planning for Endovascular Repair of Abdominal Aortic Aneurysms: Comparison With Contrast-Enhanced CT Angiography. Vasc Endovascular Surg 2017; 52:39-45. [PMID: 29162027 DOI: 10.1177/1538574417740508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND To assess whether noncontrast-enhanced magnetic resonance imaging (NC-MRI) is an alternative to contrast-enhanced computed tomography angiography (CTA) for aortoiliac measurements before endovascular abdominal aortic aneurysm repair (EVAR). METHODS This study encompasses 30 patients admitted for elective EVAR (27 men and 3 women). Two expert readers (vascular radiologist and vascular surgeon) reviewed CTA images in consensus and chose the proper endograft for each patient. Subsequently, a vascular radiologist and a resident radiologist (observer 1 and 2) reviewed CTA and NC-MRI examinations in a double-blind way and completed standard measurements. The interobserver and intermodality agreement was calculated by intraclass correlation coefficients (ICCs). Furthermore, the correlation between the endograft size chosen by the first pair and the second pair of observers was evaluated. RESULTS Concerning all measurements, no significant difference was found. Both CTA and NC-MRI angiographic measurements showed strong correlation. Interobserver ICCs for CTA and NC-MRI showed ranges of 0.62 to 0.99 (mean: 0.92) and 0.56 to 0.99 (mean: 0.91); intermodality ICCs for observer 1 and 2 showed ranges of 0.64 to 0.99 (mean: 0.92) and 0.56 to 0.99 (mean: 0.92). The CTA and NC-MRI vascular measurements correlated strongly, except for both external iliac artery diameters. The choice of stent size was always the same between the 2 observers; furthermore, graft size was always in agreement with that selected prospectively. CONCLUSION Computed tomography angiography remains the standard of reference for EVAR planning; NC-MRI can be an option for patients with contraindications for CTA, in particular those with renal impairment.
Collapse
Affiliation(s)
| | | | - Camilla Micieli
- 1 Radiology Department, University of Insubria, Varese, Italy
| | | | | | - Andrea Coppola
- 1 Radiology Department, University of Insubria, Varese, Italy
| | | | | | - Raffaele Novario
- 3 Department of Clinical and Biological Sciences, University of Insubria, Varese, Italy
| | - Carlo Fugazzola
- 1 Radiology Department, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Barrett HE, Cunnane EM, O Brien JM, Moloney MA, Kavanagh EG, Walsh MT. On the effect of computed tomography resolution to distinguish between abdominal aortic aneurysm wall tissue and calcification: A proof of concept. Eur J Radiol 2017; 95:370-377. [PMID: 28987694 DOI: 10.1016/j.ejrad.2017.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this study is to determine the optimal target CT spatial resolution for accurately imaging abdominal aortic aneurysm (AAA) wall characteristics, distinguishing between tissue and calcification components, for an accurate assessment of rupture risk. MATERIALS AND METHODS Ruptured and non-ruptured AAA-wall samples were acquired from eight patients undergoing open surgical aneurysm repair upon institutional review board approval and informed consent was obtained from all patients. Physical measurements of AAA-wall cross-section were made using scanning electron microscopy. Samples were scanned using high resolution micro-CT scanning. A resolution range of 15.5-155μm was used to quantify the influence of decreasing resolution on wall area measurements, in terms of tissue and calcification. A statistical comparison between the reference resolution (15.5μm) and multi-detector CT resolution (744μm) was also made. RESULTS Electron microscopy examination of ruptured AAAs revealed extremely thin outer tissue structure <200μm in radial distribution which is supporting the aneurysm wall along with large areas of adjacent medial calcifications far greater in area than the tissue layer. The spatial resolution of 155μm is a significant predictor of the reference AAA-wall tissue and calcification area measurements (r=0.850; p<0.001; r=0.999; p<0.001 respectively). The tissue and calcification area at 155μm is correct within 8.8%±1.86 and 26.13%±9.40 respectively with sensitivity of 87.17% when compared to the reference. CONCLUSION The inclusion of AAA-wall measurements, through the use of high resolution-CT will elucidate the variations in AAA-wall tissue and calcification distributions across the wall which may help to leverage an improved assessment of AAA rupture risk.
Collapse
Affiliation(s)
- H E Barrett
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland
| | - E M Cunnane
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland
| | - J M O Brien
- Department of Radiology, University Hospital Limerick, Ireland
| | - M A Moloney
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - E G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - M T Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland.
| |
Collapse
|
10
|
Behr-Andersen C, Gammelgaard L, Fründ ET, Dahl M, Lindholt JS. Magnetic resonance imaging of the intraluminal thrombus in abdominal aortic aneurysms: a quantitative and qualitative evaluation and correlation with growth rate. THE JOURNAL OF CARDIOVASCULAR SURGERY 2017; 60:221-229. [PMID: 28847145 DOI: 10.23736/s0021-9509.17.09921-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The role of the intraluminal thrombus (ILT) in abdominal aortic aneurysm (AAA) growth remains incompletely understood. MRI is superior to other methods in depicting the morphology of the ILT. This study brings preliminary, but novel information on the presence and morphological characteristics of the ILT and AAA growth rates in a screening cohort. METHODS Cohort study with 46 patients from the Viborg Vascular Trial. All underwent one non-contrast-enhanced magnetic resonance imaging (MRI) at the end of follow-up. ILT presence was noted and, if present, it was allocated to one of four morphological categories based on visual appearance and signal intensity on T2 weighted images. RESULTS The mean growth rate was 1.95 mm/year ±0.87 (SD). The observation time was 5.59±0.63 (SD) years. ILT was present in AAA size groups as follows: 30-34.9 mm 20.00%, 35-39.9 mm 88.89%, 40-44.9 mm 81.25%, 45-49.9 mm 100% and 50-54.9 mm 100%. Out of 46, 8 had no ILT at the time of MRI. The presence of any sort of ILT yielded a significantly increased unadjusted and an adjusted growth rate of 1.09 mm/year (95% CI: 0.48; 1.70) and 1.24 mm/year (95% CI: 0.64; 1.83), respectively. All four thrombus types were retrospectively associated with an increased recorded growth rate compared with "no thrombus". Presence of a thin circumferential thrombus was retrospectively associated with the highest increase in growth rate, viz. 2.09 mm/year (95% CI: 1.23; 2.95). CONCLUSIONS We observed faster growth rate in those AAA that had developed an ILT. Even faster growth was observed amongst those AAA containing a thin ILT located along the inner circumference.
Collapse
Affiliation(s)
- Carsten Behr-Andersen
- Cardiovascular Research Center, Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark -
| | - Lise Gammelgaard
- Department of Radiology, Viborg Regional Hospital, Viborg, Denmark
| | - Ernst T Fründ
- Elitary Research Center of Individualized Treatment of Arterial Diseases (CIMA), Cardiovascular Center of Excellence (CAVAC), Department of Heart, Lung and Vascular Surgery, University Hospital of Odense, Denmark
| | - Marie Dahl
- Cardiovascular Research Center, Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - Jes S Lindholt
- Cardiovascular Research Center, Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark.,Elitary Research Center of Individualized Treatment of Arterial Diseases (CIMA), Cardiovascular Center of Excellence (CAVAC), Department of Heart, Lung and Vascular Surgery, University Hospital of Odense, Denmark
| |
Collapse
|
11
|
van Noort K, Schuurmann RC, Wermelink B, Slump CH, Kuijpers KC, de Vries JPP. Fluid displacement from intraluminal thrombus of abdominal aortic aneurysm as a result of uniform compression. Vascular 2017; 25:542-548. [PMID: 28441922 DOI: 10.1177/1708538117707612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objectives The results after aneurysm repair with an endovascular aneurysm sealing (EVAS) system are dependent on the stability of the aneurysm sac and particularly the intraluminal abdominal aortic thrombus (ILT). The postprocedural ILT volume is decreased compared with preprocedural ILT volume in aortic aneurysm patients treated with EVAS. We hypothesize that ILT is not stable in all patients and pressurization of the ILT may result in displacement of fluids from the ILT, no differently than serum is displaced from whole blood when it settles. To date, the mechanism and quantification of fluid displacement from ILT are unknown. Methods The study included 21 patients who underwent elective open abdominal aortic aneurysm repair. The ILT was harvested as a routine procedure during the operation. After excision of a histologic sample of the ILT specimen in four patients, ILT volume was measured and the ILT was compressed in a dedicated compression setup designed to apply uniform compression of 200 mmHg for 5 min. After compression, the volumes of the remaining thrombus and the displaced fluid were measured. Results The median (interquartile-range) of ILT volume before compression was 60 (66) mL, and a median of 5.7 (8.4) mL of fluid was displaced from the ILT after compression, resulting in a median thrombus volume decrease of 11% (10%). Fluid components can be up to 31% of the entire ILT volume. Histologic examination of four ILT specimens showed a reduction of the medial layer of the ILT after compression, which was the result of compression of fluid-containing canaliculi. Conclusions Applying pressure of 200 mmHg to abdominal aortic aneurysm ILT resulted in the displacement of fluid, with a large variation among patients. Fluid displacement may result in decrease of ILT volume during and after EVAS, which might have implications on pre-EVAS volume planning and on stability of the endobags during follow-up which may lead to migration, endoleak or both.
Collapse
Affiliation(s)
- Kim van Noort
- 1 Department of Vascular Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands.,2 Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Richte Cl Schuurmann
- 1 Department of Vascular Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands.,2 Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Bryan Wermelink
- 1 Department of Vascular Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands.,2 Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- 3 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Karel C Kuijpers
- 4 Department of Pathology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Jean-Paul Pm de Vries
- 1 Department of Vascular Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
12
|
Georg Y, Delay C, Schwein A, Lejay A, Thaveau F, Gaertner S, Stephan D, Heim F, Chakfe N. [Contribution of mathematical models and biomechanical properties in predicting the risk of abdominal aortic aneurysm rupture]. ACTA ACUST UNITED AC 2015; 41:63-8. [PMID: 26318549 DOI: 10.1016/j.jmv.2015.07.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/17/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Rupture is the worst outcome of abdominal aortic aneurysm (AAA). The decision to operate should include counterbalancing the risk of aneurysm rupture against the risk of aneurysm repair, within the context of a patient's overall life expectancy. Current surgical guidelines are based on population studies, and important variables are missed in predicting individual risk of rupture. METHODS In this literature review, we focused on the contribution of biomechanical and mathematical models in predicting risk of AAA rupture. RESULTS Anatomical features as diameter asymmetry and lack of tortuosity are shown to be anatomical risk factors of rupture. Wall stiffness (due to modifications of elastin and collagen composition) and increased inflammatory response are also factors that affect the structural integrity of the AAA wall. Biomechanical studies showed that wall strength is lower in ruptured than non-ruptured AAA. Intra-luminal thrombus also has a big role to play in the occurrence of rupture. Current mathematical models allow more variables to be included in predicting individual risk of rupture. CONCLUSION Moving away from using maximal transverse diameter of the AAA as a unique predictive factor and instead including biological, structural and biomechanical variables in predicting individual risk of rupture will be essential in the future and will help gain precision and accuracy in surgical indications.
Collapse
Affiliation(s)
- Y Georg
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - C Delay
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - A Schwein
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - A Lejay
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - F Thaveau
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France
| | - S Gaertner
- Service des maladies vasculaires, hypertension artérielle et pharmacologie clinique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg cedex, France
| | - D Stephan
- Service des maladies vasculaires, hypertension artérielle et pharmacologie clinique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg cedex, France
| | - F Heim
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Laboratoire de physique et mécanique textile, ENSISA, 11, rue Alfred-Werner, 68093 Mulhouse cedex, France
| | - N Chakfe
- Groupe européen de recherche sur les prothèses appliquées à la chirurgie vasculaire (Geprovas), faculté de médecine, institut d'anatomie pathologique, 4, rue Kirschleger, 67085 Strasbourg cedex, France; Service de chirurgie vasculaire et transplantation rénale, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, BP n(o) 426, 67091 Strasbourg cedex, France.
| |
Collapse
|
13
|
O׳Leary SA, Kavanagh EG, Grace PA, McGloughlin TM, Doyle BJ. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: Classification of morphology and the determination of layer and region specific properties. J Biomech 2014; 47:1430-7. [DOI: 10.1016/j.jbiomech.2014.01.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/29/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|