1
|
Toia GV, Garret JW, Rose SD, Szczykutowicz TP, Pickhardt PJ. Comparing fully automated AI body composition biomarkers at differing virtual monoenergetic levels using dual-energy CT. Abdom Radiol (NY) 2025; 50:2758-2769. [PMID: 39643734 DOI: 10.1007/s00261-024-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE To investigate the behavior of artificial intelligence (AI) CT-based body composition biomarkers at different virtual monoenergetic imaging (VMI) levels using dual-energy CT (DECT). METHODS This retrospective study included 88 contrast-enhanced abdominopelvic CTs acquired with rapid-kVp switching DECT. Images were reconstructed into five VMI levels (40, 55, 70, 85, 100 keV). Fully automated algorithms for quantifying CT number (HU) in abdominal fat (subcutaneous and visceral), skeletal muscle, bone, calcium (abdominal Agatston score), and organ size (area or volume) were applied. Biomarker median difference relative to 70 keV and interquartile range were reported by energy level to characterize variation. Linear regression was performed to calibrate non-70 keV data and to estimate their equivalent 70 keV biomarker attenuation values. RESULTS Relative to 70 keV, absolute median differences in attenuation-based biomarkers (excluding Agatston score) ranged 39-358, 12-102, 5-48, 9-75 HU for 40, 55, 85, 100 keV, respectively. For area-based biomarkers, differences ranged 6-15, 3-4, 2-7, 0-5 cm2 for 40, 55, 85, 100 keV. For volume-based biomarkers, differences ranged 12-34, 8-68, 12-52, 1-57 cm3 for 40, 55, 85, 100 keV. Agatston score behavior was more spurious with median differences ranging 70-204 HU. In general, VMI < 70 keV showed more variation in median biomarker measurement than VMI > 70 keV. CONCLUSION This study characterized the behavior of a fully automated AI CT biomarker toolkit across varying VMI levels obtained with DECT. The data showed relatively little biomarker value change when measured at or greater than 70 keV. Lower VMI datasets should be avoided due to larger deviations in measured value as compared to 70 keV, a level considered equivalent to conventional 120 kVp exams.
Collapse
Affiliation(s)
- Giuseppe V Toia
- University of Wisconsin School of Medicine and Public Health, Madison, USA.
| | - John W Garret
- University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sean D Rose
- The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Perry J Pickhardt
- University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
2
|
Suzuki C, Matsubara K, Ujihara Y, Isogai K. Dual-energy metal artefact reduction for iodine-125 seed identification in postimplant CT after prostate brachytherapy. Br J Radiol 2025; 98:271-279. [PMID: 39495147 DOI: 10.1093/bjr/tqae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES To assess the metal artefact reductions of dual-energy CT high-energy virtual monochromatic images (VMI) combined with the Single-Energy Metal Artifact Reduction (SEMAR) (CANON MEDICAL SYSTEMS, Otawara, Japan) processing techniques for iodine (I)-125 seed identification in postimplant CT after prostate brachytherapy. METHODS Dual-energy acquisition with fast tube voltage switching was performed on a prostate phantom with simulated seeds and six clinical cases treated with I-125 prostate brachytherapy. The images were retrospectively reconstructed at VMI energy levels of 65-200 keV and with and without SEMAR (SEMAR and non-SEMAR images). To estimate seed swelling, the calibre of iodine-125 seed was calculated as the full width at half maximum. The metal artefacts were evaluated using the artefact index (AI). The dose distributions were calculated and were compared among the high-energy VMI (SEMAR and non-SEMAR images) and low-energy VMI (SEMAR images). RESULTS The blooming artefacts decreased at higher energy levels. In addition, the SEMAR process markedly reduced AI, which helped reduce overestimation of high dose ranges in the treatment planning dose map. CONCLUSIONS The locations and number of iodine-125 seed were clearly identified in the dose distribution map of the treatment planning using 200 keV VMI with SEMAR. ADVANCES IN KNOWLEDGE The high-energy VMI of the dual-energy CT in combination with SEMAR is appropriate for the postimplant planning process of I-125 prostate brachytherapy.
Collapse
Affiliation(s)
- Chiaki Suzuki
- Department of Diagnostic Radiology, Seirei Mikatahara Hospital, Seirei Social Welfare Community, Hamamatsu, 4338558, Japan
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-0942, Japan
| | - Kosuke Matsubara
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawa, 920-0942, Japan
| | - Yuta Ujihara
- Department of Diagnostic Radiology, Seirei Mikatahara Hospital, Seirei Social Welfare Community, Hamamatsu, 4338558, Japan
| | - Kenta Isogai
- Department of Diagnostic Radiology, Seirei Mikatahara Hospital, Seirei Social Welfare Community, Hamamatsu, 4338558, Japan
| |
Collapse
|
3
|
Ding L, Chen M, Li X, Wu Y, Li J, Deng S, Xu Y, Chen Z, Yan C. Ultra-low dose dual-layer detector spectral CT for pulmonary nodule screening: image quality and diagnostic performance. Insights Imaging 2025; 16:11. [PMID: 39792229 PMCID: PMC11723867 DOI: 10.1186/s13244-024-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules. MATERIALS AND METHODS Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV. Quantitative and qualitative image analysis, nodule detectability, and Lung-RADS evaluation were compared using repeated one-way analysis of variance, Friedman test, and weighted kappa coefficient. RESULTS A total of 249 participants (mean age ± standard deviation, 50.0 years ± 12.9; 126 male) with 637 lung nodules were included. ULDCT resulted in a significantly lower mean radiation dose than RDCT (0.3 mSv ± 0.0 vs. 3.6 mSv ± 0.8; p < 0.001). Compared with RDCT, ULDCT EDM showed significantly higher signal-noise-ratio (44.0 ± 77.2 vs. 4.6 ± 6.6; p < 0.001) and contrast-noise-ratio (26.7 ± 17.7 vs. 5.0 ± 4.4; p < 0.001) with qualitative scores ranked higher or equal to the average. Using the regular-dose images as a reference, ULDCT EDM images had a satisfactory nodule detection rate (84.6%) and good inter-observer agreements compared with RDCT (κw > 0.60). CONCLUSION Ultra-low dose dual-layer detector CT with 91.2% radiation dose reduction achieves sufficient image quality and diagnostic performance of pulmonary nodules. CRITICAL RELEVANCE STATEMENT Dual-layer detector spectral CT enables substantial radiation dose reduction without impairing image quality for the follow-up of pulmonary nodules or lung cancer screening. KEY POINTS Radiation dose is a major concern for patients requiring pulmonary nodules CT screening. Ultra-low dose dual-layer detector spectral CT with 91.2% dose reduction demonstrated satisfactory performance. Dual-layer detector spectral CT has the potential for lung cancer screening and management.
Collapse
Affiliation(s)
- Li Ding
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingwang Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingxu Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuting Deng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Chang S, Marsh JF, Koons EK, Gong H, McCollough CH, Leng S. Improved noise reduction in photon-counting detector CT using prior knowledge-aware iterative denoising neural network. J Med Imaging (Bellingham) 2024; 11:S12804. [PMID: 38799270 PMCID: PMC11124219 DOI: 10.1117/1.jmi.11.s1.s12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose We aim to reduce image noise in high-resolution (HR) virtual monoenergetic images (VMIs) from photon-counting detector (PCD) CT scans by developing a prior knowledge-aware iterative denoising neural network (PKAID-Net) that efficiently exploits the unique noise characteristics of VMIs at different energy (keV) levels. Approach PKAID-Net offers two major features: first, it utilizes a lower-noise VMI (e.g., 70 keV) as a prior input; second, it iteratively constructs a refined training dataset to improve the neural network's denoising performance. In each iteration, the denoised image from the previous module serves as an updated target image, which is included in the dataset for the subsequent training iteration. Our study includes 10 patient coronary CT angiography exams acquired on a clinical dual-source PCD-CT (NAEOTOM Alpha, Siemens Healthineers). The HR VMIs were reconstructed at 50, 70, and 100 keV, using a sharp vascular kernel (Bv68) and thin (0.6 mm) slice thickness (0.3 mm increment). PKAID-Net's performance was evaluated in terms of image noise, spatial detail preservation, and quantitative accuracy. Results PKAID-Net achieved a noise reduction of 96% compared to filtered back projection and 65% relative to iterative reconstruction, all while preserving spatial and spectral fidelity and maintaining a natural noise texture. The iterative refinement of PCD-CT data during the training process substantially enhanced the robustness of deep learning-based denoising compared to the original method, which resulted in some spatial detail loss. Conclusions The PKAID-Net provides substantial noise reduction while maintaining spatial and spectral fidelity of the HR VMIs from PCD-CT.
Collapse
Affiliation(s)
- Shaojie Chang
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jeffrey F. Marsh
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Emily K. Koons
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Hao Gong
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Xu YK, Chai TT, Wang JW, Su GY, Si Y, Wu FY, Xu XQ. Optimal virtual monochromatic images for assessing metastatic lateral cervical lymph nodes in patients with papillary thyroid carcinoma using dual‑layer spectral detector computed tomography. Eur J Radiol 2024; 178:111623. [PMID: 39018649 DOI: 10.1016/j.ejrad.2024.111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To determine the optimal virtual monochromatic images (VMIs) from dual-layer spectral detector computed tomography for the visualization and diagnosis of metastatic lateral cervical lymph nodes (LNs) in patients with papillary thyroid carcinoma (PTC). METHODS Ninety-five lateral cervical LNs (49 metastatic and 46 non-metastatic) derived from 24 patients (16 females; mean age, 40.0 ± 13.4 years) were included. 40-100 kiloelectron voltage (keV) VMIs, 120 keV VMI and conventional 120 kV peak (kVp) polyenergetic image (PI) were reconstructed. Five-point scale of subjective image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of LNs were assessed and compared among each VMI and 120 kVp PI. Receiver operating characteristic (ROC) curves and Delong tests were used to assess and compare the diagnostic efficacy of arterial enhancement fraction (AEF) based on each VMI and 120 kVp PI. RESULTS 40 keV VMI showed significantly higher SNR and CNR in both arterial and venous phases, and better image quality in arterial phase than 70-100 keV VMIs, 120 keV VMI, and 120 kVp PI (all p < 0.05). In all sets of images, AEF values of metastatic LNs were significantly higher than those of non-metastatic LNs (all p < 0.05). When using AEF value of 40 keV VMI to diagnose metastatic lateral cervical LNs, an area under ROC curve (AUC) of 0.878, sensitivity of 87.8 % and specificity of 80.4 % could be obtained, while the AUC of AEF value of 120 kVp PI was 0.815 (p = 0.154). CONCLUSION 40 keV VMI might be optimal for displaying and diagnosing the metastatic lateral cervical LNs in patients with PTC.
Collapse
Affiliation(s)
- Yong-Kang Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting-Ting Chai
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Wei Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yi Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Si
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Fan N, Chen X, Li Y, Zhu Z, Chen X, Yang Z, Yang J. Dual-energy computed tomography with new virtual monoenergetic image reconstruction enhances prostate lesion image quality and improves the diagnostic efficacy for prostate cancer. BMC Med Imaging 2024; 24:212. [PMID: 39134937 PMCID: PMC11321013 DOI: 10.1186/s12880-024-01393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant tumors in middle-aged and elderly men and carries significant prognostic implications, and recent studies suggest that dual-energy computed tomography (DECT) utilizing new virtual monoenergetic images can enhance cancer detection rates. This study aimed to assess the impact of virtual monoenergetic images reconstructed from DECT arterial phase scans on the image quality of prostate lesions and their diagnostic performance for prostate cancer. METHODS We conducted a retrospective analysis of 83 patients with prostate cancer or prostatic hyperplasia who underwent DECT scans at Meizhou People's Hospital between July 2019 and December 2023. The variables analyzed included age, tumor diameter and serum prostate-specific antigen (PSA) levels, among others. We also compared CT values, signal-to-noise ratio (SNR), subjective image quality ratings, and contrast-to-noise ratio (CNR) between virtual monoenergetic images (40-100 keV) and conventional linear blending images. Receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic efficacy of virtual monoenergetic images (40 keV and 50 keV) compared to conventional images. RESULTS Virtual monoenergetic images at 40 keV showed significantly higher CT values (168.19 ± 57.14) compared to conventional linear blending images (66.66 ± 15.5) for prostate cancer (P < 0.001). The 50 keV images also demonstrated elevated CT values (121.73 ± 39.21) compared to conventional images (P < 0.001). CNR values for the 40 keV (3.81 ± 2.13) and 50 keV (2.95 ± 1.50) groups were significantly higher than the conventional blending group (P < 0.001). Subjective evaluations indicated markedly better image quality scores for 40 keV (median score of 5) and 50 keV (median score of 5) images compared to conventional images (P < 0.05). ROC curve analysis revealed superior diagnostic accuracy for 40 keV (AUC: 0.910) and 50 keV (AUC: 0.910) images based on CT values compared to conventional images (AUC: 0.849). CONCLUSIONS Virtual monoenergetic images reconstructed at 40 keV and 50 keV from DECT arterial phase scans substantially enhance the image quality of prostate lesions and improve diagnostic efficacy for prostate cancer.
Collapse
Affiliation(s)
- Nina Fan
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China
| | - Xiaofeng Chen
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China
| | - Yulin Li
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China
| | - Zhiqiang Zhu
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China
| | - Xiangguang Chen
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China
| | - Zhiqi Yang
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China.
| | - Jiada Yang
- Department of Radiology, Meizhou People's Hospital, Meizhou, 514000, Guangdong, China.
| |
Collapse
|
7
|
Li Q, Zhang P, Zhang R, Zhang J, Tian R, Gao T, Huang Y, Zhang P, Wei W, Hong R, Wang G, Zhao J. Virtual Monoenergetic Images Facilitate Better Identification of the Arc of Riolan During Splenic Flexure Takedown. J Comput Assist Tomogr 2024; 48:640-646. [PMID: 38346810 DOI: 10.1097/rct.0000000000001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
OBJECTIVE This study aimed to investigate whether virtual monoenergetic images (VMIs) can aid radiologists and surgeons in better identifying the arc of Riolan (AOR) and to determine the optimal kilo electron volt (keV) level. METHODS Thirty-three patients were included. Conventional images (CIs) and VMI (40-100 keV) were reconstructed using arterial phase spectral-based images. The computed tomography (CT) attenuation and noise of the AOR, the CT attenuation of the erector spinal muscle, and the background noise on VMI and CI were measured, respectively. The signal-to-noise ratio, contrast-to-noise ratio (CNR), and signal intensity ratio were calculated. The image quality of the AOR was evaluated according to a 4-point Likert grade. RESULTS The CT attenuation, noise, CNR, and signal intensity ratio of the AOR were significantly higher in VMI at 40 and 50 keV compared with CI ( P < 0.001); VMI at 40 keV was significantly higher than 50 keV ( P < 0.05). No significant difference in signal-to-noise ratio, background noise, and CT attenuation of the spinal erector muscle was observed between VMI and CI ( P > 0.05). virtual monoenergetic image at 40 keV produced the best subjective scores. CONCLUSIONS Virtual monoenergetic image at 40 keV makes it easier to observe the AOR with optimized subjective and objective image quality. This may prompt radiologists and surgeons to actively search for it and encourage surgeons to preserve it during splenic flexure takedown.
Collapse
Affiliation(s)
- Qian Li
- From the Departments of Radiology
| | - Pengfei Zhang
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | | | - Jianfeng Zhang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University
| | - Ruoxi Tian
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | - Tianyi Gao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University
| | - Yu Huang
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | | | - Wei Wei
- From the Departments of Radiology
| | - Rui Hong
- From the Departments of Radiology
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | |
Collapse
|
8
|
Chang S, Jung JI, Beck KS, Chang K, Kim Y, Han K. Diagnostic Efficacy and Safety of Low-Contrast-Dose Dual-Energy CT in Patients With Renal Impairment Undergoing Transcatheter Aortic Valve Replacement. Korean J Radiol 2024; 25:634-643. [PMID: 38942457 PMCID: PMC11214918 DOI: 10.3348/kjr.2023.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the diagnostic efficacy and safety of low-contrast-dose, dual-source dual-energy CT before transcatheter aortic valve replacement (TAVR) in patients with compromised renal function. MATERIALS AND METHODS A total of 54 consecutive patients (female:male, 26:38; 81.9 ± 7.3 years) with reduced renal function underwent pre-TAVR dual-energy CT with a 30-mL contrast agent between June 2022 and March 2023. Monochromatic (40- and 50-keV) and conventional (120-kVp) images were reconstructed and analyzed. The subjective quality score, vascular attenuation, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were compared among the imaging techniques using the Friedman test and post-hoc analysis. Interobserver reliability for aortic annular measurement was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. The procedural outcomes and incidence of post-contrast acute kidney injury (AKI) were assessed. RESULTS Monochromatic images achieved diagnostic quality in all patients. The 50-keV images achieved superior vascular attenuation and CNR (P < 0.001 in all) while maintaining a similar SNR compared to conventional CT. For aortic annular measurement, the 50-keV images showed higher interobserver reliability compared to conventional CT: ICC, 0.98 vs. 0.90 for area and 0.97 vs. 0.95 for perimeter; 95% limits of agreement width, 0.63 cm² vs. 0.92 cm² for area and 5.78 mm vs. 8.50 mm for perimeter. The size of the implanted device matched CT-measured values in all patients, achieving a procedural success rate of 92.6%. No patient experienced a serum creatinine increase of ≥ 1.5 times baseline in the 48-72 hours following CT. However, one patient had a procedural delay due to gradual renal function deterioration. CONCLUSION Low-contrast-dose imaging with 50-keV reconstruction enables precise pre-TAVR evaluation with improved image quality and minimal risk of post-contrast AKI. This approach may be an effective and safe option for pre-TAVR evaluation in patients with compromised renal function.
Collapse
Affiliation(s)
- Suyon Chang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Im Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kyongmin Sarah Beck
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Zhou X, Cui M, Liu Y, Wu Y, Hu D, Zhai D, Qin M, Shen J, Ju S, Fan G, Cai W. Low Dose Iodinated Contrast Material and Radiation for Virtual Monochromatic Imaging in Craniocervical Dual-Layer Spectral Detector Computed Tomography Angiography: A Prospective and Randomized Study. Acad Radiol 2024; 31:2501-2510. [PMID: 38135625 DOI: 10.1016/j.acra.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the feasibility of virtual monochromatic imaging (VMI) of dual-layer spectral detector computed tomography (SDCT) to reduce iodinated contrast material (CM) and radiation dose in craniocervical computed tomography angiography (CTA). MATERIALS AND METHODS A total of 280 consecutively selected patients performed craniocervical CTA with SDCT were prospectively selected and randomly divided into four groups (A, DoseRight index (DRI) 31, iopromide 370mgI/mL, volume 0.8 mL/kg; B, DRI 26, iopromide 370mgI/mL, volume 0.4 mL/kg; C, DRI 26, ioversol 320mgI/mL, volume 0.4 mL/kg; D, DRI 26, iohexol 300mgI/mL, volume 0.4 mL/kg). 50-70 kiloelectron volts (keV) VMIs in group B were reconstructed and compared to group A to select the optimal keV. Then, the optimal keV in groups B, C and D was reconstructed and compared. Objective image quality, including vascular attenuation, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), was evaluated. Subjective image quality was assessed using a 5-point Likert scale. In addition, the effective dose (ED), iodine load and iodine delivery rate (IDR) were compared between groups A and D. RESULTS 55 keV VMI was the optimal VMI in group B. The objective and subjective image quality of 55 keV VMI in group B were equal to or better than those of the CI in group A. The SNR, CNR and subjective image quality in group D were similar to those in group B (P > 0.05). The ED, iodine load and IDR of group D were reduced by 44%, 59% and 19%, respectively, when compared to those of group A. CONCLUSION Low dose iodinated CM and radiation for 55 keV VMI in craniocervical CTA using SDCT could still provide equivalent or better image quality than the conventional scanning protocol.
Collapse
Affiliation(s)
- Xiuzhi Zhou
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Manman Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yan Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yuanyuan Wu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Dongliang Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Duchang Zhai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Mingyu Qin
- Suzhou Medical College of Soochow University, Suzhou, 215026, Jiangsu, China (M.Q.)
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China (S.J.)
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.).
| |
Collapse
|
10
|
Kim S, Lee J, Kim J, Kim B, Choi CH, Jung S. Conversion of single-energy CT to parametric maps of dual-energy CT using convolutional neural network. Br J Radiol 2024; 97:1180-1190. [PMID: 38597871 PMCID: PMC11135792 DOI: 10.1093/bjr/tqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVES We propose a deep learning (DL) multitask learning framework using convolutional neural network for a direct conversion of single-energy CT (SECT) to 3 different parametric maps of dual-energy CT (DECT): virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED). METHODS We propose VMI-Net for conversion of SECT to 70, 120, and 200 keV VMIs. In addition, EAN-Net and RED-Net were also developed to convert SECT to EAN and RED. We trained and validated our model using 67 patients collected between 2019 and 2020. Single-layer CT images with 120 kVp acquired by the DECT (IQon spectral CT; Philips Healthcare, Amsterdam, Netherlands) were used as input, while the VMIs, EAN, and RED acquired by the same device were used as target. The performance of the DL framework was evaluated by absolute difference (AD) and relative difference (RD). RESULTS The VMI-Net converted 120 kVp SECT to the VMIs with AD of 9.02 Hounsfield Unit, and RD of 0.41% compared to the ground truth VMIs. The ADs of the converted EAN and RED were 0.29 and 0.96, respectively, while the RDs were 1.99% and 0.50% for the converted EAN and RED, respectively. CONCLUSIONS SECT images were directly converted to the 3 parametric maps of DECT (ie, VMIs, EAN, and RED). By using this model, one can generate the parametric information from SECT images without DECT device. Our model can help investigate the parametric information from SECT retrospectively. ADVANCES IN KNOWLEDGE DL framework enables converting SECT to various high-quality parametric maps of DECT.
Collapse
Affiliation(s)
- Sangwook Kim
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Jimin Lee
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jungye Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bitbyeol Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Seongmoon Jung
- Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Ionizing Radiation Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon 34114, Republic of Korea
| |
Collapse
|
11
|
Terzioglu F, Sidky EY, Phillips JP, Reiser IS, Bal G, Pan X. Optimizing dual-energy CT technique for iodine-based contrast-to-noise ratio, a theoretical study. Med Phys 2024; 51:2871-2881. [PMID: 38436473 PMCID: PMC12060785 DOI: 10.1002/mp.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Dual-energy CT (DECT) systems provide valuable material-specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast-to-noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x-ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality. PURPOSE The goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose. METHODS The noise propagation in the process of projection based material estimation from DECT measurements is analyzed. The main components of the study are the mean pixel variances for the sinogram and monochromatic image and the CNR, which were shown to depend on the Jacobian matrix of the sinograms-to-DECT measurements map. Analytic estimates for the mean sinogram and monochromatic image pixel variances and the CNR as functions of tube potentials, fluence, and VMI energy are derived, and then used in a virtual phantom experiment as an objective function for optimizing the tube settings and VMI energy to minimize the image noise and maximize the CNR. RESULTS It was shown that DECT measurements corresponding to kV settings that maximize the square of Jacobian determinant values over a domain of interest lead to improved stability of basis material reconstructions. Instances of non-uniqueness in DECT were addressed, focusing on scenarios where the Jacobian determinant becomes zero within the domain of interest despite significant spectral separation. The presence of non-uniqueness can lead to singular solutions during the inversion of sinograms-to-DECT measurements, underscoring the importance of considering uniqueness properties in parameter selection. Additionally, the optimal VMI energy and tube potentials for maximal CNR was determined. When the x-ray beam filter material was fixed at 2 mm of aluminum and the photon fluence for low and high kV scans were considered equal, the tube potential pair of 60/120 kV led to the maximal iodine CNR in the VMI at 53 keV. CONCLUSIONS Optimizing DECT scan parameters to maximize the CNR can be done in a systematic way. Also, choosing the parameters that maximize the Jacobian determinant over the set of expected line integrals leads to more stable reconstructions due to the reduced amplification of the measurement noise. Since the values of the Jacobian determinant depend strongly on the imaging task, careful consideration of all of the relevant factors is needed when implementing the proposed framework.
Collapse
Affiliation(s)
- Fatma Terzioglu
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Emil Y. Sidky
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - John Paul Phillips
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Ingrid S. Reiser
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Guillaume Bal
- Departments of Statistics and Mathematics, The University of Chicago, Chicago, Illinois, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Zheng T, Xiao Y, Yang F, Dai G, Wang F, Chen G. The value of dual-layer spectral detector CT in preoperative T staging of laryngeal and hypopharyngeal squamous cell carcinoma. Eur J Radiol 2024; 171:111287. [PMID: 38176085 DOI: 10.1016/j.ejrad.2024.111287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
PURPOSE To explore the optimal kiloelectron voltage (keV) of virtual monochromatic images (VMIs) of dual-layer spectral detector computed tomography (DLSCT) to display laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) and its diagnostic performance for preoperative T staging of LHSCC. METHODS A total of 67 LHSCC patients were included, and the contrast between the tumor and sternocleidomastoid muscle (SM), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image noise of 40-100 keV VMIs and conventional polyenergetic images (CIs) were evaluated. The image quality of the CI and 40-100 keV VMI was evaluated by a five-point method. The VMI with the best image quality was screened out, and the accuracy of the optimal keV VMI and CI for T staging was assessed using clinical T staging as the reference standard. RESULTS The contrast between the tumor and SM, SNR, CNR and subjective image quality scores of LHSCC on 40-50 keV VMIs were higher than those on CIs (P < 0.05); the image noises of 40-100 keV VMIs were lower than those of CIs (P < 0.05). The 40 keV VMI had the highest SNR, CNR and subjective score of image quality. The accuracy rates of the 40 keV VMI and CI for T staging of LHSCC were 0.86 and 0.63 (P < 0.001), respectively. CONCLUSION The image quality of 40-50 keV VMI is higher than that of CI, and the diagnostic accuracy of 40 keV VMI is better than that of CI, which is most suitable for preoperative T staging of LHSCC.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yan Xiao
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Department of Radiology, Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan, China
| | - Fan Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fang Wang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
13
|
Jia Z, Guo L, Yuan W, Dai J, Lu J, Li Z, Du X, Chen W, Liu X. Performance of dual-layer spectrum CT virtual monoenergetic images to assess early rectal adenocarcinoma T-stage: comparison with MR. Insights Imaging 2024; 15:11. [PMID: 38228903 PMCID: PMC10792143 DOI: 10.1186/s13244-023-01593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES To evaluate the image quality and utility of virtual monoenergetic images (VMI) of dual-layer spectrum computed tomography (DLSCT) in assessing preoperative T-stage for early rectal adenocarcinoma (ERA). METHODS This retrospective study included 67 ERA patients (mean age 62 ± 11.1 years) who underwent DLSCT and MR examination. VMI 40-200 keV and poly energetic image (PEI) were reconstructed. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and tumor contrast of different energy levels were calculated and compared, respectively. Two radiologists independently assess the image quality of the VMIs and PEI using 5-point scales. The diagnostic accuracies of DLSCT and HR-MRI for ERA T-staging were evaluated and compared. RESULTS The maximum noise was observed at VMI 40 keV, and noise at VMI 40-200 keV in the arterial and venous phases showed no significant difference (all p > 0.05). The highest SNR and CNR were obtained at VMI 40 keV, significantly greater than other energy levels and PEI (all p < 0.05). Tumor contrast was more evident than PEI at 40-100 keV in the arterial phase and at 40 keV in the venous phase (all p < 0.05). When compared with PEI, VMI 40 keV yielded the highest scores for overall image quality, tumor visibility, and tumor margin delineation, especially in the venous phase (p < 0.05). The overall diagnostic accuracy of DLSCT and HR-MRI for T-stage was 65.67 and 71.64% and showed no significant difference (p > 0.05). CONCLUSIONS VMI 40 keV improves image quality and accuracy in identifying lesions, providing better diagnostic information for ERA staging. CRITICAL RELEVANCE STATEMENT Low-keV VMI from DLSCT can improve tumor staging accuracy for early rectal carcinoma, helping guide surgical intervention decisions, and has shed new light on the potential breakthroughs of assessing preoperative T-stage in RC. KEYPOINTS • Compared with PEI, low-keV VIM derived from DLSCT, particularly at the 40 keV, significantly enhanced the objective and subjective image quality of ERA. • Using VMI 40 keV helped increase lesion detectability, leading to improved diagnostic accuracy for ERA. • Low-keV VMI from DLSCT has shed new light on the potential breakthroughs of assessing preoperative T-stage in RC.
Collapse
Affiliation(s)
- Ziqi Jia
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Guo
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - WenJing Yuan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JianHao Dai
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JianYe Lu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ZhiQiang Li
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohua Du
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Yoon JH, Park JY, Lee SM, Lee ES, Kim JH, Lee JM. Renal protection CT protocol using low-dose and low-concentration iodine contrast medium in at-risk patients of HCC and with chronic kidney disease: a randomized controlled non-inferiority trial. Cancer Imaging 2023; 23:100. [PMID: 37858212 PMCID: PMC10588122 DOI: 10.1186/s40644-023-00616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Although efforts have been made to reduce the dose of Contrast Medium (CM) to improve patient safety, there are ongoing concerns regarding its potential effects on image quality and diagnostic performance. Moreover, research is lacking to establish a lower limit for safe and effective CM dose reduction. To determine whether the image quality of contrast-enhanced liver computed tomography (CT) using a reduced amount of iodinated CM was similar to that of standard liver CT. METHODS We enrolled participants at risk for hepatocellular carcinoma with decreased estimated glomerular filtration rates (< 60 mL/min/1.73m2). Participants were randomly assigned to the standard group or the renal protection protocol (RPP) group. In the standard group, images were reconstructed using hybrid iterative reconstruction (iDose), while in the RPP group, low monoenergetic (50-keV) images and deep learning (DL)-based iodine-boosting reconstruction were used. Four radiologists independently assessed image quality and lesion conspicuity. RESULTS Fifty-two participants were assigned to the standard (n = 25) or RPP (n = 27) groups. The iodine load was significantly lower in the RPP group than in the standard group (301.5 ± 1.71 vs. 524 ± 7.37 mgI/kg, P < 0.001). The 50-keV and DL-based iodine-boosting images from the RPP group exhibited higher image contrast than those from the standard group during arterial (3.60 ± 0.65, 3.75 ± 0.60, and 3.09 ± 0.43, respectively) and portal venous phases (4.01 ± 0.49, 3.86 ± 0.42, and 3.21 ± 0.31, respectively) (P < 0.05 for all). Overall image quality was superior in the RPP group (P < 0.05 for all). No significant difference in lesion conspicuity was observed (P > 0.017). CONCLUSIONS The reduction in image contrast and overall image quality caused by decreased CM can be restored using either low monoenergetic imaging or DL-based iodine-boosting reconstruction. TRIAL REGISTRATION clinicaltrials.gov, NCT04024514, Registered July 18, 2019, prospectively registered, https://classic. CLINICALTRIALS gov/ct2/show/NCT04024514 .
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Jin Young Park
- Department of Radiology, Inje University Busan Paik Hospital, Bokji-ro 75, Busangjin-gu, Busan, 47392, Republic of Korea
| | - Sang Min Lee
- Department of Radiology, CHA Gangnam Medical Center, CHA University, 566 Nonhyun-ro, Gangnam-gu, Seoul, 06135, Republic of Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, 06973, Republic of Korea
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
15
|
Wu D, Yin L, Zhang Y, Lin Y, Deng W, Zheng C, Liu H, Jiang F, Lan S, Wu Q, Li H, Tang J. Evaluation of microcirculation in asymptomatic cerebral infarction with multi-parameter imaging of spectral CT. Brain Res Bull 2023; 203:110775. [PMID: 37797749 DOI: 10.1016/j.brainresbull.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To investigate the role of spectral CT multiparametric imaging in the evaluation of cerebral microcirculatory perfusion. METHODS The imaging data of 145 patients with asymptomatic cerebral infarction confirmed by MR were retrospectively analyzed, and all cases underwent head CTA and cranial CT perfusion imaging (CTP) on double-layer detector spectral CT. Single energy level images (MonoE45 keV), iodine density maps, and effective atomic number maps were reconstructed based on spectral CTA data, and CT values, iodine density values, and effective atomic number values were measured in the infarcted area, healthy control area, centrum semiovale and posterior limb of the internal capsule, respectively; perfusion values, such as cerebral blood volume (CBV) values, cerebral blood flow (CBF) values, time to peak (TTP) values, and mean passage time, were measured in the above-mentioned areas on CTP images. (TTP) values, and mean time to passage (MTT) values. CT values, iodine density values, effective atomic number values, and perfused CBV, CBF, TTP, and MTT values were compared between the infarcted area and the healthy side, the center of the hemianopia, and the posterior limb of the internal capsule. The role of spectral CT parameters and perfusion parameters in the evaluation of asymptomatic cerebral infarction was analyzed. RESULTS CT values, iodine density values, and effective atomic number values were statistically different between the infarcted area and the healthy side; CT values, iodine density values, and effective atomic number values were not statistically different between the infarcted side and the healthy side of the hemispheric centrum and the posterior limb of the internal capsule; CBV and CBF were statistically different between the infarcted side and the healthy side, and MTT and TTP were not statistically different. There were statistically significant differences in TTP between the infarcted area and the healthy side of the hemiaxial center, and no statistically significant differences in CBV, CBF, and MTT. There were no statistical differences in CBV, CBF, TTP, and MTT in the inner capsule area. ROC curve analysis of spectral CT-related parameters and CT perfusion parameters for the diagnosis of asymptomatic cerebral infarction: area under the curve of MonoE 45Kv 0.71, area under the curve of iodine density values 0.76, area under the curve of effective atomic number values 0.74; area under the curve of CBV value 0.64, area under the curve of CBF value 0.61, area under the curve of MTT value 0.50, The area under the TTP curve was 0.52. The area under the ROC curve of the multivariate logistic regression model based on spectral parameters is 0.76, which is higher than that of the logistic regression model with perfusion parameters (P < 0.05). CONCLUSION Spectral CT can better demonstrate small intracranial ischemic lesions, and iodine density values have a better evaluation of microcirculation in asymptomatic cerebral infarcts.
Collapse
Affiliation(s)
- Daoqing Wu
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Lianhua Yin
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - You Zhang
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yuning Lin
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiwei Deng
- Clinical and Technical Support, Philips Healthcare
| | - Chunhong Zheng
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huibin Liu
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Feng Jiang
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Suting Lan
- Medical Examination Center, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiuhua Wu
- Global Health, Johns Hopkins Bloomberg School of Public Health, United States
| | - Huacan Li
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Jinsong Tang
- Department of Imaging, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
16
|
Chang S, Huber NR, Marsh JF, Koons EK, Gong H, Yu L, McCollough CH, Leng S. Pie-Net: Prior-information-enabled deep learning noise reduction for coronary CT angiography acquired with a photon counting detector CT. Med Phys 2023; 50:6283-6295. [PMID: 37042049 PMCID: PMC10564970 DOI: 10.1002/mp.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Photon-counting-detector CT (PCD-CT) enables the production of virtual monoenergetic images (VMIs) at a high spatial resolution (HR) via simultaneous acquisition of multi-energy data. However, noise levels in these HR VMIs are markedly increased. PURPOSE To develop a deep learning technique that utilizes a lower noise VMI as prior information to reduce image noise in HR, PCD-CT coronary CT angiography (CTA). METHODS Coronary CTA exams of 10 patients were acquired using PCD-CT (NAEOTOM Alpha, Siemens Healthineers). A prior-information-enabled neural network (Pie-Net) was developed, treating one lower-noise VMI (e.g., 70 keV) as a prior input and one noisy VMI (e.g., 50 keV or 100 keV) as another. For data preprocessing, noisy VMIs were reconstructed by filtered back-projection (FBP) and iterative reconstruction (IR), which were then subtracted to generate "noise-only" images. Spatial decoupling was applied to the noise-only images to mitigate overfitting and improve randomization. Thicker slice averaging was used for the IR and prior images. The final training inputs for the convolutional neural network (CNN) inside the Pie-Net consisted of thicker-slice signal images with the reinsertion of spatially decoupled noise-only images and the thicker-slice prior images. The CNN training labels consisted of the corresponding thicker-slice label images without noise insertion. Pie-Net's performance was evaluated in terms of image noise, spatial detail preservation, and quantitative accuracy, and compared to a U-net-based method that did not include prior information. RESULTS Pie-Net provided strong noise reduction, by 95 ± 1% relative to FBP and by 60 ± 8% relative to IR. For HR VMIs at different keV (e.g., 50 keV or 100 keV), Pie-Net maintained spatial and spectral fidelity. The inclusion of prior information from the PCD-CT data in the spectral domain was able to improve a robust deep learning-based denoising performance compared to the U-net-based method, which caused some loss of spatial detail and introduced some artifacts. CONCLUSION The proposed Pie-Net achieved substantial noise reduction while preserving HR VMI's spatial and spectral properties.
Collapse
Affiliation(s)
- Shaojie Chang
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | | | | | - Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
17
|
Ben Gharsallah M, Seddik H. Phase congruency-based filtering approach combined with a convolutional network for lung CT image analysis. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2159291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mohamed Ben Gharsallah
- Research Laboratory in Intelligent Robotics, Reliability, Image and Signal Processing, National Higher School of Engineering (ENSIT), Tunis, Tunisia
| | - Hassene Seddik
- Research Laboratory in Intelligent Robotics, Reliability, Image and Signal Processing, National Higher School of Engineering (ENSIT), Tunis, Tunisia
| |
Collapse
|
18
|
Fujisaki Y, Fukukura Y, Kumagae Y, Ejima F, Yamagishi R, Nakamura S, Kamizono J, Kurahara H, Hashimoto S, Yoshiura T. Value of Dual-Energy Computed Tomography for Detecting Small Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:1352-1358. [PMID: 37099778 DOI: 10.1097/mpa.0000000000002207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVE The aim of the study is to evaluate the usefulness of virtual monoenergetic imaging (VMI) generated from dual-energy computed tomography (DECT) in detecting small pancreatic ductal adenocarcinomas (PDACs). METHODS This study included 82 patients pathologically diagnosed with small PDAC (≤30 mm) and 20 without pancreatic tumors who underwent triple-phase contrast-enhanced DECT. To assess diagnostic performance for small PDAC detection via a receiver operating characteristic analysis, 3 observers reviewed 2 image sets (conventional computed tomography [CT] set and combined image set [conventional CT + 40-keV VMI from DECT]). The tumor-to-pancreas contrast-to-noise ratio was compared between conventional CT and 40-keV VMI from DECT. RESULTS The area under the receiver operating characteristic curve of the 3 observers were 0.97, 0.96, and 0.97 in conventional CT set and 0.99, 0.99, and 0.99 in combined image set (P = 0.017-0.028), respectively. The combined image set yielded a better sensitivity than the conventional CT set (P = 0.001-0.023), without a loss of specificity (all P > 0.999). The tumor-to-pancreas contrast-to-noise ratios of 40-keV VMI from DECT were approximately threefold higher than those of conventional CT at all phases. CONCLUSIONS The addition of 40-keV VMI from DECT to conventional CT had better sensitivity for detecting small PDACs without compromising specificity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | |
Collapse
|
19
|
Dual-Layer Spectral CT of Pancreas Ductal Adenocarcinoma: Can Virtual Monoenergetic Images of the Portal Venous Phase Be an Alternative to the Pancreatic-Phase Scan? J Belg Soc Radiol 2022; 106:83. [PMID: 36213373 PMCID: PMC9504095 DOI: 10.5334/jbsr.2798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives: To determine the performance of virtual monoenergetic images (VMIs) of the portal venous phase (PVP) compared with the pancreatic-phase image for pancreatic ductal adenocarcinoma (PDAC) evaluation. Materials and methods: This retrospective study enrolled 64 patients with PDAC who underwent pancreatic CT with dual-layer spectral CT between February 2018 and January 2020. A polychromatic pancreatic-phase image and VMIs at 40 (VMI40), 55 (VMI55), and 70 keV (VMI70) of the PVP were generated. The tumor-to-pancreas contrast-to-noise ratio (CNR), attenuation difference, peripancreatic vascular signal-to-noise ratio (SNR), and CNR were compared among the four images. Subjective image analysis was performed for tumor conspicuity, heterogeneity, size, and arterial invasion. Results: VMI40 and VMI55 demonstrated higher tumor-to-pancreas CNR, attenuation difference, and higher peripancreatic vascular CNR and SNR than the pancreatic-phase image and VMI70 (p < .001). On subjective analysis, VMI55 showed the best tumor conspicuity. Moreover, the inter-reader agreement for arterial invasion in VMIs from the PVP was not inferior to that in the pancreatic-phase image. Conclusion: For evaluating PDAC, the VMI55 of the PVP was superior to the pancreatic-phase image in terms of tumor conspicuity and peripancreatic vascular enhancement. Therefore, the VMI55 of the PVP could be an alternative to the pancreatic-phase scan in patients suspicious of PDAC.
Collapse
|
20
|
Dual-energy CT of acute bowel ischemia. Abdom Radiol (NY) 2022; 47:1660-1683. [PMID: 34191075 DOI: 10.1007/s00261-021-03188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Acute bowel ischemia is a condition with high mortality and requires rapid intervention to avoid catastrophic outcomes. Swift and accurate imaging diagnosis is essential because clinical findings are commonly nonspecific. Conventional contrast enhanced CT of the abdomen has been the imaging modality of choice to evaluate suspected acute bowel ischemia. However, subtlety of image findings and lack of non-contrast or arterial phase images can make correct diagnosis challenging. Dual-energy CT provides valuable information toward assessing bowel ischemia. Dual-energy CT exploits the differential X-ray attenuation at two different photon energy levels to characterize the composition of tissues and reveal the presence or absence of faint intravenous iodinated contrast to improve reader confidence in detecting subtle bowel wall enhancement. With the same underlying technique, virtual non-contrast images can help to show non-enhancing hyperdense hemorrhage of the bowel wall in intravenous contrast-enhanced scans without the need to acquire actual non-contrast scans. Dual-energy CT derived low photon energy (keV) virtual monoenergetic images emphasize iodine contrast and provide CT angiography-like images from portal venous phase scans to better evaluate abdominal arterial patency. In Summary, dual-energy CT aids diagnosing acute bowel ischemia in multiple ways, including improving visualization of the bowel wall and mesenteric vasculature, revealing intramural hemorrhage in contrast enhanced scans, or possibly reducing intravenous contrast dose.
Collapse
|
21
|
Lee T, Lee JM, Yoon JH, Joo I, Bae JS, Yoo J, Kim JH, Ahn C, Kim JH. Deep learning-based image reconstruction of 40-keV virtual monoenergetic images of dual-energy CT for the assessment of hypoenhancing hepatic metastasis. Eur Radiol 2022; 32:6407-6417. [PMID: 35380228 DOI: 10.1007/s00330-022-08728-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the diagnostic value of deep learning model (DLM) reconstructed dual-energy CT (DECT) low-keV virtual monoenergetic imaging (VMI) for assessing hypoenhancing hepatic metastases. METHODS This retrospective study included 131 patients who underwent contrast-enhanced DECT (80-kVp and 150-kVp with a tin filter) in the portal venous phase for hepatic metastasis surveillance. Linearly blended images simulating 100-kVp images (100-kVp), standard 40-keV VMI images (40-keV VMI), and post-processed 40-keV VMI using a vendor-agnostic DLM (i.e., DLM 40-keV VMI) were reconstructed. Lesion conspicuity and diagnostic acceptability were assessed by three independent reviewers and compared using the Wilcoxon signed-rank test. The contrast-to-noise ratios (CNRs) were also measured placing ROIs in metastatic lesions and liver parenchyma. The detection performance of hepatic metastases was assessed by using a jackknife alternative free-response ROC method. The consensus by two independent radiologists was used as the reference standard. RESULTS DLM 40-keV VMI, compared to 40-keV VMI and 100-kVp, showed a higher lesion-to-liver CNR (8.25 ± 3.23 vs. 6.05 ± 2.38 vs. 5.99 ± 2.00), better lesion conspicuity (4.3 (4.0-4.7) vs. 3.7 (3.7-4.0) vs. 3.7 (3.3-4.0)), and better diagnostic acceptability (4.3 (4.0-4.3) vs. 3.0 (2.7-3.3) vs. 4.0 (4.0-4.3)) (p < 0.001 for all). For lesion detection (246 hepatic metastases in 68 patients), the figure of merit was significantly higher with DLM 40-keV VMI than with 40-keV VMI (0.852 vs. 0.822, p = 0.012), whereas no significant difference existed between DLM 40-keV VMI and 100-kVp (0.852 vs. 0.842, p = 0.31). CONCLUSIONS DLM 40-keV VMI provided better image quality and comparable diagnostic performance for detecting hypoenhancing hepatic metastases compared to linearly blended images. KEY POINTS • DLM 40-keV VMI provides a superior image quality compared with 40-keV or 100-kVp for assessing hypoenhancing hepatic metastasis. • DLM 40-keV VMI has the highest CNR and lesion conspicuity score for hypoenhancing hepatic metastasis due to noise reduction and structural preservation. • DLM 40-keV VMI provides higher lesion detectability than standard 40-keV VMI (p = 0.012).
Collapse
Affiliation(s)
- Taehee Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chulkyun Ahn
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea.,Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, 16229, Korea
| |
Collapse
|
22
|
Head and neck squamous cell carcinoma: evaluation of iodine overlay maps and low-energy virtual mono-energetic images acquired with spectral detector CT. Clin Radiol 2022; 77:e425-e433. [DOI: 10.1016/j.crad.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
|
23
|
Narappulan N, Arunachalam VK, Alavandar E, Selvaraja S, Renganathan R, Cherian M. Evaluation of Hypervascular Focal Liver Lesions Utilizing Virtual Monoenergetic Images from Third-Generation Dual-Source Dual-Energy Computed Tomography. JOURNAL OF GASTROINTESTINAL AND ABDOMINAL RADIOLOGY 2022. [DOI: 10.1055/s-0042-1742677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Objectives The purpose of our study was to evaluate the virtual monochromatic imaging in detecting hypervascular focal liver lesions in the late arterial phase with third-generation dual-source dual-energy computed tomography and to assess its image quality.
Materials and Methods In our study, 80 patients were included. Contrast-enhanced images in the late arterial phase (in the dual-energy mode) were acquired and were post-processed in Syngo, via workstation, using Monoenergetic + software. Five sets of images, one polychromatic energy image (corresponding to 120 kVp single-energy image) and four virtual monoenergetic image (VMI) sets at 40, 50, 60, and 70 keV levels, were generated. All these images were analyzed both objectively and subjectively. The attenuation values were measured, and the contrast-to-noise ratio (CNR) of liver and tumor were measured and compared objectively in each dataset. Image noise, image contrast, and diagnostic confidence for liver lesion detection were analyzed subjectively using a five-point scale system. Statistical analysis was performed using Kolmogorov–Smirnov, analysis of variance, and Kruskal–Wallis tests.
Results Among the VMI, maximum image noise was observed in the 40 keV image, with a gradual reduction in the image noise being noted with an increase in the VMI energy. The CNR of the hepatic parenchyma and the tumor gradually increased with a reduction in VMI energy from 70 to 40 keV. On subjective analysis, image contrast and image noise were observed to be more in low VMI datasets. In lesion detection, diagnostic confidence with an excellent confidence level was observed with a decrease in VMI energy.
Conclusion VMI datasets of 40 to 70 keV from third-generation dual-source DECT provide superior diagnostic accuracy for detecting hypervascular liver lesions. Considering the image noise and lesion detection rate among the VMI datasets, 60 keV VMI is the most helpful dataset for increased liver lesion detection with good image quality.
Collapse
Affiliation(s)
- Niyas Narappulan
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | | | | | - Swathigha Selvaraja
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | - Rupa Renganathan
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | - Mathew Cherian
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| |
Collapse
|
24
|
Kruis MF. Improving radiation physics, tumor visualisation, and treatment quantification in radiotherapy with spectral or dual-energy CT. J Appl Clin Med Phys 2021; 23:e13468. [PMID: 34743405 PMCID: PMC8803285 DOI: 10.1002/acm2.13468] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, spectral or dual‐energy CT has gained relevancy, especially in oncological radiology. Nonetheless, its use in the radiotherapy (RT) clinic remains limited. This review article aims to give an overview of the current state of spectral CT and to explore opportunities for applications in RT. In this article, three groups of benefits of spectral CT over conventional CT in RT are recognized. Firstly, spectral CT provides more information of physical properties of the body, which can improve dose calculation. Furthermore, it improves the visibility of tumors, for a wide variety of malignancies as well as organs‐at‐risk OARs, which could reduce treatment uncertainty. And finally, spectral CT provides quantitative physiological information, which can be used to personalize and quantify treatment.
Collapse
|
25
|
Majeed NF, Ali SM, Therrien J, Wald C, Wortman JR. Virtual Monoenergetic Spectral Detector CT for Preoperative CT Angiography in Liver Donors. Curr Probl Diagn Radiol 2021; 51:517-523. [PMID: 34839975 DOI: 10.1067/j.cpradiol.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the use of virtual monoenergetic images (VMI) in pre-operative CT angiography of potential donors for living donor adult liver transplantation (LDALT), and to determine the optimal energy level to maximize vascular signal-to-noise and contrast-to-noise ratios (SNR and CNR, respectively). MATERIALS AND METHODS We retrospectively evaluated 29 CT angiography studies performed preoperatively in potential liver donors on a spectral detector CT scanner. All studies included arterial, early venous, and delayed venous phase imaging. Conventional polyenergetic images were generated for each patient, as well as virtual monoenergetic images in 10 keV increments from 40 -100 keV. Arteries (aorta and celiac, superior mesenteric, common hepatic, right and left hepatic arteries) were assessed on arterial phase images; portal venous system branches (splenic, superior mesenteric, main, right, and left portal veins) on early venous phase images; and hepatic veins on late venous phase images. Vascular attenuation, background parenchymal attenuation, and noise were measured on each set of virtual monoenergetic and conventional images. RESULTS Background hepatic and vascular noise decreased with increasing keV, with the lowest noise at 100 keV. Vascular SNR and CNR increased with decreasing keV and were highest at 40 keV, with statistical significance compared with conventional ( P < 0.05). CONCLUSIONS In preoperative CT angiography for potential liver donors, the optimal keV for assessing the vasculature to improve SNR and CNR is 40 keV. Use of low keV VMI in LDALT CT protocols may facilitate detection of vascular anatomical variants that can impact surgical planning.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA.
| | - Sarah Maria Ali
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Jaclyn Therrien
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA
| |
Collapse
|
26
|
Effect of energy level on the spatial resolution and noise frequency characteristics of virtual monochromatic images: a phantom experiment using four types of CT scanners. Jpn J Radiol 2021; 40:94-102. [PMID: 34304382 DOI: 10.1007/s11604-021-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of the study is to evaluate the effect of energy level on the modulation transfer functions (MTF) and noise power spectra (NPS) of virtual monochromatic images (VMIs) obtained using four types of computed-tomographic (CT) scanners: Revolution, SOMATOM, IQon, and Aquilion. MATERIALS AND METHODS VMIs were obtained at 70, 60, and 50 kiloelectron volts (keV), and also at the lowest keV available in each scanner. We evaluated the MTF and NPS in the VMIs obtained at each keV. RESULTS No significant effect of the energy level on the MTF was observed in IQon, whereas the spatial resolution decreased as the energy level decreased in the other types of scanners. The NPS curves tended to increase as the energy levels decreased with three types of scanners other than Aquilion. CONCLUSION The spatial resolution and noise frequency characteristics of VMIs may be affected by the energy level, and the effects of energy level on these characteristics differ depending on the type of CT scanners.
Collapse
|
27
|
Majeed NF, Braschi Amirfarzan M, Wald C, Wortman JR. Spectral detector CT applications in advanced liver imaging. Br J Radiol 2021; 94:20201290. [PMID: 34048285 PMCID: PMC8248211 DOI: 10.1259/bjr.20201290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spectral detector CT (SDCT) has many applications in advanced liver imaging. If appropriately utilized, this technology has the potential to improve image quality, provide new diagnostic information, and allow for decreased radiation dose. The purpose of this review is to familiarize radiologists with the uses of SDCT in liver imaging. CONCLUSION SDCT has a variety of post-processing techniques, which can be used in advanced liver imaging and can significantly add value in clinical practice.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Marta Braschi Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| |
Collapse
|
28
|
Ren H, Zhen Y, Gong Z, Wang C, Chang Z, Zheng J. Feasibility of low-dose contrast media in run-off CT angiography on dual-layer spectral detector CT. Quant Imaging Med Surg 2021; 11:1796-1804. [PMID: 33936965 DOI: 10.21037/qims-20-925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The aim of the present study was to assess the feasibility of applying low-dose contrast media (CM), and to explore the optimal virtual monoenergetic images (VMIs) in run-off computed tomography (CT) angiography (CTA) on dual-layer spectral detector CT (SDCT). Methods Forty patients were randomly assigned into a control group using routine volume CM (group A) and an experimental group using half-volume CM (group B). In groups A and B, 120 kVp polychromatic conventional images were generated via hybrid iterative reconstruction algorithm defined as A1 and B1, respectively. Additionally, in group B, VMIs (range, 40-120 keV) were reconstructed via a spectral reconstruction algorithm defined as B2-B10. Vascular attenuation, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and radiation dose were evaluated. Subjective evaluation was performed using a 5-point scale. Results The patient demographics and radiation dose demonstrated no significant difference between groups A and B [dose length product (DLP): 1,823.45±512.68 vs. 2,014.40±453.25 mGy·cm, P=0.229; volume CT dose index: 14.92±3.40 vs. 16.26±2.85 mGy, P=0.208; the effective dose (ED): 10.82±3.02 vs. 11.88±2.67 mSv, P=0.229]. The mean vascular attenuation was higher in group B2 (40 keV) and was lower in group B3 (50 keV) in comparison with that in group A1 (487.07±154.21 vs. 414.35±71.66 HU, 329.90±100.25 vs. 414.35±71.66 HU, P>0.05). Compared with group A1, the mean noise was similar in group B2 (40 keV) and was lower in group B1 and groups B3-B10 (50-120 keV) (14.81±5.67 vs. 17.29±4.70 HU, P>0.05; 6.75±1.23-11.26±3.24 vs. 17.29±4.70 HU, P<0.05). The mean SNR and CNR in group B2 (40 keV), as well as the mean SNR in group B3 (50 keV), were significantly higher than those of group A1 (38.21±7.52 vs. 28.25±7.20, 32.70±7.79 vs. 24.54±6.60, 32.85±7.10 vs. 28.25±7.20, P<0.05), and the mean CNR in group B3 (50 keV) was similar to that in group A1 (26.66±7.32 vs. 24.54±6.60, P>0.05). Scores of subjective image quality (IQ) in group B2 (40 keV) and B3 (50 keV) were similar to those in group A1 {5 [4.25, 5] vs. 5 [4, 5], 5 [5, 5] vs. 5 [4, 5], P>0.05}, and showed a declining trend in group B4 (60 keV) {4 [4, 5] vs. 5 [4, 5], P>0.05}. Conclusions It is feasible to perform run-off CTA using low-dose CM with VMI on SDCT. The VMIs at 40-50 keV were the optimal choice and did not compromise IQ.
Collapse
Affiliation(s)
- Haiyan Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zheng Gong
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Gong H, Marsh JF, D'Souza KN, Huber NR, Rajendran K, Fletcher JG, McCollough CH, Leng S. Deep-learning-based direct synthesis of low-energy virtual monoenergetic images with multi-energy CT. J Med Imaging (Bellingham) 2021; 8:052104. [PMID: 33889658 DOI: 10.1117/1.jmi.8.5.052104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: We developed a deep learning method to reduce noise and beam-hardening artifact in virtual monoenergetic image (VMI) at low x-ray energy levels. Approach: An encoder-decoder type convolutional neural network was implemented with customized inception modules and in-house-designed training loss (denoted as Incept-net), to directly estimate VMI from multi-energy CT images. Images of an abdomen-sized water phantom with varying insert materials were acquired from a research photon-counting-detector CT. The Incept-net was trained with image patches ( 64 × 64 pixels ) extracted from the phantom data, as well as synthesized, random-shaped numerical insert materials. The whole CT images ( 512 × 512 pixels ) with the remaining real insert materials that were unseen in network training were used for testing. Seven contrast-enhanced abdominal CT exams were used for preliminary evaluation of Incept-net generalizability over anatomical background. Mean absolute percentage error (MAPE) was used to evaluate CT number accuracy. Results: Compared to commercial VMI software, Incept-net largely suppressed beam-hardening artifact and reduced noise (53%) in phantom study. Incept-net presented comparable CT number accuracy at higher-density ( P -value [0.0625, 0.999]) and improved it at lower-density inserts ( P - value = 0.0313 ) with overall MAPE: Incept-net [2.9%, 4.6%]; commercial-VMI [6.7%, 10.9%]. In patient images, Incept-net suppressed beam-hardening artifact and reduced noise (up to 50%, P - value = 0.0156 ). Conclusion: In this preliminary study, Incept-net presented the potential to improve low-energy VMI quality.
Collapse
Affiliation(s)
- Hao Gong
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jeffrey F Marsh
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Karen N D'Souza
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Nathan R Huber
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Kishore Rajendran
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Joel G Fletcher
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
30
|
Assessment of Virtual Monoenergetic Images in Run-off Computed Tomography Angiography: A Comparison Study to Conventional Images From Spectral Detector Computed Tomography. J Comput Assist Tomogr 2021; 45:232-237. [PMID: 33369991 PMCID: PMC7972299 DOI: 10.1097/rct.0000000000001126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aims of this study were to evaluate image quality of virtual monoenergetic images (VMIs) compared with conventional images (CIs) from spectral detector CT (SDCT) and to explore the optimal energy level in run-off computed tomography angiography (CTA).
Collapse
|
31
|
Double Low-Dose Dual-Energy Liver CT in Patients at High-Risk of HCC: A Prospective, Randomized, Single-Center Study. Invest Radiol 2021; 55:340-348. [PMID: 31917765 DOI: 10.1097/rli.0000000000000643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the clinical feasibility of the simultaneous reduction of radiation and contrast doses using spectral computed tomography (CT) in patients at high-risk for hepatocellular carcinoma. MATERIALS AND METHODS Between May 2017 and March 2018, this prospective study recruited participants at risk of hepatocellular carcinoma with body mass indexes less than 30 and randomly assigned them to either the standard-dose group or the double low-dose group, which targeted 30% reductions in both radiation and contrast media (NCT03045445). Lesion conspicuity as a primary endpoint and lesion detection rates were then compared between hybrid iterative reconstruction (iDose) images of standard-dose group and low monoenergetic (50 keV) images of double low-dose group. Qualitative and quantitative image noise and contrast were also compared between the 2 groups. Participants and reviewers were blinded for scan protocols and reconstruction algorithms. Lesion conspicuity was analyzed using generalized estimating equation analysis. Lesion detection was evaluated using weighted jackknife alternative free-response receiver operating characteristic analysis. RESULTS Sixty-seven participants (male-to-female ratio, 59:8; mean age, 64 ± 9 years) were analyzed. Compared with the standard-dose group (n = 32), significantly lower CTDIvol (8.8 ± 1.7 mGy vs 6.1 ± 0.6 mGy) and contrast media (116.9 ± 15.7 mL vs 83.1 ± 9.9 mL) were utilized in the double low-dose group (n = 35; P < 0.001). Comparative analysis demonstrated that lesion conspicuity was significantly higher on 50 keV images of double low-dose group than on iDose images of standard dose on both arterial (2.62 [95% confidence interval (CI), 2.31-2.93] vs 2.02 [95% CI, 1.73-2.30], respectively, P = 0.004) and portal venous phases (2.39 [95% CI, 2.11-2.67] vs 1.88 [95% CI, 1.67-2.10], respectively, P = 0.005). No differences in lesion detection capability were observed between the 2 groups (figure of merit: 0.63 in standard-dose group; 0.65, double low-dose group; P = 0.52). Fifty kiloelectronvolt images of double low-dose group showed better subjective image noise and contrast than iDose image of standard-dose group on arterial and portal venous phases (P < 0.001 for all). Contrast-to-noise ratio of the aorta and portal vein was also higher in double low-dose group than in standard-dose group (P < 0.001 for all), whereas there was no significant difference of quantitative image noise between the 2 groups on arterial and portal phases (P = 0.4~0.5). CONCLUSIONS Low monoenergetic spectral CT images (50 keV) can provide better focal liver lesion conspicuity than hybrid iterative reconstruction image of standard-dose CT in nonobese patients while using lower radiation and contrast media doses.
Collapse
|
32
|
Park A, Lee YH, Seo HS. Could both intrinsic and extrinsic iodine be successfully suppressed on virtual non-contrast CT images for detecting thyroid calcification? Jpn J Radiol 2021; 39:580-588. [PMID: 33506433 DOI: 10.1007/s11604-021-01095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Although virtual non-contrast (VNC) successfully removes iodinated contrast, uncertainty exists regarding the feasibility of VNC to suppress iodine for detecting thyroid calcification. Therefore, we evaluated whether both intrinsic and extrinsic iodine attenuation were suppressed on VNC images. MATERIAL AND METHODS We enrolled 128 patients (male: female 17:111; age 48.0 ± 10.4 years) who underwent dual-layer dual-energy CT (DL-DECT) examination before their thyroid cancer surgeries. Two additional sets of VNC (VNCu, VNCc) images were retrospectively generated from their true unenhanced (TUE) and true contrast-enhanced (TCE) series. We compared CT attenuation values measured on the VNCu and VNCc images by drawing identical regions of interest encompassing thyroid parenchyma, then subjectively determined the concordance of calcification. RESULTS Although CT attenuation discrepancies between the VNCu and VNCc were significant (2.0 ± 5.7HU, p < 0.001),61.7%, 89.1%, and 100.0% of all measurements were < 5HU, < 10HU, and < 15HU. Based on Bland-Altman analysis, the limits of agreement were - 9.2HU and 13.2HU, whereas the proportional differences were small for VNC images generated from both TUE and TCE images. There was no discordance between two VNC image sets in detecting thyroid calcification. CONCLUSIONS VNC technique could be a feasible method to suppress both intrinsic and extrinsically administered iodine for detecting thyroid calcification.
Collapse
Affiliation(s)
- Arim Park
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.,Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hen Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.
| | - Hyung Suk Seo
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea
| |
Collapse
|
33
|
Shen H, Yuan X, Liu D, Huang Y, Wang Y, Jiang S, Zhang J. Multiparametric dual-energy CT for distinguishing nasopharyngeal carcinoma from nasopharyngeal lymphoma. Eur J Radiol 2021; 136:109532. [PMID: 33450663 DOI: 10.1016/j.ejrad.2021.109532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To determine the optimal kiloelectron volt of noise-optimized virtual monoenergetic images [VMI (+)] for visualization of nasopharyngeal carcinoma (NPC) and nasopharyngeal lymphoma (NPL), and to explore the clinical value of quantitative parameters derived from dual-energy computed tomography (DECT) for distinguishing the two entities. MATERIALS AND METHODS Eighty patients including 51 with NPC and 29 with NPL were enrolled. The VMIs (+) at 40-80 keV with an interval of 10 keV were reconstructed by contrast enhanced images. The overall image quality and demarcation of lesion margins, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed in VMIs (+) and polyenergetic images (PEI). Normalized iodine concentration (NIC), slope of the spectral Hounsfield unit curve (λHU) and effective atomic number (Zeff) were calculated. Diagnostic performance was assessed by receiver operating characteristic (ROC) curve. RESULTS The 40 keV VMI (+) yielded highest overall image quality scores, demarcation of lesion margins scores, SNR and CNR. The values of NIC, λHU and Zeff in NPL were higher than those in NPC (P < 0.001). Multivariate logistic regression model combining NIC, λHU and Zeff showed the best performance for distinguishing NPC from NPL (AUC: 0.947, sensitivity: 93.1 % and specificity: 92.2 %). CONCLUSION VMI (+) reconstruction at 40 keV was optimal for visualizing NPC and NPL. Quantitative parameters derived from DECT were helpful for differentiating NPC from NPL.
Collapse
Affiliation(s)
- Hesong Shen
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Xiaoqian Yuan
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Yuanying Huang
- Department of Oncology and Hematology, Chongqing General Hospital, No. 104 Pipashan Street, Yuzhong District, Chongqing, 400014, PR China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Shixi Jiang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
34
|
Ståhl F, Gontu V, Almqvist H, Mazya MV, Falk Delgado A. Performance of dual layer dual energy CT virtual monoenergetic images to identify early ischemic changes in patients with anterior circulation large vessel occlusion. J Neuroradiol 2020; 48:75-81. [PMID: 33340643 DOI: 10.1016/j.neurad.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Dual energy CT is increasingly available and used in the standard diagnostic setting of ischemic stroke patients. We aimed to evaluate how different dual energy CT virtual monoenergetic energy levels impact identification of early ischemic changes, compared to conventional polyenergetic CT images. MATERIALS AND METHODS This retrospective single-center study included patients presenting with acute ischemic stroke caused by an occlusion of the intracranial internal carotid artery or proximal middle cerebral artery. Data was gathered on consecutive patients admitted to our institution who underwent initial diagnostic stroke imaging with dual layer dual energy CT and a subsequent follow-up CT one to three days after admission. Automated ASPECTS results from conventional polyenergetic and different virtual monoenergetic energy level reconstructions at admission were generated and compared to reference standard ASPECTS. Confidence intervals (CI) for sensitivity, specificity, negative and positive predictive value were calculated. RESULTS A total of 24 patients were included. Virtual monoenergetic reconstructions of 70 keV had the highest region-based ASPECTS accuracy, 0.90 (sensitivity 0.82 (95% CI 0.72-0.93), specificity 0.92 (0.88-0.97), negative predictive value 0.94 (0.90-0.96)), whereas virtual monoenergetic reconstructions of 40 keV had the lowest, 0.77 (sensitivity 0.34 (0.26-0.42), specificity 0.90 (0.89-0.96), negative predictive value 0.80 (0.77-0.83)). CONCLUSIONS Automated 70 keV ASPECTS had the highest diagnostic accuracy, sensitivity and negative predictive value overall. Our results indicate that virtual monoenergetic energy levels impact the identification of early ischemic changes on CT.
Collapse
Affiliation(s)
- Fredrik Ståhl
- Department of Neuroradiology, Karolinska University Hospital, Eugeniavaegen 3, 17176 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Vamsi Gontu
- Department of Neuroradiology, Karolinska University Hospital, Eugeniavaegen 3, 17176 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Almqvist
- Department of Neuroradiology, Karolinska University Hospital, Eugeniavaegen 3, 17176 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michael V Mazya
- Department of Neurology, Karolinska University Hospital, Eugeniavaegen 3, 17176 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk Delgado
- Department of Neuroradiology, Karolinska University Hospital, Eugeniavaegen 3, 17176 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A. Use of dual-energy CT for renal mass assessment. Eur Radiol 2020; 31:3721-3733. [PMID: 33210200 DOI: 10.1007/s00330-020-07426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced-only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations. KEY POINTS: • If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam. • Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast-only setting. • For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.
Collapse
Affiliation(s)
- Shanigarn Thiravit
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.,Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christina Brunnquell
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Larry M Cai
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Mena Flemon
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Rajiah P, Parakh A, Kay F, Baruah D, Kambadakone AR, Leng S. Update on Multienergy CT: Physics, Principles, and Applications. Radiographics 2020; 40:1284-1308. [DOI: 10.1148/rg.2020200038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prabhakar Rajiah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Anushri Parakh
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Fernando Kay
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Dhiraj Baruah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Avinash R. Kambadakone
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| |
Collapse
|
37
|
Kim TM, Kim SY, Cho JY, Kim SH, Moon MH. Utilization of virtual low-keV monoenergetic images generated using dual-layer spectral detector computed tomography for the assessment of peritoneal seeding from ovarian cancer. Medicine (Baltimore) 2020; 99:e20444. [PMID: 32501991 PMCID: PMC7306341 DOI: 10.1097/md.0000000000020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022] Open
Abstract
This study aimed to compare the quality of virtual low-keV monoenergetic images vs conventional images reconstructed from dual-layer spectral detector computed tomography (SDCT) for the detection of peritoneal implants of ovarian cancer.Fifty ovarian cancer patients who underwent abdominopelvic SDCT scans were included in this retrospective study. Virtual monoenergetic images at 40 (VMI40) and 50 keV (VMI50), and two conventional images were reconstructed using filtered back projection (FBP) and iterative model reconstruction (IMR) protocols. The mean attenuation of the peritoneal implant, signal-to-noise ratio (SNR), contrast-to-noise ratio relative to ascites (CNRA) and adjacent reference tissues (e.g., bowel wall, hepatic, or splenic parenchyma [CNRB]) were calculated and compared using paired t tests. Qualitative image analysis regarding overall image quality, image noise, image blurring, lesion conspicuity, was performed by two radiologists. A subgroup analysis according to the peritoneal implant region was also conducted.VMI40 yielded significantly higher mean attenuation (183.35) of SNR and CNR values (SNR 11.69, CNRA 7.39, CNRB 2.68), compared to VMI50, IR, and FBP images (P < .001). The mean attenuation (129.65), SNR and CNR values (SNR 9.37, CNRA 5.72, CNRB 2.02) of VMI50 were also significantly higher than those of IR and FBP images (P < .001). In the subgroup analysis, all values were significantly higher on VMI40 regardless of the peritoneal implant region (P < .05). In both readers, overall image quality and image blurring showed highest score in VMI50, while image noise and lesion conspicuity showed best score in IMR and VMI40 respectively. Inter-reader agreements are moderate to almost perfect in every parameter.The low-keV VMIs improved both quantitative assessment and lesion conspicuity of peritoneal implants from ovarian cancer compared to conventional images.
Collapse
Affiliation(s)
- Taek Min Kim
- Department of Radiology, Seoul National University Hospital
- Department of Radiology, Seoul National University College of Medicine
| | - Sang Youn Kim
- Department of Radiology, Seoul National University Hospital
- Department of Radiology, Seoul National University College of Medicine
| | - Jeong Yeon Cho
- Department of Radiology, Seoul National University Hospital
- Department of Radiology, Seoul National University College of Medicine
- Institute of Radiation Medicine and Kidney Research Institute, Seoul National University Medical Research Center
| | - Seung Hyup Kim
- Department of Radiology, Seoul National University Hospital
- Department of Radiology, Seoul National University College of Medicine
- Institute of Radiation Medicine and Kidney Research Institute, Seoul National University Medical Research Center
| | - Min Hoan Moon
- Department of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Abstract
Computed tomography angiography (CTA) has become a mainstay for the imaging of vascular diseases, because of high accuracy, availability, and rapid turnaround time. High-quality CTA images can now be routinely obtained with high isotropic spatial resolution and temporal resolution. Advances in CTA have focused on improving the image quality, increasing the acquisition speed, eliminating artifacts, and reducing the doses of radiation and iodinated contrast media. Dual-energy computed tomography provides material composition capabilities that can be used for characterizing lesions, optimizing contrast, decreasing artifact, and reducing radiation dose. Deep learning techniques can be used for classification, segmentation, quantification, and image enhancement.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55904, USA.
| |
Collapse
|
39
|
Al-Baldawi Y, Große Hokamp N, Haneder S, Steinhauser S, Püsken M, Persigehl T, Maintz D, Wybranski C. Virtual mono-energetic images and iterative image reconstruction: abdominal vessel imaging in the era of spectral detector CT. Clin Radiol 2020; 75:641.e9-641.e18. [PMID: 32362502 DOI: 10.1016/j.crad.2020.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
AIM To compare the quality of virtual mono-energetic (VMI) and polychromatic images reconstructed with hybrid iterative (PCIHIR) or model-based reconstruction (PCIMBR) derived from dual-layer spectral detector computed tomography (SDCT) in arterial phase images to visualise the aorta and abdominal main branches. MATERIAL AND METHODS A retrospective review of 50 patients with abdominal arterial phase scans was undertaken. Attenuation, intraluminal noise, and signal-/contrast-to-noise ratio (S-/CNR) were assessed in the PCIHIR, PCIMBR and VMI40keV, VMI70keV, and VMI100keV images. Contrast, noise, and visualization of soft-plaque, and macro-/micro-calcifications were scored in a blinded reading by two radiologists. RESULTS VMI40keV yielded highest S-/CNR (p≤0.001). VMI70keV and PCIMBR showed comparable SNR (p≥0.999) and yielded higher SNR than PCIHIR. VMI70keV yielded higher CNR than PCIHIR (p<0.001) and PCIMBR (p<0.045). VMI100keV yielded lowest CNR (p≤0.001) and SNR (p≥0.104). In the subjective analysis, VMI40keV outperformed PCIMBR for contrast and noise, PCIMBR scored better than VMI70keV, and the latter scored better than PCIHIR for these categories (all p<0.001). PCIMBR was superior for depiction of soft-plaque and micro-calcifications (p<0.001). VMI100keV visualized micro-calcifications second best (p<0.001) and matched PCIMBR for the depiction of macro-calcifications (p>0.999), while VMI40keV scored second best for depiction of soft-plaque (p<0.020). CONCLUSIONS VMI40keV and VMI70keV yield better S-/CNR than PCIHIR and PCIMBR; however, PCIMBR visualized arteriosclerotic plaques best, followed by VMI40keV for depiction of soft-plaque and VMI100keV for macro- and micro-calcification. Based on the present findings, PCIMBR on conventional CT and VMI40keV supplemented by VMI100keV on SDCT are recommended for the diagnostic assessment of abdominal arteries.
Collapse
Affiliation(s)
- Y Al-Baldawi
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.
| | - N Große Hokamp
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - S Haneder
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - S Steinhauser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Medical Statistics and Computational Biology, Cologne, Germany
| | - M Püsken
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - T Persigehl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - D Maintz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - C Wybranski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| |
Collapse
|
40
|
Huang X, Gao S, Ma Y, Lu X, Jia Z, Hou Y. The optimal monoenergetic spectral image level of coronary computed tomography (CT) angiography on a dual-layer spectral detector CT with half-dose contrast media. Quant Imaging Med Surg 2020; 10:592-603. [PMID: 32269920 DOI: 10.21037/qims.2020.02.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background To investigate the optimal monoenergetic level of spectral reconstructions in coronary computed tomography angiography (coronary CTA) on a dual-layer spectral detector computed tomography (SDCT) with half-dose contrast media. Methods Two hundred patients with suspected coronary artery disease (CAD) were enrolled in this prospective coronary CTA study and randomly divided into a routine-dose contrast media group and a half-dose contrast media group (each n=100). Coronary CTA was performed using SDCT with prospective electrocardiogram (ECG)-gated mode. A tube voltage of 120 kVp was used, along with an automated tube current modulation. A dose of iodixanol 270 mgI/mL of 0.8 and 0.4 mL/kg was administered to the routine and half-dose groups, respectively. For the routine-dose group, 120 kVp polychromatic images with a model-based iterative reconstruction (IMR) (Group A) were reconstructed. For the half-dose group, three monoenergetic levels of images were reconstructed (Group B, 45 keV; Group C, 50 keV; and Group D, 55 keV). Objective indicators [mean CT values; noise; signal-to-noise ratio (SNR); and contrast-to-noise ratio (CNR)] and subjective indicators (contrast, sharpness, subjective noise, and acceptability) in each group were compared. Results There were no significant differences in demographics or radiation dose (1.83±0.51 vs. 1.80±0.53 mSv, P=0.78) between the routine- and half-dose groups. The average iodine loads were 15.33±2.26 and 7.48±1.14 g, respectively. Mean CT values, SNR, CNR, and subjective contrast in Group C were higher than those in Group A (P<0.05), and there were no significant differences in other indicators between Group C and Group A (P>0.05). The objective and subjective noise in Group B were worse than those in Group A (P<0.05). The contrast, sharpness, and acceptability of Group D were all worse than those of Group A (P<0.05). Conclusions Compared to routine polychromatic images, 50 keV monoenergetic images can provide equivalent or improved coronary image quality in coronary CTA performed on SDCT with half the amount of contrast media.
Collapse
Affiliation(s)
- Xin Huang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sizhe Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yue Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaomei Lu
- CT Clinical Science, Philips Healthcare, Shenyang 110016, China
| | - Zheng Jia
- CT Clinical Science, Philips Healthcare, Shenyang 110016, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
41
|
Semiautomated Renal Cortex Volumetry in Spectral Computed Tomography: Effect of Monoenergetic Reconstructions on Measurement Precision and Interobserver Variability. J Comput Assist Tomogr 2020; 44:138-144. [PMID: 31939895 DOI: 10.1097/rct.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine the influence of virtual monoenergetic images (vMEIs) on renal cortex volumetry (RCV) and estimation of split-renal function. METHODS Twenty-five patients (mean ± SD, 64.7 ± 9.9 years) underwent a contrast-enhanced dual-layer spectral detector computed tomography. Images were reconstructed with a reference standard (iterative model reconstruction, IMRRef), a newly spectral detector computed tomography algorithm (SPcon) and vMEI at 40, 60, 80, 100, and 120 keV. Two blinded independent readers performed RCV on all data sets with a semiautomated tool. RESULTS Total kidney volume was up to 15% higher in vMEI at 40/60 keV compared with IMRRef (P < 0.001). Total kidney volume with vMEI at 80/100 keV was similar to IMRRef (P < 0.001). Split-renal function was similar in all reconstructions at approximately 50% ± 3%. Bland-Altman analysis showed no significant differences (P > 0.05), except for 40 keV versus SPcon (P < 0.05). The time required to perform RCV was reasonable, approximately 4 minutes, and showed no significant differences among reconstructions. Interreader agreement was greatest with vMEI at 80 keV (r = 0.68; 95% confidence interval, 0.39-0.85; P < 0.0002) followed by IMRRef images (r = 0.67; 95% confidence interval, 0.37-0.84; P < 0.0003). IMRRef showed the highest mean Hounsfield unit for cortex/medulla of 223.4 ± 73.7/62.5 ± 19.7 and a ratio of 3.7. CONCLUSIONS Semiautomated RCV performed with vMEI and IMRRef/SPcon is feasible and showed no clinically relevant differences with regard to split-renal function. Low-kiloelectron volt vMEI showed greater tissue contrast and total kidney volume but no benefit for RCV. Moderate-kiloelectron volt vMEI (80 keV) results were similar to IMRRef with a faster postprocessing time.
Collapse
|
42
|
Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, De Cecco CN, Varga-Szemes A, van Assen M, Tesche C, Schoepf UJ. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology 2019; 293:260-271. [DOI: 10.1148/radiol.2019182297] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Dual-Energy Computed Tomography in Thoracic Imaging—Current Practices and Utility. J Thorac Imaging 2019; 35:W43-W50. [DOI: 10.1097/rti.0000000000000450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Reimer RP, Flatten D, Lichtenstein T, Zopfs D, Neuhaus V, Kabbasch C, Maintz D, Borggrefe J, Große Hokamp N. Virtual Monoenergetic Images from Spectral Detector CT Enable Radiation Dose Reduction in Unenhanced Cranial CT. AJNR Am J Neuroradiol 2019; 40:1617-1623. [PMID: 31537517 DOI: 10.3174/ajnr.a6220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/05/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Our aim was to evaluate whether improved gray-white matter differentiation in cranial CT by means of 65- keV virtual monoenergetic images enables a radiation dose reduction compared to conventional images. MATERIALS AND METHODS One hundred forty consecutive patients undergoing 171 spectral detector CTs of the head between February and November 2017 (56 ± 19 years of age; male/female ratio, 56%/44%) were retrospectively included. The tube current-time product was reduced during the study period, resulting in 61, 55, and 55 patients being examined with 320, 290, and 260 mAs, respectively. All other scanning parameters were kept identical. The volume CT dose index was recorded. ROIs were placed in gray and white matter on conventional images and copied to identical positions in 65- keV virtual monoenergetic images. The contrast-to-noise ratio was calculated. Two radiologists blinded to the reconstruction technique evaluated image quality on a 5-point Likert-scale. Statistical assessment was performed using ANOVA and Wilcoxon test adjusted for multiple comparisons. RESULTS The mean volume CT dose index was 55, 49.8, and 44.7 mGy using 320, 290, and 260 mAs, respectively. Irrespective of the volume CT dose index, noise was significantly lower in 65- keV virtual monoenergetic images compared with conventional images (65- keV virtual monoenergetic images/conventional images: extraocular muscle with 49.8 mGy, 3.7 ± 1.3/5.6 ± 1.6 HU, P < .001). Noise slightly increased with a reduced radiation dose (eg, extraocular muscle in conventional images: 5.3 ± 1.4/5.6 ± 1.6/6.1 ± 2.1 HU). Overall, the contrast-to-noise ratio in 65- keV virtual monoenergetic images was superior to that in conventional images irrespective of the volume CT dose index (P < .001). Particularly, 65-keV virtual monoenergetic images with 44.7 mGy showed significantly lower noise and a higher contrast-to-noise ratio than conventional images with 55 mGy (P < .001). Subjective analysis confirmed better image quality in 65- keV virtual monoenergetic images, even using 44.7 mGy. CONCLUSIONS The 65-keV virtual monoenergetic images from spectral detector CT allow radiation dose reduction in cranial CT. While this proof of concept included a radiation dose reduction of 19%, our data suggest that even greater reduction appears achievable.
Collapse
Affiliation(s)
- R P Reimer
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - D Flatten
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - T Lichtenstein
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - D Zopfs
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - V Neuhaus
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - C Kabbasch
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - D Maintz
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - J Borggrefe
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - N Große Hokamp
- From the Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
45
|
Große Hokamp N, Gilkeson R, Jordan M, Laukamp K, Neuhaus VF, Haneder S, Halliburton S, Gupta A. Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: Unaltered attenuation characteristics with reduced image noise. Eur J Radiol 2019; 117:49-55. [DOI: 10.1016/j.ejrad.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
|
46
|
Nagayama Y, Tanoue S, Inoue T, Oda S, Nakaura T, Utsunomiya D, Yamashita Y. Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol 2019; 30:394-403. [DOI: 10.1007/s00330-019-06337-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|
47
|
Tao S, Rajendran K, Zhou W, Fletcher JG, McCollough CH, Leng S. Improving iodine contrast to noise ratio using virtual monoenergetic imaging and prior-knowledge-aware iterative denoising (mono-PKAID). Phys Med Biol 2019; 64:105014. [PMID: 30970337 DOI: 10.1088/1361-6560/ab17fa] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multi-energy CT acquires simultaneous multiple x-ray attenuation measurements from different energy spectra which facilitates the computation of virtual monoenergetic images (VMI) at a specific photon energy (keV). Since the contrast between iodine attenuation and the attenuation of surrounding soft tissues increases at lower x-ray energies, VMIs in the range of 40-70 keV can be used to improve iodine visualization. However, at lower energy levels, image noise in VMIs is substantially increased, which counteracts the benefits from the increased iodine contrast, resulting in a decreased iodine contrast-to-noise ratio (CNR). There exists considerable data redundancy between multi-energy CT images created from the same acquisition. Similarly, a substantial spatio-spectral data redundancy exists between multi-energy CT images and the corresponding VMIs. In this work, we develop a denoising framework that exploits this data redundancy to improve iodine CNR in the VMIs. We accomplish this by applying prior-knowledge-aware iterative denoising to low-energy VMIs; we refer to the denoised images as mono-PKAID images. The proposed framework was evaluated using phantom and in vivo data acquired on a research whole-body photon-counting-detector CT, as well as using data from a commercial dual-source dual-energy CT system. The results of phantom experiments show that the proposed framework can preserve image resolution and noise texture compared to the original VMIs, while reducing noise to improve iodine CNR. Quantitative measurements show that the iodine CNR of 50 keV VMI is improved by 1.8-fold using the proposed method, relative to the VMI produced using commercial software (Mono+). With mono-PKAID, VMIs at lower keV take full advantage of higher iodine contrast without substantially increasing image noise. These observations were confirmed using patient data sets, which demonstrated that mono-PKAID reduced image noise, improved CNR in anatomical regions with iodine perfusion by 1.8-fold, and potentially enhanced the visibility of focal liver lesions.
Collapse
Affiliation(s)
- Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, United States of America
| | | | | | | | | | | |
Collapse
|
48
|
Abdullayev N, Große Hokamp N, Lennartz S, Holz JA, Romman Z, Pahn G, Neuhaus V, Maintz D, Krug B, Borggrefe J. Improvements of diagnostic accuracy and visualization of vertebral metastasis using multi-level virtual non-calcium reconstructions from dual-layer spectral detector computed tomography. Eur Radiol 2019; 29:5941-5949. [DOI: 10.1007/s00330-019-06233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 02/14/2023]
|
49
|
Oda S, Emoto T, Nakaura T, Kidoh M, Utsunomiya D, Funama Y, Nagayama Y, Takashio S, Ueda M, Yamashita T, Tsujita K, Ando Y, Yamashita Y. Myocardial Late Iodine Enhancement and Extracellular Volume Quantification with Dual-Layer Spectral Detector Dual-Energy Cardiac CT. Radiol Cardiothorac Imaging 2019; 1:e180003. [PMID: 33778497 PMCID: PMC7977749 DOI: 10.1148/ryct.2019180003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 04/23/2023]
Abstract
PURPOSE To explore the usefulness of myocardial late iodine enhancement (LIE) and extracellular volume (ECV) quantification by using dual-energy cardiac CT. MATERIALS AND METHODS In this single-center retrospective study, a total of 40 patients were evaluated with LIE CT by using a dual-layer spectral detector CT system. Among these, 21 also underwent cardiac MRI. Paired image sets were created by using standard imaging at 120 kVp, virtual monochromatic imaging (VMI) at 50 keV, and iodine density imaging. The contrast-to-noise ratio and image quality were then compared. Two observers assessed the presence of LIE and calculated the interobserver agreements. Agreement between CT and cardiac MRI when detecting late-enhancing lesions and calculating the ECV was also assessed. RESULTS The contrast-to-noise ratio was significantly higher by using VMI than by using standard 120-kVp imaging, and the mean visual image quality score was significantly higher by using VMI than by using either standard or iodine density imaging. For interobserver agreement of visual detection of LIE, the agreement for VMI was excellent and the κ value (κ, 0.87) was higher than that for the standard 120-kVp (κ, 0.70) and iodine density (κ, 0.83) imaging. For detecting late-enhancing lesions, agreement with cardiac MRI was excellent by using VMI (κ, 0.90) and iodine density imaging (κ, 0.87) but was only good by using standard 120-kVp imaging (κ, 0.66). Quantitative comparisons of the ECV calculations by using CT and cardiac MRI showed excellent correlation (r 2 = 0.94). CONCLUSION Dual-energy cardiac CT can assess myocardial LIE and quantify ECV, with results comparable to those obtained by using cardiac MRI.© RSNA, 2019See also the commentary by Litt in this issue.
Collapse
|
50
|
van Ommen F, de Jong H, Dankbaar J, Bennink E, Leiner T, Schilham A. Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: A preliminary report. Eur J Radiol 2019; 112:65-71. [DOI: 10.1016/j.ejrad.2019.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 11/30/2022]
|