1
|
Yu J, Tang X, Lei Y, Zhang Z, Li B, Bai H, Li L. A review on functional lung avoidance radiotherapy plan for lung cancer. Front Oncol 2024; 14:1429837. [PMID: 39703855 PMCID: PMC11656049 DOI: 10.3389/fonc.2024.1429837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation. Conventional RT is designed to minimize radiation exposure to healthy lungs without considering the inhomogeneity of lung function, which is significantly non-uniform in most patients. In accordance with the functional and structural heterogeneity of lung tissue, functional lung avoidance RT (FLART) can reduce radiation exposure to functional lung (FL), thus reducing RILI. Meanwhile, a dose-function histogram (DFH) was proposed to describe the dose parameters of the optimized image-guided RT plan. This paper reviews lung function imaging for lung cancer RT plans. It also reviews the clinical applications of function-guided RT plans and their current problems and research directions to provide better guidance for clinical selection.
Collapse
Affiliation(s)
- Jinhui Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaofeng Tang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| | - Yifan Lei
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Li
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Han Bai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
- Department of Physics and Astronomy, Yunnan University, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| |
Collapse
|
2
|
Hansen JV, Poulsen MW, Nielsen‐Kudsk JE, Kalra MK, Lyhne MD, Andersen A. Quantitative pulmonary perfusion in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension. Pulm Circ 2024; 14:e12445. [PMID: 39525949 PMCID: PMC11544464 DOI: 10.1002/pul2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Current methods for quantifying perfusion from computed tomography pulmonary angiography (CTPA) often rely on semi-quantitative scoring systems and requires an experienced evaluator. Few studies report on absolute quantitative variables derived from the images, and the methods are varied with mixed results. Dual-energy CTPA (DE-CTPA) enables automatic quantification of lung and lobar perfusion with minimal user interaction by utilizing machine learning based software. We aimed to evaluate differences in DE-CTPA derived quantitative perfusion variables between patients with acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). This retrospective, single-center, observational study included 162 adult patients diagnosed with PE (n = 81) or CTEPH (n = 81) and scanned using dual-energy CT between 2020 and 2023. Mann-Whitney U tests and permutational analysis of variance (PERMANOVA) were used for comparative analyses. We found whole lung perfusion blood volume to be lower (p < 0.001) in PE patients (median 3399 mL [2554, 4284]) than in CTEPH patients (median 4094 mL [3397, 4818]). The same was observed at single lung and lobar level. PERMANOVA encompassing all perfusion variables showed a difference between the two groups (F-statistic = 13.3, p = 0.002). Utilizing logistic regression, right and left lower lobe perfusion blood volume showed some ability to differentiate between PE and CTEPH with area under the receiver operation characteristics curve values of 0.71 (95% CI: 0.56; 0.84) and 0.72 (95% CI: 0.56; 0.86). Pulmonary perfusion is lower in patients with PE than patients with CTEPH, highlighted by differences in DECT-derived perfusion blood volume. Quantitative perfusion variables might be useful to differentiate between the two diseases.
Collapse
Affiliation(s)
- Jacob V. Hansen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Mette W. Poulsen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Jens E. Nielsen‐Kudsk
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Mannudeep K. Kalra
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Mads D. Lyhne
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Department of Anaesthesiology and Intensive CareAarhus University HospitalAarhus NDenmark
| | - Asger Andersen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| |
Collapse
|
3
|
Multi-Energy CT Applications. Radiol Clin North Am 2023; 61:1-21. [DOI: 10.1016/j.rcl.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Lambert L, Michalek P, Burgetova A. The diagnostic performance of CT pulmonary angiography in the detection of chronic thromboembolic pulmonary hypertension-systematic review and meta-analysis. Eur Radiol 2022; 32:7927-7935. [PMID: 35482124 DOI: 10.1007/s00330-022-08804-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To examine the diagnostic performance of CT of the pulmonary artery (CTPA) as a potential first-choice imaging modality in patients with pulmonary arterial hypertension and suspected chronic thromboembolic pulmonary hypertension (CTEPH). METHODS A systematic review and meta-analysis were conducted in accordance with the PRISMA reporting checklist. Six scientific databases and registers (PubMed, EMBASE, Scopus, Web of Science, Cochrane, ClinicalTrials.gov ) were searched for studies evaluating the diagnostic performance of CTPA in suspected CTEPH in adult patients. Results were pooled separately for studies based on the evaluation of the pulmonary artery and those that relied solely on changes in parenchymal perfusion. RESULTS Ten single-center studies with 734 patients were eligible for pooling of the diagnostic performance of CTPA by evaluation of the pulmonary artery. The pooled sensitivity, specificity, PPV, NPV, accuracy, and diagnostic odds ratio (DOR) estimates for CTPA in the detection of CTEPH were 0.98, 0.99, 0.94, 1.00, 0.96, 0.96, and 292. Evaluation of perfusion changes yielded pooled estimates for sensitivity, specificity, PPV, NPV, accuracy, and DOR of 0.99, 0.84, 0.79, 0.98, 0.89, 0.89, and 98 across four studies with 278 patients. Scintigraphy, SPECT, digital subtraction angiography, right heart catheterization, pulmonary endarterectomy, and international guidelines were used to establish the diagnosis. CONCLUSION CTPA has high sensitivity and specificity in the detection of CTEPH when the examination is evaluated by expert radiologists. Evaluation of parenchymal perfusion alone is associated with slightly lower specificity. Further research is needed to determine the diagnostic performance of CTPA in excluding CTEPH in general radiology departments. KEY POINTS • CT pulmonary angiography (CTPA) is recommended in the diagnostic workup of chronic thromboembolic pulmonary hypertension (CTEPH). • CTPA has high sensitivity and specificity in the detection of CTEPH when evaluated by an expert radiologist. • Evaluation of changes in parenchymal perfusion alone is associated with slightly lower specificity. • Little is known about the diagnostic performance of CTPA in the detection of CTEPH in general radiology departments.
Collapse
Affiliation(s)
- Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic.
| | - Pavel Michalek
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| | - Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| |
Collapse
|
5
|
Farag A, Fielding J, Catanzano T. Role of Dual-energy Computed Tomography in Diagnosis of Acute Pulmonary Emboli, a Review. Semin Ultrasound CT MR 2022; 43:333-343. [PMID: 35738818 DOI: 10.1053/j.sult.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt diagnosis of pulmonary embolism is essential to avert morbidity and mortality. There are a number of diagnostic options for identification of a pulmonary embolism, including laboratory and imaging investigations. While computed tomography pulmonary angiography (CTPA) has largely supplanted nuclear medicine ventilation/perfusion studies, there remain significant limitations in the optimal performance of CTPA. Dual-energy computed tomography has the ability to overcome many of the limitations of standard of care CTPA, including rescue of poor contrast boluses and the ability to evaluate pulmonary perfusion defects.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Jordan Fielding
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Tara Catanzano
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA.
| |
Collapse
|
6
|
Ramirez-Suarez KI, Barrera CA, Otero HJ, Biko DM, States LJ, Servaes S, Zhu X, Davis JC, Piccione J, Rapp JB. Pilot study for comparative assessment of dual-energy computed tomography and single-photon emission computed tomography V/Q scanning for lung perfusion evaluation in infants. Pediatr Pulmonol 2022; 57:702-710. [PMID: 34914194 DOI: 10.1002/ppul.25788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/05/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate clinical applications of dual-energy computed tomography (DECT) in pediatric-specific lung diseases and compare ventilation and perfusion findings with those from single-photon emission computed tomography (SPECT-CT) V/Q. METHODS All patients at our institution who underwent exams using both techniques within a 3-month period were included in this study. Two readers independently described findings for DECT, and two other readers independently analyzed the SPECT-CT V/Q scan data. All findings were compared between readers and disagreements were reassessed and resolved by consensus. Inter-modality agreements are described throughout this study. RESULTS Eight patients were included for evaluation. The median age for DECT scanning was 3.5 months (IQR = 2). Five of these patients were scanned for both DECT and SPECT-CT V/Q studies the same day, and three had a time gap of 7, 65, and 94 days between studies. The most common indications were chronic lung disease (5/8; 63%) and pulmonary hypertension (6/8; 75%). DECT and SPECT-CT V/Q identified perfusion abnormalities in concordant lobes in most patients (7/8; 88%). In one case, atelectasis limited DECT perfusion assessment. Three patients ultimately underwent lobectomy with corresponding perfusion abnormalities identified by all reviewers on both DECT and SPECT-CT V/Q in all resected lobes. CONCLUSION DECT is a feasible technique that could be considered as an alternative for SPECT-CT V/Q for lung perfusion evaluation in infants.
Collapse
Affiliation(s)
- Karen I Ramirez-Suarez
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian A Barrera
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sabah Servaes
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, West Virginia University Medicine Children's Hospital, Morgantown, West Virginia, USA
| | - Xiaowei Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James C Davis
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph Piccione
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jordan B Rapp
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Strazzulla A, Abroug Ben Halima S, Chouchane I, Rezek M, Pinto Stiebler M, Hamrouni S, Maalaoui M, Ghriss N, Guedec-Ghelfi R, Moini C, Monchi M, Belfeki N. The Predictive Value of Cell Blood Count Parameters to Diagnose Pulmonary Embolism in Patients with SARS-CoV-2 Infection: A Case Control Study. Antibiotics (Basel) 2022; 11:antibiotics11010060. [PMID: 35052937 PMCID: PMC8773214 DOI: 10.3390/antibiotics11010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Introduction: Acute pulmonary embolism (aPE) is frequently associated with coronavirus infectious disease-2019 (COVID-19) with an incidence of more than 16%. Among the new promising biomarkers of aPE, neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) showed correlations with aPE prognosis. The aim of this study was to conduct an exploratory analysis to check the possible role of cell blood count (CBC) parameters as diagnostic and prognostic biomarkers of aPE in COVID-19 patients. Materials and Methods: A case control study was conducted. Two populations were compared: (i) patients hospitalised from 31 January 2020 to 30 June 2021 with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection and aPE confirmed at angio computed tomography (aCT) or pulmonary scintigraphy (COVID-19 aPE group); (ii) patients hospitalised from 31 January 2017 to 30 June 2021 without SARS-CoV-2 infection whose suspicion of aPE was excluded by aCT or pulmonary scintigraphy (no-aPE group). Results: Overall, 184 patients were included in the study, 83 in COVID-19 aPE group and 101 in no-aPE group. At the univariate analysis, COVID-19 patients with aPE had higher NLR, PLR, neutrophil and lymphocyte counts than patients without aPE (p < 0.05). No significant difference was found in mean platelet volume and platelet counts. No difference in mortality rate was detected. At the multivariate analysis, neutrophil and lymphocyte counts were both associated with diagnostic of aPE while no CBC parameters were associated with mortality at day#7. Conclusions: Neutrophiland lymphocyte counts could be predictors of the early detection of aPE in COVID-19 patients. The value of CBC indices as biomarkers of aPE in daily clinical practice needs to be investigated in further studies.
Collapse
Affiliation(s)
- Alessio Strazzulla
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
- Correspondence:
| | - Sarra Abroug Ben Halima
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| | - Ibrahim Chouchane
- Radiology Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France;
| | - Marwa Rezek
- Laboratory Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France;
| | - Marcella Pinto Stiebler
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| | - Sarra Hamrouni
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| | - Mohammad Maalaoui
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| | - Nouha Ghriss
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| | | | - Cyrus Moini
- Cardiology Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France;
| | - Mehran Monchi
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France;
| | - Nabil Belfeki
- Internal Medicine Unit, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; (S.A.B.H.); (M.P.S.); (S.H.); (M.M.); (N.G.); (N.B.)
| |
Collapse
|
8
|
Moher Alsady T, Kaireit TF, Behrendt L, Winther HB, Olsson KM, Wacker F, Hoeper MM, Cebotari S, Vogel-Claussen J. Comparison of dual-energy computer tomography and dynamic contrast-enhanced MRI for evaluating lung perfusion defects in chronic thromboembolic pulmonary hypertension. PLoS One 2021; 16:e0251740. [PMID: 34138864 PMCID: PMC8211171 DOI: 10.1371/journal.pone.0251740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/01/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To evaluate the agreement in detecting pulmonary perfusion defects in patients with chronic thromboembolic pulmonary hypertension using dual-energy CT and dynamic contrast-enhanced MRI. Second, to compare both imaging modalities in monitoring lung perfusion changes in these patients after undergoing pulmonary endarterectomy. METHODS 20 patients were examined with CT and MRI before and/or after pulmonary endarterectomy. Estimated perfusion defect percentage from both modalities was compared in a lobe-based analysis. Spatial agreement of perfusion defect maps was also assessed. RESULTS A significant correlation between CT and MRI based perfusion defect percentage was calculated in all lung lobes (r > 0.78; p < 0.001). In addition, a good spatial agreement between perfusion defect maps was found (mean spatial overlap for the whole lung was 68.2%; SD = 6.9). Both CT and MRI detected improvements in pulmonary perfusion after pulmonary endarterectomy: 8% and 7% decrease in whole lung perfusion defect percentage (p = 0.007 and 0.004), respectively. In a lobe-wise analysis, improvements were statistically significant only in lower lobes using both modalities (reduction in defect percentage ranged from 16-29%; p < 0.02). CONCLUSIONS Dual-energy CT is an alternative to MRI in monitoring chronic thromboembolic pulmonary hypertension. Both imaging modalities provided comparable estimations of perfusion defects and could detect similar improvement in lung perfusion after pulmonary endarterectomy.
Collapse
Affiliation(s)
- Tawfik Moher Alsady
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Till F. Kaireit
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Lea Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Hinrich B. Winther
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Karen M. Olsson
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Marius M. Hoeper
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| |
Collapse
|
9
|
Lysdahlgaard S, Hess S, Gerke O, Weber Kusk M. A systematic literature review and meta-analysis of spectral CT compared to scintigraphy in the diagnosis of acute and chronic pulmonary embolisms. Eur Radiol 2020; 30:3624-3633. [PMID: 32112117 DOI: 10.1007/s00330-020-06735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE To examine the diagnostic accuracy of spectral CT pulmonary angiography (S-CTPA) using ventilation-perfusions lung scintigraphy (V/Q-scan) as a reference standard in the diagnosis of acute or chronic pulmonary embolism (APE/CPE) and chronic thromboembolic pulmonary hypertension (CTEPH). METHODS PubMed, Embase, Scopus, and Web of Science were searched for the period from 1 Jan 2006 to 7 Feb 2019; eligible studies had > 10 patients over 18 years old, a diagnostic outcome of PE or CTEPH, and used V/Q scan as a reference standard. Bias and applicability were assessed using QUADAS-2 tools. Sensitivities, specificities, and predictive values were noted or calculated from available information. Meta-analysis employed a fixed-effects model of Mantel and Haenszel. Heterogeneity was assessed with I-squared statistics. RESULTS Four hundred ninety-three unique records were identified. Following screening by title, 53 studies were included in the abstract and full-text assessment. A total of six articles were included; four were suitable for a meta-analysis. Pooled sensitivity was 94.2% (95% CI, 88.3-100%), pooled specificity was 88.5% (95% CI, 81.3-95.6%), and positive and negative predictive values were 87.8% (95% CI, 80.3-95.4%) and 94.5% (95% CI, 89.3-99.7%), respectively. CONCLUSION Data on S-CTPA for PE/CTEPH remains promising, but limited; only small studies with methodological issues are available. Evidence is best for CPE/CTEPH whereas no firm conclusions are possible for APE. There is a need for larger, prospective studies with a robust composite reference standard including state-of-the-art CTPA and V/Q-scans. KEY POINTS • S-CTPA has high sensitivity and specificity for perfusion defects in patients with PE or CPETH. • Methodological issues and diversity of reference standards were found in the small number of included studies. • There is a need for larger prospective studies with more robust composite reference standards.
Collapse
Affiliation(s)
- Simon Lysdahlgaard
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark.
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Weber Kusk
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark
| |
Collapse
|
10
|
What's next after the clot? Residual pulmonary vascular obstruction after pulmonary embolism: From imaging finding to clinical consequences. Thromb Res 2019; 184:67-76. [DOI: 10.1016/j.thromres.2019.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022]
|
11
|
Speidel MA, Burton CS, Nikolau EP, Schafer S, Laeseke PF. Prototype system for interventional dual-energy subtraction angiography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10951. [PMID: 32669753 DOI: 10.1117/12.2512956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Dual-energy subtraction angiography (DESA) using fast kV switching has received attention for its potential to reduce misregistration artifacts in thoracic and abdominal imaging where patient motion is difficult to control; however, commercial interventional solutions are not currently available. The purpose of this work was to adapt an x-ray angiography system for 2D and 3D DESA. The platform for the dual-energy prototype was a commercially available x-ray angiography system with a flat panel detector and an 80 kW x-ray tube. Fast kV switching was implemented using custom x-ray tube control software that follows a user-defined switching program during a rotational acquisition. Measurements made with a high temporal resolution kV meter were used to calibrate the relationship between the requested and achieved kV and pulse width. To enable practical 2D and 3D imaging experiments, an automatic exposure control algorithm was developed to estimate patient thickness and select a dual-energy switching technique (kV and ms switching) that delivers a user-specified task CNR at the minimum air kerma to the interventional reference point. An XCAT-based simulation study conducted to evaluate low and high energy image registration for the scenario of 30-60 frame/s pulmonary angiography with respiratory motion found normalized RMSE values ranging from 0.16% to 1.06% in tissue-subtracted DESA images, depending on respiratory phase and frame rate. Initial imaging in a porcine model with a 60 kV, 10 ms, 325 mA / 120 kV, 3.2 ms, 325 mA switching technique demonstrated an ability to form tissue-subtracted images from a single contrast-enhanced acquisition.
Collapse
Affiliation(s)
- Michael A Speidel
- Dept. of Medical Physics, Univ. of Wisconsin - Madison, Madison, WI, USA.,Dept. of Medicine, Univ. of Wisconsin - Madison, Madison, WI, USA
| | | | - Ethan P Nikolau
- Dept. of Medical Physics, Univ. of Wisconsin - Madison, Madison, WI, USA
| | | | - Paul F Laeseke
- Dept. of Radiology, Univ. of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
12
|
Imaging of pulmonary perfusion using subtraction CT angiography is feasible in clinical practice. Eur Radiol 2018; 29:1408-1414. [PMID: 30255247 PMCID: PMC6510874 DOI: 10.1007/s00330-018-5740-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
Abstract Subtraction computed tomography (SCT) is a technique that uses software-based motion correction between an unenhanced and an enhanced CT scan for obtaining the iodine distribution in the pulmonary parenchyma. This technique has been implemented in clinical practice for the evaluation of lung perfusion in CT pulmonary angiography (CTPA) in patients with suspicion of acute and chronic pulmonary embolism, with acceptable radiation dose. This paper discusses the technical principles, clinical interpretation, benefits and limitations of arterial subtraction CTPA. Key Points • SCT uses motion correction and image subtraction between an unenhanced and an enhanced CT scan to obtain iodine distribution in the pulmonary parenchyma. • SCT could have an added value in detection of pulmonary embolism. • SCT requires only software implementation, making it potentially more widely available for patient care than dual-energy CT.
Collapse
|
13
|
Rahaghi FN, Minhas JK, Heresi GA. Diagnosis of Deep Venous Thrombosis and Pulmonary Embolism: New Imaging Tools and Modalities. Clin Chest Med 2018; 39:493-504. [PMID: 30122174 PMCID: PMC6317734 DOI: 10.1016/j.ccm.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imaging continues to be the modality of choice for the diagnosis of venous thromboembolic disease, particularly when incorporated into diagnostic algorithms. Improvement in imaging techniques as well as new imaging modalities and processing methods have improved diagnostic accuracy and additionally are being leveraged in prognostication and decision making for choice of intervention. In this article, we review the role of imaging in diagnosis and prognostication of venous thromboembolism. We also discuss emerging imaging approaches that may in the near future find clinical usefulness in improving diagnosis and prognostication as well as differentiating disease phenotypes.
Collapse
Affiliation(s)
- Farbod N. Rahaghi
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School. 15 Francis Street, Boston MA 02115, ; Phone: 617-632-6770
| | - Jasleen K. Minhas
- Department of Medicine, North Shore Medical Center, 81 highland Ave Salem MA 10970, Phone: 978-354-4801
| | - Gustavo A. Heresi
- Respiratory Institute, Cleveland Clinic, Mail code A90, 9500 Euclid Ave, OH 44195, Phone: 216-636-5327
| |
Collapse
|
14
|
Barco S, Konstantinides S, Huisman MV, Klok FA. Diagnosis of recurrent venous thromboembolism. Thromb Res 2018; 163:229-235. [DOI: 10.1016/j.thromres.2017.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
|
15
|
Mrozek J, Petrova J, Vaclavkova J, Janovsky V, Kraus L, Jansa P. Reperfusion after pulmonary embolism - long-term follow-up, risk factors, clinical impact. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:121-126. [PMID: 29375141 DOI: 10.5507/bp.2018.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Thromboembolic disease is the third most common cardiovascular disorder and deep vein thrombosis carries the risk of pulmonary embolism (PE). Questions related to reperfusion after PE remain, especially risk factors. Incomplete reperfusion after PE is closely related to the development of chronic thromboembolic pulmonary hypertension. The aim of this study was to determine the relation between reperfusion after PE in the long term over a period of 24 months, laboratory results and clinical risk factors found during the initial PE event. PATIENTS AND METHODS 85 consecutive patients with a first episode of acute PE, diagnosed at 4 cardiology clinics, were followed up using clinical evaluation, scintigraphy and echocardiography (6, 12 and 24 months after the PE. 35 patients were in the low risk category (41%), 42 (49%) in the intermediate risk group and 8 (9%) in the high risk category. RESULTS Perfusion defects persisted in 20 patients (26%) after 6 months, in 19 patients (25%) after 12 months and in 14 patients (19%) after 24 months. The incidence was more frequent in older patients, with more serious (higher risk) PE, increased right ventricular internal diameter during the initial episode, and more significant tricuspid insufficiency in the initial echocardiography. Notably, higher hemoglobin levels were also shown as a significant risk factor. The presence of perfusion defects after 24 months correlated with a concurrent higher pulmonary pressure but not with either patient function or adverse events (recurrence of PE, re-hospitalization or bleeding). In 3 cases (4% of patients), long-term echocardiographic evidence of pulmonary hypertension was detected. CONCLUSION Even after 24 months from acute PE with adequate anticoagulation treatment, incomplete reperfusion was found in 19% of patients with a corresponding risk of chronic thromboembolic pulmonary disease and hypertension.
Collapse
Affiliation(s)
- Jan Mrozek
- Department of Cardiovascular Diseases, University Hospital Ostrava, Czech Republic.,Department of Cardiology, Municipal Hospital, Ostrava, Czech Republic
| | - Jana Petrova
- Department of Cardiology, Municipal Hospital, Ostrava, Czech Republic
| | - Jana Vaclavkova
- Department of Internal Medicine, Silesian Hospital Opava, Czech Republic
| | - Vladimir Janovsky
- Department of Internal Medicine, Silesian Hospital Opava, Czech Republic
| | - Lubos Kraus
- Department of Internal Medicine, Hospital Novy Jicin, Czech Republic
| | - Pavel Jansa
- Clinical Department of Cardiology and Angiology, 1 st Faculty of Medicine, 2
| |
Collapse
|
16
|
Bahig H, Campeau MP, Lapointe A, Bedwani S, Roberge D, de Guise J, Blais D, Vu T, Lambert L, Chartrand-Lefebvre C, Lord M, Filion E. Phase 1-2 Study of Dual-Energy Computed Tomography for Assessment of Pulmonary Function in Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2017; 99:334-343. [DOI: 10.1016/j.ijrobp.2017.05.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
|
17
|
Lapointe A, Bahig H, Blais D, Bouchard H, Filion É, Carrier JF, Bedwani S. Assessing lung function using contrast-enhanced dual-energy computed tomography for potential applications in radiation therapy. Med Phys 2017; 44:5260-5269. [PMID: 28718888 DOI: 10.1002/mp.12475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE There is an increasing interest in the evaluation of lung function from physiological images in radiation therapy treatment planning to reduce the extent of postradiation toxicities. The purpose of this work was to retrieve reliable functional information from contrast-enhanced dual-energy computed tomography (DECT) for new applications in radiation therapy. The functional information obtained by DECT is also compared with other methods using single-energy CT (SECT) and single-photon emission computed tomography (SPECT) with CT. The differential function between left and right lung, as well as between lobes is computed for all methods. METHODS Five lung cancer patients were retrospectively selected for this study; each underwent a SPECT/CT scan and a contrast-injected DECT scan, using 100 and 140 Sn kVp. The DECT images are postprocessed into iodine concentration maps, which are further used to determine the perfused blood volume. These maps are calculated in two steps: (a) a DECT stoichiometric calibration adapted to the presence of iodine and followed by (b) a two-material decomposition technique. The functional information from SECT is assumed proportional to the HU numbers from a mixed CT image. The functional data from SPECT/CT are considered proportional to the number of counts. A radiation oncologist segmented the entire lung volume into five lobes on both mixed CT images and low-dose CT images from SPECT/CT to allow a regional comparison. The differential function for each subvolume is computed relative to the entire lung volume. RESULTS The differential function per lobe derived from SPECT/CT correlates strongly with DECT (Pearson's coefficient r = 0.91) and moderately with SECT (r = 0.46). The differential function for the left lung shows a mean difference of 7% between SPECT/CT and DECT; and 17% between SPECT/CT and SECT. The presence of nonfunctional areas, such as localized emphysema or a lung tumor, is reflected by an intensity drop in the iodine concentration maps. Functional dose volume histograms (fDVH) are also generated for two patients as a proof of concept. CONCLUSION The extraction of iodine concentration maps from a contrast-enhanced DECT scan is achieved to compute the differential function for each lung subvolume and good agreement is found in respect to SPECT/CT. One promising avenue in radiation therapy is to include such functional information during treatment planning dose optimization to spare functional lung tissues.
Collapse
Affiliation(s)
- Andréanne Lapointe
- Département de physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Houda Bahig
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada
| | - Danis Blais
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Édith Filion
- Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada
| | - Jean-François Carrier
- Département de physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Stéphane Bedwani
- Département de physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1560 rue Sherbrooke est, Montréal, Québec, H2L 4M1, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
18
|
Toney LK, Kim RD, Palli SR. The Economic Value of Hybrid Single-photon Emission Computed Tomography With Computed Tomography Imaging in Pulmonary Embolism Diagnosis. Acad Emerg Med 2017. [PMID: 28650562 PMCID: PMC5601189 DOI: 10.1111/acem.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective The objective was to quantify the potential economic value of single‐photon emission computed tomography (SPECT) with computed tomography (CT; SPECT/CT) versus CT pulmonary angiography (CTPA), ventilation–perfusion (V/Q) planar scintigraphy, and V/Q SPECT imaging modalities for diagnosing suspected pulmonary embolism (PE) patients in an emergency setting. Methods An Excel‐based simulation model was developed to compare SPECT/CT versus the alternate scanning technologies from a payer's perspective. Clinical endpoints (diagnosis, treatment, complications, and mortality) and their corresponding cost data (2016 USD) were obtained by performing a best evidence review of the published literature. Studies were pooled and parameters were weighted by sample size. Outcomes measured included differences in 1) excess costs, 2) total costs, and 3) lives lost per annum between SPECT/CT and the other imaging modalities. One‐way (±25%) sensitivity and three scenario analyses were performed to gauge the robustness of the results. Results For every 1,000 suspected PE patients undergoing imaging, expected annual economic burden by modality was found to be 3.2 million (SPECT/CT), 3.8 million (CTPA), 5.8 million (planar), and 3.6 million (SPECT) USD, with a switch to SPECT/CT technology yielding per‐patient‐per‐month cost savings of $51.80 (vs. CTPA), $213.80 (vs. planar), and $36.30 (vs. SPECT), respectively. The model calculated that the incremental number of lives saved with SPECT/CT was six (vs. CTPA) and three (vs. planar). Utilizing SPECT/CT as the initial imaging modality for workup of acute PE was also expected to save $994,777 (vs. CTPA), $2,852,014 (vs. planar), and $435,038 (vs. SPECT) in “potentially avoidable”’ excess costs per annum for a payer or health plan. Conclusion Compared to the currently available scanning technologies for diagnosing suspected PE, SPECT/CT appears to confer superior economic value, primarily via improved sensitivity and specificity and low nondiagnostic rates. In turn, the improved diagnostic accuracy accords this modality the lowest ratio of expenses attributable to potentially avoidable complications, misdiagnosis, and underdiagnosis.
Collapse
Affiliation(s)
- Lauren K. Toney
- Division of Nuclear Medicine; Valley Medical Center; Renton WA
- Division of Nuclear Medicine; University of Washington Medical Center; Seattle WA
| | - Richard D. Kim
- Southlake Clinic; University of Washington Medical Center; Seattle WA
| | - Swetha R. Palli
- Health Outcomes Research; CTI Clinical Trial and Consulting, Inc.; Covington KY
| |
Collapse
|
19
|
Meysman M, Everaert H, Vincken W. Factors determining altered perfusion after acute pulmonary embolism assessed by quantified single-photon emission computed tomography-perfusion scan. Ann Thorac Med 2017; 12:30-35. [PMID: 28197219 PMCID: PMC5264170 DOI: 10.4103/1817-1737.197772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM OF THE STUDY: The aim of the study was to analyze the evolution of perfusion (Q)-defects in patients treated for acute pulmonary embolism (PE), correlation with baseline parameters and evaluation of recurrence risk. METHODS: This is a single-center prospective observational cohort study in symptomatic normotensive PE. Comparison of the ventilation/perfusion single-photon emission computed tomography (V/Q-SPECT) acquired at baseline with a quantified SPECT (Q-SPECT) repeated at 1 week and 6 months. The Q-defect extent (percentage of total lung volume affected) was measured semiquantitatively. Data collected at baseline were age, gender, body mass index (BMI), history of previous venous thromboembolism (HVTE), Charlson's Comorbidity Score (CcS), plasma troponin-T and D-dimer levels, PE Severity Index, and tricuspid regurgitation jet (TRJ) velocity. RESULTS: Forty-six patients (22 men/24 women, mean age 61.7 years (± standard deviation 16.3)) completed the study. At 1 week, 13/46 (28.3 %) and at 6 months 22/46 (47.8%) patients had completely normalized Q-SPECT. Persistence of Q-defects was more frequent in female patients in univariate and multivariate analysis. We found no correlation between the persistence of Q-defects on Q-SPECT and HVTE, BMI, plasma troponin-T, and CcS. However, lower TRJ and younger age were statistically significantly linked to normalization of Q-scans after 6 months of treatment only in univariate analysis. There is no difference in the frequency of recurrent PE in relation to the persistence of Q-defects. CONCLUSION: Acute PE patients of female, older age, and higher TRJ in univariate analysis and patients of female in multivariate analysis seem to have a higher risk of persistent Q-defects after 6 months treatment. The presence of residual Q-abnormalities at 6 months was not associated with an increased risk for recurrent PE.
Collapse
Affiliation(s)
- Marc Meysman
- Department of Medicine, Respiratory Division, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Walter Vincken
- Department of Medicine, Respiratory Division, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Algoritmo para el diagnóstico y el seguimiento de la tromboembolia pulmonar aguda. RADIOLOGIA 2017; 59:75-87. [DOI: 10.1016/j.rx.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 01/24/2023]
|
21
|
State-of-the-Art Pulmonary CT Angiography for Acute Pulmonary Embolism. AJR Am J Roentgenol 2016; 208:495-504. [PMID: 27897042 DOI: 10.2214/ajr.16.17202] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Pulmonary CT angiography (CTA) is the imaging modality of choice in suspected acute pulmonary embolism (PE). Current pulmonary CTA techniques involve ever lower doses of contrast medium and radiation along with advanced postprocessing applications to enhance image quality, diagnostic accuracy, and provide added value in patient management. The objective of this article is to summarize these current developments and discuss the appropriate use of state-of-the-art pulmonary CTA. CONCLUSION Pulmonary CTA is well established as a fast and reliable means of excluding or diagnosing PE. Continued developments in CT system hardware and postprocessing techniques will allow incremental reductions in radiation and contrast material requirements while improving image quality. Advances in risk stratification and prognostication from pulmonary CTA examinations should further refine its clinical value while minimizing the potential harm from overutilization and overdiagnosis.
Collapse
|
22
|
De Bari B, Deantonio L, Bourhis J, Prior JO, Ozsahin M. Should we include SPECT lung perfusion in radiotherapy treatment plans of thoracic targets? Evidences from the literature. Crit Rev Oncol Hematol 2016; 102:111-7. [PMID: 27132077 DOI: 10.1016/j.critrevonc.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To report the available data about the potential impact of integrating lung perfusion SPECT/CT in treatment plans optimization for the irradiation of thoracic targets. MATERIALS AND METHODS We searched in the PubMed and Scopus databases, English-written articles published from 2000 to June 2015 dealing with the integration of perfusion SPECT/CT in radiotherapy. RESULTS We found and analyzed 16 research articles (10 dosimetric, 6 clinical) for a total of 578 patients. Available data suggest dosimetric and clinical improvements when perfusion SPEC/CT is integrated in the radiotherapy treatment planing of selected patients with thoracic targets. In particular, patients presenting emphysema and/or large areas of deficit of perfusion show the most important improvements. Moreover, some studies show different risk of radiation pneumonitis (RP) depending on the localization of the tumor in the lungs: patients with low-located tumors, present an increased risk of RP, and functional data could be a benefit in treatment plan optimization. Unfortunately, none of the available studies finally reports any dosimetric constraint, which could be used in the clinical practice, even if most of them used the cut-off of the 30% of the maximal perfusion value to define the well-functioning lung. CONCLUSIONS Published data support the integration of lung perfusion scintigraphy in some selected categories of patients. Prospective studies should be designed to define the best candidates, and to assess the clinical advantage of this kind of optimization.
Collapse
Affiliation(s)
- Berardino De Bari
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Letizia Deantonio
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Medicine Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland
| | - Mahmut Ozsahin
- Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois-CHUV, Lausanne, Switzerland.
| |
Collapse
|