1
|
Liu Y, Luo X, Yang L, Cheng X, Zhu X, Zhang H, Hou B, Cao B. Progression-Free Survival Prediction Model Based on AI-Enhanced Dynamic Radiomics for Personalized EGFR-TKI Treatment Monitoring Patients With Lung Adenocarcinoma. Thorac Cancer 2025; 16:e70010. [PMID: 40114622 PMCID: PMC11926440 DOI: 10.1111/1759-7714.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the standard first-line treatment for patients with advanced lung adenocarcinoma (LUAD) with EGFR mutations. However, treatment effectiveness varies widely among individuals, and effective models to predict treatment response are lacking. This study aims to establish a progression-free survival (PFS) prediction model based on dynamic changes in pre- and post-treatment CT scans combined with patients' clinical features. METHODS A total of 183 patients with advanced LUAD who received first-line treatment at Peking University Third Hospital from January 2013 to December 2022 were enrolled. A 3D-UNet model was fine-tuned using data from 405 patients with non-small cell lung cancer for advanced lesion segmentation. Clinical and radiomic features extracted using 3D models from 80 EGFR-mutant LUAD patients were used to develop PFS prediction models with a deep-learning binary classification model. The accuracy, specificity, sensitivity, AUC, and F1 score of the models were validated in patients with mutant and wild-type EGFR. RESULTS In the EGFR-mutant test set (N = 53), the AUC for the 9-month and 12-month progression prediction models were 0.858 (95% CI, 0.707-0.972) and 0.873 (95% CI, 0.747-0.974). Their accuracies were 81.1% (95% CI, 69.8%-90.6%) and 84.9% (95% CI, 73.6%-94.3%), specificities were 87.5% and 72.2%, sensitivities were 80.0% and 91.4%, and F1 scores were 0.878 and 0.889, respectively. CONCLUSION This study developed treatment response prediction models for EGFR-mutant LUAD patients. These models demonstrated strong predictive value for PFS in patients treated with EGFR-TKIs, potentially enabling a more efficient personalized CT scan schedule.
Collapse
Affiliation(s)
- Yan'e Liu
- Department of Medical Oncology and Radiation SicknessPeking University Third HospitalBeijingChina
- Cancer CenterPeking University Third HospitalBeijingChina
| | - Xiangfeng Luo
- Linkdoc AI Research (LAIR), Linkdoc Information Technology (Beijing) Co. Ltd.BeijingChina
| | - Lu Yang
- Department of Medical Oncology and Radiation SicknessPeking University Third HospitalBeijingChina
- Cancer CenterPeking University Third HospitalBeijingChina
| | - Xueliang Cheng
- Linkdoc AI Research (LAIR), Linkdoc Information Technology (Beijing) Co. Ltd.BeijingChina
| | - Xin Zhu
- Department of Medical Oncology and Radiation SicknessPeking University Third HospitalBeijingChina
- Cancer CenterPeking University Third HospitalBeijingChina
| | - Hua Zhang
- Research Center of Clinical EpidemiologyPeking University Third HospitalBeijingChina
| | - Bolin Hou
- Linkdoc AI Research (LAIR), Linkdoc Information Technology (Beijing) Co. Ltd.BeijingChina
| | - Baoshan Cao
- Department of Medical Oncology and Radiation SicknessPeking University Third HospitalBeijingChina
- Cancer CenterPeking University Third HospitalBeijingChina
| |
Collapse
|
2
|
Wang TW, Chao HS, Chiu HY, Lu CF, Liao CY, Lee Y, Chen JR, Shiao TH, Chen YM, Wu YT. Radiomics of metastatic brain tumor as a predictive image biomarker of progression-free survival in patients with non-small-cell lung cancer with brain metastasis receiving tyrosine kinase inhibitors. Transl Oncol 2024; 39:101826. [PMID: 37984256 PMCID: PMC10689936 DOI: 10.1016/j.tranon.2023.101826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs) are the first-line therapy for EGFR-mutant non-small-cell lung cancer (NSCLC). Early prediction of treatment failure in patients with brain metastases treated with EGFR-TKIs may help in making decisions for systemic drug therapy or local brain tumor control. This study examined the predictive power of the radiomics of both brain metastasis tumors and primary lung tumors. We propose a deep learning based CoxCC model based on quantitative brain magnetic resonance imaging (MRI), a prognostic index and clinical data; the model can be used to predict progression-free survival (PFS) after EGFR-TKI therapy in advanced EGFR-mutant NSCLC. METHODS This retrospective single-center study included 271 patients receiving first-line EGFR-TKI targeted therapy in 2018-2019. Among them, 72 patients who had brain metastases before receiving first-line EGFR-TKI treatment. Three radiomic features were extracted from pretreatment brain MRI images. A CoxCC model for the progression risk stratification of EGFR-TKI treatment was proposed on the basis of MRI radiomics, clinical features, and a prognostic index. We performed time-dependent PFS predictions to evaluate the performance of the CoxCC model. RESULTS The CoxCC model based on a prognostic index, clinical features, and radiomic features of brain metastasis exhibited higher performance than clinical features combined with indexes previously proposed for determining the prognosis of brain metastasis, including recursive partitioning analysis, diagnostic-specific graded prognostic assessment, graded prognostic assessment for lung cancer using molecular markers (lung-molGPA), and modified lung-molGPA, with c-index values of 0.75, 0.67, 0.66, 0.65, and 0.65, respectively. The model achieved areas under the curve of 0.88, 0.73, 0.92, and 0.90 for predicting PFS at 3, 6, 9 and 12 months, respectively. PFS significantly differed between the high- and low-risk groups (p < 0.001). CONCLUSIONS For patients with advanced-stage NSCLC with brain metastasis, MRI radiomics of brain metastases may predict PFS. The CoxCC model integrating brain metastasis radiomics, clinical features, and a prognostic index provided reliable multi-time-point PFS predictions for patients with advanced NSCLC and brain metastases receiving EGFR-TKI treatment.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Hwa-Yen Chiu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen Lee
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyun-Ru Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Hui Shiao
- Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
4
|
Wang TW, Hsu MS, Lin YH, Chiu HY, Chao HS, Liao CY, Lu CF, Wu YT, Huang JW, Chen YM. Application of Radiomics in Prognosing Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3542. [PMID: 37509204 PMCID: PMC10377421 DOI: 10.3390/cancers15143542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111 patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87-4.19), suggesting that patients with certain radiomics features had a significantly higher risk of disease progression. Additionally, we calculated the pooled Harrell's concordance index and area under the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of radiomics. Despite these promising results, further studies with consistent and robust protocols are needed to confirm the prognostic role of radiomics in NSCLC.
Collapse
Affiliation(s)
- Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
5
|
Gainey JC, He Y, Zhu R, Baek SS, Wu X, Buatti JM, Allen BG, Smith BJ, Kim Y. Predictive power of deep-learning segmentation based prognostication model in non-small cell lung cancer. Front Oncol 2023; 13:868471. [PMID: 37081986 PMCID: PMC10110903 DOI: 10.3389/fonc.2023.868471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
PurposeThe study aims to create a model to predict survival outcomes for non-small cell lung cancer (NSCLC) after treatment with stereotactic body radiotherapy (SBRT) using deep-learning segmentation based prognostication (DESEP).MethodsThe DESEP model was trained using imaging from 108 patients with NSCLC with various clinical stages and treatment histories. The model generated predictions based on unsupervised features learned by a deep-segmentation network from computed tomography imaging to categorize patients into high and low risk groups for overall survival (DESEP-predicted-OS), disease specific survival (DESEP-predicted-DSS), and local progression free survival (DESEP-predicted-LPFS). Serial assessments were also performed using auto-segmentation based volumetric RECISTv1.1 and computer-based unidimensional RECISTv1.1 patients was performed.ResultsThere was a concordance between the DESEP-predicted-LPFS risk category and manually calculated RECISTv1.1 (φ=0.544, p=0.001). Neither the auto-segmentation based volumetric RECISTv1.1 nor the computer-based unidimensional RECISTv1.1 correlated with manual RECISTv1.1 (p=0.081 and p=0.144, respectively). While manual RECISTv1.1 correlated with LPFS (HR=6.97,3.51-13.85, c=0.70, p<0.001), it could not provide insight regarding DSS (p=0.942) or OS (p=0.662). In contrast, the DESEP-predicted methods were predictive of LPFS (HR=3.58, 1.66-7.18, c=0.60, p<0.001), OS (HR=6.31, 3.65-10.93, c=0.71, p<0.001) and DSS (HR=9.25, 4.50-19.02, c=0.69, p<0.001). The promising results of the DESEP model were reproduced for the independent, external datasets of Stanford University, classifying survival and ‘dead’ group in their Kaplan-Meyer curves (p = 0.019).ConclusionDeep-learning segmentation based prognostication can predict LPFS as well as OS, and DSS after SBRT for NSCLC. It can be used in conjunction with current standard of care, manual RECISTv1.1 to provide additional insights regarding DSS and OS in NSCLC patients receiving SBRT.SummaryWhile current standard of care, manual RECISTv1.1 correlated with local progression free survival (LPFS) (HR=6.97,3.51-13.85, c=0.70, p<0.001), it could not provide insight regarding disease specific survival (DSS) (p=0.942) or overall survival (OS) (p=0.662). In contrast, the deep-learning segmentation based prognostication (DESEP)-predicted methods were predictive of LPFS (HR=3.58, 1.66-7.18, c=0.60, p<0.001), OS (HR=6.31, 3.65-10.93, c=0.71, p<0.001) and DSS (HR=9.25, 4.50-19.02, c=0.69, p<0.001). DESEP can be used in conjunction with current standard of care, manual RECISTv1.1 to provide additional insights regarding DSS and OS in NSCLC patients.
Collapse
Affiliation(s)
- Jordan C. Gainey
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - Yusen He
- Department of Data Science, Grinnell College, Grinnell, IA, United States
| | - Robert Zhu
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - Stephen S. Baek
- Department of Data Science, University of Virginia, Charlottesville, VA, United States
| | - Xiaodong Wu
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - John M. Buatti
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - Brian J. Smith
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, United States
| | - Yusung Kim
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Yusung Kim,
| |
Collapse
|
6
|
Ju HM, Kim BC, Lim I, Byun BH, Woo SK. Estimation of an Image Biomarker for Distant Recurrence Prediction in NSCLC Using Proliferation-Related Genes. Int J Mol Sci 2023; 24:ijms24032794. [PMID: 36769108 PMCID: PMC9917349 DOI: 10.3390/ijms24032794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to identify a distant-recurrence image biomarker in NSCLC by investigating correlations between heterogeneity functional gene expression and fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) image features of NSCLC patients. RNA-sequencing data and 18F-FDG PET images of 53 patients with NSCLC (19 with distant recurrence and 34 without recurrence) from The Cancer Imaging Archive and The Cancer Genome Atlas Program databases were used in a combined analysis. Weighted correlation network analysis was performed to identify gene groups related to distant recurrence. Genes were selected for functions related to distant recurrence. In total, 47 image features were extracted from PET images as radiomics. The relationship between gene expression and image features was estimated using a hypergeometric distribution test with the Pearson correlation method. The distant recurrence prediction model was validated by a random forest (RF) algorithm using image texture features and related gene expression. In total, 37 gene modules were identified by gene-expression pattern with weighted gene co-expression network analysis. The gene modules with the highest significance were selected (p-value < 0.05). Nine genes with high protein-protein interaction and area under the curve (AUC) were identified as hub genes involved in the proliferation function, which plays an important role in distant recurrence of cancer. Four image features (GLRLM_SRHGE, GLRLM_HGRE, SUVmean, and GLZLM_GLNU) and six genes were identified to be correlated (p-value < 0.1). AUCs (accuracy: 0.59, AUC: 0.729) from the 47 image texture features and AUCs (accuracy: 0.767, AUC: 0.808) from hub genes were calculated using the RF algorithm. AUCs (accuracy: 0.783, AUC: 0.912) from the four image texture features and six correlated genes and AUCs (accuracy: 0.738, AUC: 0.779) from only the four image texture features were calculated using the RF algorithm. The four image texture features validated by heterogeneity group gene expression were found to be related to cancer heterogeneity. The identification of these image texture features demonstrated that advanced prediction of NSCLC distant recurrence is possible using the image biomarker.
Collapse
Affiliation(s)
- Hye Min Ju
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
| | - Sang-Keun Woo
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 07812, Republic of Korea
- Correspondence: ; Tel.: +82-2-970-1659
| |
Collapse
|
7
|
Andersen MB, Harders SW, Thygesen J, Ganeshan B, Torp Madsen HH, Rasmussen F. Potential impact of texture analysis in contrast enhanced CT in non-small cell lung cancer as a marker of survival: A retrospective feasibility study. Medicine (Baltimore) 2022; 101:e31855. [PMID: 36482650 PMCID: PMC9726401 DOI: 10.1097/md.0000000000031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this feasibility study was to assess computed tomography (CT) texture analysis (CTTA) of pulmonary lesions as a predictor of overall survival in patients with suspected lung cancer on contrast-enhanced computed tomography (CECT). In a retrospective pilot study, 94 patients (52 men and 42 women; mean age, 67.2 ± 10.8 yrs) from 1 center with non-small cell lung cancer (NSCLC) underwent CTTA on the primary lesion by 2 individual readers. Both simple and multivariate Cox regression analyses correlating textural parameters with overall survival were performed. Statistically significant parameters were selected, and optimal cutoff values were determined. Kaplan-Meier plots based on these results were produced. Simple Cox regression analysis showed that normalized uniformity had a hazard ratio (HR) of 16.059 (3.861-66.788, P < .001), and skewness had an HR of 1.914 (1.330-2.754, P < .001). The optimal cutoff values for both parameters were 0.8602 and 0.1554, respectively. Normalized uniformity, clinical stage, and skewness were found to be prognostic factors for overall survival in multivariate analysis. Tumor heterogeneity, assessed by normalized uniformity and skewness on CECT may be a prognostic factor for overall survival.
Collapse
Affiliation(s)
- Michael Brun Andersen
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark
- Department of Radiology, Copenhagen University Hospital, Gentofte, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- * Correspondence: Michael Brun Andersen, Department of Radiology, Copenhagen University Hospital, Gentofte Hospitalsvej 1, Hellerup 2900, Denmark (e-mail: )
| | | | - Jesper Thygesen
- Department of Clinical Engineering c/o Aarhus University Hospital, Central Denmark Region, Skejby, Denmark
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London, London, UK
| | | | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
8
|
Wu Q, Huang W, Wang S, Yu H, Wang L, Wu Z, Zhu Y, Liu Z, Ma H, Tian J. A generative adversarial network-based CT image standardization model for predicting progression-free survival of lung cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3411-3414. [PMID: 34891972 DOI: 10.1109/embc46164.2021.9630092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Progression-free survival (PFS) prediction using computed tomography (CT) images is important for treatment planning in lung cancer. However, the generalization ability of current analysis methods is usually affected by the scanning parameters of CT images, such as slice thickness and reconstruction kernel. In this paper, we proposed a generative adversarial network (GAN)-based model to convert heterogenous CT images into standardized CT images with uniform slice thickness and reconstruction kernel to increase the generalization of the predictive model. This model was trained in 173 patients with multiple CT sequences including both thin/thick voxel-spacing and sharp/soft reconstruction kernel. Afterward, we built a 3D-CNN model to predict the individualized 1year PFS of lung cancer using the standardized CT images in 281 patients. Finally, we evaluated the predictive model by 5-fold cross-validation and the mean area under the receiver operating characteristic curve (AUC). After transforming to the heterogenous CT images into the uniform thin-spacing and sharp kernel CT images, the AUC value of the 3D-CNN model improved from 0.614 to 0.686. Furthermore, this model can stratify the patients into high-risk and low-risk groups, where patients in these two groups showed significant difference in PFS (P < 0.001).
Collapse
|
9
|
Tang X, Li Y, Yan WF, Qian WL, Pang T, Gong YL, Yang ZG. Machine Learning-Based CT Radiomics Analysis for Prognostic Prediction in Metastatic Non-Small Cell Lung Cancer Patients With EGFR-T790M Mutation Receiving Third-Generation EGFR-TKI Osimertinib Treatment. Front Oncol 2021; 11:719919. [PMID: 34660285 PMCID: PMC8511497 DOI: 10.3389/fonc.2021.719919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose As a third-generation EGFR tyrosine kinase inhibitor (TKI), osimertinib is approved for treating advanced non-small cell lung cancer (NSCLC) patients with EGFR-T790M mutation after progression on first- or second-generation EGFR-TKIs such as gefitinib, erlotinib and afatinib. We aim at exploring the feasibility and effectiveness of using radiomic features from chest CT scan to predict the prognosis of metastatic non-small cell lung cancer (NSCLC) patients with EGFR-T790M mutation receiving second-line osimertinib therapy. Methods Contrast-enhanced and unenhanced chest CT images before osimertinib treatment were collected from 201 and 273 metastatic NSCLC patients with EGFR-T790M mutation, respectively. Radiomic features were extracted from the volume of interest. LASSO regression was used to preliminarily evaluate the prognostic values of different radiomic features. We then performed machine learning-based analyses including random forest (RF), support vector machine (SVM), stepwise regression (SR) and LASSO regression with 5-fold cross-validation (CV) to establish the optimal radiomic model for predicting the progression-free survival (PFS) of osimertinib treatment. Finally, a combined clinical-radiomic model was developed and validated using the concordance index (C-index), decision-curve analysis (DCA) and calibration curve analysis. Results Disease progression occurred in 174/273 (63.7%) cases. CT morphological features had no ability in predicting patients’ prognosis in osimertinib treatment. Univariate COX regression followed by LASSO regression analyses identified 23 and 6 radiomic features from the contrast-enhanced and unenhanced CT with prognostic value, respectively. The 23 contrast-enhanced radiomic features were further used to construct radiomic models using different machine learning strategies. Radiomic model built by SR exhibited superior predictive accuracy than RF, SVR or LASSO model (mean C-index of the 5-fold CV: 0.660 vs. 0.560 vs. 0.598 vs. 0.590). Adding the SR radiomic model to the clinical model could remarkably strengthen the C-index of the latter from 0.672 to 0.755. DCA and calibration curve analyses also demonstrated good performance of the combined clinical-radiomic model. Conclusions Radiomic features extracted from the contrast-enhanced chest CT could be used to evaluate metastatic NSCLC patients’ prognosis in osimertinib treatment. Prognostic models combing both radiomic features and clinical factors had a great performance in predicting patients’ outcomes.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Pang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - You-Ling Gong
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
CT-based radiomics signatures can predict the tumor response of non-small cell lung cancer patients treated with first-line chemotherapy and targeted therapy. Eur Radiol 2021; 32:1538-1547. [PMID: 34564744 DOI: 10.1007/s00330-021-08277-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The goal of this study was to evaluate the effectiveness of radiomics signatures on pre-treatment computed tomography (CT) images of lungs to predict the tumor responses of non-small cell lung cancer (NSCLC) patients treated with first-line chemotherapy, targeted therapy, or a combination of both. MATERIALS AND METHODS This retrospective study included 322 NSCLC patients who were treated with first-line chemotherapy, targeted therapy, or a combination of both. Of these patients, 224 were randomly assigned to a cohort to help develop the radiomics signature. A total of 1946 radiomics features were obtained from each patient's CT scan. The top-ranked features were selected by the Minimum Redundancy Maximum Relevance (MRMR) feature-ranking method and used to build a lightweight radiomics signature with the Random Forest (RF) classifier. The independent predictive (IP) features (AUC > 0.6, p value < 0.05) were further identified from the top-ranked features and used to build a refined radiomics signature by the RF classifier. Its prediction performance was tested on the validation cohort, which consisted of the remaining 98 patients. RESULTS The initial lightweight radiomics signature constructed from 15 top-ranked features had an AUC of 0.721 (95% CI, 0.619-0.823). After six IP features were further identified and a refined radiomics signature was built, it had an AUC of 0.746 (95% CI, 0.646-0.846). CONCLUSIONS Radiomics signatures based on pre-treatment CT scans can accurately predict tumor response in NSCLC patients after first-line chemotherapy or targeted therapy treatments. Radiomics features could be used as promising prognostic imaging biomarkers in the future. KEY POINTS The radiomics signature extracted from baseline CT images in patients with NSCLC can predict response to first-line chemotherapy, targeted therapy, or both treatments with an AUC = 0.746 (95% CI, 0.646-0.846). The radiomics signature could be used as a new biomarker for quantitative analysis in radiology, which might provide value in decision-making and to define personalized treatments for cancer patients.
Collapse
|
11
|
Able H, Wolf-Ringwall A, Rendahl A, Ober CP, Seelig DM, Wilke CT, Lawrence J. Computed tomography radiomic features hold prognostic utility for canine lung tumors: An analytical study. PLoS One 2021; 16:e0256139. [PMID: 34403435 PMCID: PMC8370631 DOI: 10.1371/journal.pone.0256139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative analysis of computed tomography (CT) radiomic features is an indirect measure of tumor heterogeneity, which has been associated with prognosis in human lung carcinoma. Canine lung tumors share similar features to human lung tumors and serve as a model in which to investigate the utility of radiomic features in differentiating tumor type and prognostication. The purpose of this study was to correlate first-order radiomic features from canine pulmonary tumors to histopathologic characteristics and outcome. Disease-free survival, overall survival time and tumor-specific survival were calculated as days from the date of CT scan. Sixty-seven tumors from 65 dogs were evaluated. Fifty-six tumors were classified as primary pulmonary adenocarcinomas and 11 were non-adenocarcinomas. All dogs were treated with surgical resection; 14 dogs received adjuvant chemotherapy. Second opinion histopathology in 63 tumors confirmed the histologic diagnosis in all dogs and further characterized 53 adenocarcinomas. The median overall survival time was longer (p = 0.004) for adenocarcinomas (339d) compared to non-adenocarcinomas (55d). There was wide variation in first-order radiomic statistics across tumors. Mean Hounsfield units (HU) ratio (p = 0.042) and median mean HU ratio (p = 0.042) were higher in adenocarcinomas than in non-adenocarcinomas. For dogs with adenocarcinoma, completeness of excision was associated with overall survival (p<0.001) while higher mitotic index (p = 0.007) and histologic score (p = 0.037) were associated with shorter disease-free survival. CT-derived tumor variables prognostic for outcome included volume, maximum axial diameter, and four radiomic features: integral total, integral total mean ratio, total HU, and max mean HU ratio. Tumor volume was also significantly associated with tumor invasion (p = 0.044). Further study of radiomic features in canine lung tumors is warranted as a method to non-invasively interrogate CT images for potential predictive and prognostic utility.
Collapse
Affiliation(s)
- Hannah Able
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (HA); (JL)
| | - Amber Wolf-Ringwall
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christopher P. Ober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris T. Wilke
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (HA); (JL)
| |
Collapse
|
12
|
Caruso D, Pucciarelli F, Zerunian M, Ganeshan B, De Santis D, Polici M, Rucci C, Polidori T, Guido G, Bracci B, Benvenga A, Barbato L, Laghi A. Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia. Radiol Med 2021; 126:1415-1424. [PMID: 34347270 PMCID: PMC8335460 DOI: 10.1007/s11547-021-01402-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the potential role of texture-based radiomics analysis in differentiating Coronavirus Disease-19 (COVID-19) pneumonia from pneumonia of other etiology on Chest CT. MATERIALS AND METHODS One hundred and twenty consecutive patients admitted to Emergency Department, from March 8, 2020, to April 25, 2020, with suspicious of COVID-19 that underwent Chest CT, were retrospectively analyzed. All patients presented CT findings indicative for interstitial pneumonia. Sixty patients with positive COVID-19 real-time reverse transcription polymerase chain reaction (RT-PCR) and 60 patients with negative COVID-19 RT-PCR were enrolled. CT texture analysis (CTTA) was manually performed using dedicated software by two radiologists in consensus and textural features on filtered and unfiltered images were extracted as follows: mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. Nonparametric Mann-Whitney test assessed CTTA ability to differentiate positive from negative COVID-19 patients. Diagnostic criteria were obtained from receiver operating characteristic (ROC) curves. RESULTS Unfiltered CTTA showed lower values of mean intensity, MPP, and kurtosis in COVID-19 positive patients compared to negative patients (p = 0.041, 0.004, and 0.002, respectively). On filtered images, fine and medium texture scales were significant differentiators; fine texture scale being most significant where COVID-19 positive patients had lower SD (p = 0.004) and MPP (p = 0.004) compared to COVID-19 negative patients. A combination of the significant texture features could identify the patients with positive COVID-19 from negative COVID-19 with a sensitivity of 60% and specificity of 80% (p = 0.001). CONCLUSIONS Preliminary evaluation suggests potential role of CTTA in distinguishing COVID-19 pneumonia from other interstitial pneumonia on Chest CT.
Collapse
Affiliation(s)
- Damiano Caruso
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesco Pucciarelli
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Marta Zerunian
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London Hospitals NHS Trust, London, UK
| | - Domenico De Santis
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Michela Polici
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Carlotta Rucci
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Tiziano Polidori
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Gisella Guido
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Benedetta Bracci
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Antonella Benvenga
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Luca Barbato
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Andrea Laghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.
| |
Collapse
|
13
|
Tunali I, Gillies RJ, Schabath MB. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039537. [PMID: 33431509 PMCID: PMC8288444 DOI: 10.1101/cshperspect.a039537] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medical imaging is the standard-of-care for early detection, diagnosis, treatment planning, monitoring, and image-guided interventions of lung cancer patients. Most medical images are stored digitally in a standardized Digital Imaging and Communications in Medicine format that can be readily accessed and used for qualitative and quantitative analysis. Over the several last decades, medical images have been shown to contain complementary and interchangeable data orthogonal to other sources such as pathology, hematology, genomics, and/or proteomics. As such, "radiomics" has emerged as a field of research that involves the process of converting standard-of-care images into quantitative image-based data that can be merged with other data sources and subsequently analyzed using conventional biostatistics or artificial intelligence (AI) methods. As radiomic features capture biological and pathophysiological information, these quantitative radiomic features have shown to provide rapid and accurate noninvasive biomarkers for lung cancer risk prediction, diagnostics, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics and emerging AI methods in lung cancer research are highlighted and discussed including advantages, challenges, and pitfalls.
Collapse
Affiliation(s)
- Ilke Tunali
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
14
|
Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, Walls D, Hoy L, Khan S, Endozo R, Shortman R, Hoath J, Bhargava A, Hanson M, Francis D, Arulampalam T, Dindyal S, Chen SH, Ng T, Groves A. Texture Analysis of Fractional Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers (Basel) 2021; 13:2715. [PMID: 34072712 PMCID: PMC8199380 DOI: 10.3390/cancers13112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
To assess the capability of fractional water content (FWC) texture analysis (TA) to generate biologically relevant information from routine PET/MRI acquisitions for colorectal cancer (CRC) patients. Thirty consecutive primary CRC patients (mean age 63.9, range 42-83 years) prospectively underwent FDG-PET/MRI. FWC tumor parametric images generated from Dixon MR sequences underwent TA using commercially available research software (TexRAD). Data analysis comprised (1) identification of functional imaging correlates for texture features (TF) with low inter-observer variability (intraclass correlation coefficient: ICC > 0.75), (2) evaluation of prognostic performance for FWC-TF, and (3) correlation of prognostic imaging signatures with gene mutation (GM) profile. Of 32 FWC-TF with ICC > 0.75, 18 correlated with total lesion glycolysis (TLG, highest: rs = -0.547, p = 0.002). Using optimized cut-off values, five MR FWC-TF identified a good prognostic group with zero mortality (lowest: p = 0.017). For the most statistically significant prognostic marker, favorable prognosis was significantly associated with a higher number of GM per patient (medians: 7 vs. 1.5, p = 0.009). FWC-TA derived from routine PET/MRI Dixon acquisitions shows good inter-operator agreement, generates biological relevant information related to TLG, GM count, and provides prognostic information that can unlock new clinical applications for CRC patients.
Collapse
Affiliation(s)
- Balaji Ganeshan
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Kenneth Miles
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Asim Afaq
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shonit Punwani
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Manuel Rodriguez
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Simon Wan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Darren Walls
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Luke Hoy
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Saif Khan
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Raymond Endozo
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Robert Shortman
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - John Hoath
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| | - Aman Bhargava
- Institute of Health Barts and London Medical School, Queen Mary University of London (QMUL), London E1 2AD, UK;
| | - Matthew Hanson
- Division of Cancer and Clinical Support, Barking, Havering and Redbridge University Hospitals NHS Trust, Queens and King George Hospitals, Essex IG3 8YB, UK;
| | - Daren Francis
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, Barnet and Chase Farm Hospitals, London NW3 2QG, UK;
| | - Tan Arulampalam
- Department of Surgery, East Suffolk and North Essex NHS Foundation Trust, Colchester General Hospital, Colchester CO4 5JL, UK;
| | - Sanjay Dindyal
- Imaging Division, Surgery and Cancer Board, University College London Hospitals (UCLH) NHS Foundation Trust, University College Hospital (UCH), London NW1 2BU, UK; (A.A.); (M.R.); (S.W.); (S.K.); (R.E.); (R.S.); (S.D.)
| | - Shih-Hsin Chen
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King’s College London (KCL), London WC2R 2LS, UK;
| | - Ashley Groves
- Research Department of Imaging, Division of Medicine, University College London (UCL), London WC1E 6BT, UK; (K.M.); (S.P.); (D.W.); (L.H.); (J.H.); (S.-H.C.); (A.G.)
| |
Collapse
|
15
|
Agazzi GM, Ravanelli M, Roca E, Medicina D, Balzarini P, Pessina C, Vermi W, Berruti A, Maroldi R, Farina D. CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol Med 2021; 126:786-794. [PMID: 33512651 DOI: 10.1007/s11547-020-01323-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE To develop a CT texture-based model able to predict epidermal growth factor receptor (EGFR)-mutated, anaplastic lymphoma kinase (ALK)-rearranged lung adenocarcinomas and distinguish them from wild-type tumors on pre-treatment CT scans. MATERIALS AND METHODS Texture analysis was performed using proprietary software TexRAD (TexRAD Ltd, Cambridge, UK) on pre-treatment contrast-enhanced CT scans of 84 patients with metastatic primary lung adenocarcinoma. Textural features were quantified using the filtration-histogram approach with different spatial scale filters on a single 5-mm-thick central slice considered representative of the whole tumor. In order to deal with class imbalance regarding mutational status percentages in our population, the dataset was optimized using the synthetic minority over-sampling technique (SMOTE) and correlations with textural features were investigated using a generalized boosted regression model (GBM) with a nested cross-validation approach (performance averaged over 1000 resampling episodes). RESULTS ALK rearrangements, EGFR mutations and wild-type tumors were observed in 19, 28 and 37 patients, respectively, in the original dataset. The balanced dataset was composed of 171 observations. Among the 29 original texture variables, 17 were employed for model building. Skewness on unfiltered images and on fine texture was the most important features. EGFR-mutated tumors showed the highest skewness while ALK-rearranged tumors had the lowest values with wild-type tumors showing intermediate values. The average accuracy of the model calculated on the independent nested validation set was 81.76% (95% CI 81.45-82.06). CONCLUSION Texture analysis, in particular skewness values, could be promising for noninvasive characterization of lung adenocarcinoma with respect to EGFR and ALK mutations.
Collapse
Affiliation(s)
- Giorgio Maria Agazzi
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Marco Ravanelli
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Roca
- Department of Oncology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Daniela Medicina
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Carlotta Pessina
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Alfredo Berruti
- Department of Oncology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Davide Farina
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
16
|
Uronic acid metabolic process-related gene expression-based signature predicts overall survival of glioma. Biosci Rep 2021; 41:227321. [PMID: 33324981 PMCID: PMC7791545 DOI: 10.1042/bsr20203051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common and malignant cancer of the central nervous system, and the prognosis is poor. Metabolic reprogramming is a common phenomenon that plays an important role in tumor progression including gliomas. Searching the representative process among numerous metabolic processes to evaluate the prognosis aside from the glycolytic pathway may be of great significance. A novel prediction signature was constructed in the present study based on gene expression. A total of 1027 glioma samples with clinical and RNA-seq data were used in the present study. Lasso-Cox, gene set variation analysis, Kaplan-Meier survival curve analysis, Cox regression, receiver operating characteristic curve, and elastic net were performed for constructing and verifying predictive models. The R programming language was used as the main tool for statistical analysis and graphical work. This signature was found to be stable in prognostic prediction in the Chinese Glioma Genome Atlas Network and the Cancer Genome Atlas databases. The possible mechanism was also explored, revealing that the aforementioned signature was closely related to DNA replication and ATP binding. In summary, a prognosis prediction signature for patients with glioma based on five genes was constructed and showed great potential for clinical application.
Collapse
|
17
|
Han R, Arjal R, Dong J, Jiang H, Liu H, Zhang D, Huang L. Three dimensional texture analysis of noncontrast chest CT in differentiating solitary solid lung squamous cell carcinoma from adenocarcinoma and correlation to immunohistochemical markers. Thorac Cancer 2020; 11:3099-3106. [PMID: 32945092 PMCID: PMC7605991 DOI: 10.1111/1759-7714.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background The aim of the study was to investigate 3D texture analysis (3D‐TA) in noncontrast enhanced computed tomography (CT) (NCECT) to differentiate squamous cell carcinoma (SCC) from adenocarcinoma (AC), and the correlation with immunohistochemical markers. Methods A total of 70 patients confirmed with SCC (n = 29) and AC (n = 41) were enrolled in this retrospective study. 3D‐TA was utilized to calculate TA parameters of all the tumor lesions based on NCECT images, and all the patients were divided into the training and the test groups. The TA parameters were selected by dimensionality reduction, and the model was established to differentiate SCC from AC according to the training group. The ROC curve was used to evaluate the diagnostic efficiency of the model in both the training and the test groups. Spearman correlation were used to assess the correlation between the selected feature parameters and immunohistochemical markers (P63, P40, and TTF‐1). Results Five TA parameters, including volume count, relative deviation, Haralick correlation, gray‐level nonuniformity and run length nonuniformity, were obtained to differentiate SCC from AC by multistep dimensionality reduction. The new model combined with all five TA parameters yielded a high diagnostic performance to differentiate SCC from AC (AUC 0.803) in test group, with a specificity of 89% and a sensitivity of 77%. There was weak correlation between the five texture feature parameters and P63 as well as P40 in all patients (P < 0.05), respectively. Conclusions The model including five TA parameters on NECT has a good diagnostic performance in differentiating SCC from AC. Key points • Significant findings of the study The model created by five selected textural feature parameters can differentiate solid SCC from AC without contrast media. The selected five texture feature parameters are correlated to the immunohistochemical markers P63 and P40. • What this study adds The textural feature parameters' model can identify SCC from AC without contrast media.
Collapse
Affiliation(s)
- Rui Han
- Department of Radiology, Wuhan No.1 Hospital, Wuhan, China
| | - Roshan Arjal
- Department of Radiology, St. Francis Hospital, Evanston, Illinois, USA
| | - Jin Dong
- Department of Radiology, Wuhan No.1 Hospital, Wuhan, China
| | - Hong Jiang
- Department of Radiology, Wuhan No.1 Hospital, Wuhan, China
| | | | - Dongyou Zhang
- Department of Radiology, Wuhan No.1 Hospital, Wuhan, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
18
|
Sessa M, Khan AR, Liang D, Andersen M, Kulahci M. Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence. Front Pharmacol 2020; 11:1028. [PMID: 32765261 PMCID: PMC7378532 DOI: 10.3389/fphar.2020.01028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Aim To perform a systematic review on the application of artificial intelligence (AI) based knowledge discovery techniques in pharmacoepidemiology. Study Eligibility Criteria Clinical trials, meta-analyses, narrative/systematic review, and observational studies using (or mentioning articles using) artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded. Data Sources Articles recorded from 1950/01/01 to 2019/05/06 in Ovid MEDLINE were screened. Participants Studies including humans (real or simulated) exposed to a drug. Results In total, 72 original articles and 5 reviews were identified via Ovid MEDLINE. Twenty different knowledge discovery methods were identified, mainly from the area of machine learning (66/72; 91.7%). Classification/regression (44/72; 61.1%), classification/regression + model optimization (13/72; 18.0%), and classification/regression + features selection (12/72; 16.7%) were the three most frequent tasks in reviewed literature that machine learning methods has been applied to solve. The top three used techniques were artificial neural networks, random forest, and support vector machines models. Conclusions The use of knowledge discovery techniques of artificial intelligence techniques has increased exponentially over the years covering numerous sub-topics of pharmacoepidemiology. Systematic Review Registration Systematic review registration number in PROSPERO: CRD42019136552.
Collapse
Affiliation(s)
- Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Rauf Khan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - David Liang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Murat Kulahci
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
19
|
Yang G, Nie P, Zhao L, Guo J, Xue W, Yan L, Cui J, Wang Z. 2D and 3D texture analysis to predict lymphovascular invasion in lung adenocarcinoma. Eur J Radiol 2020; 129:109111. [PMID: 32559593 DOI: 10.1016/j.ejrad.2020.109111] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/24/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. METHODS A total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. RESULTS Maximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). CONCLUSIONS 2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.
Collapse
Affiliation(s)
- Guangjie Yang
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pei Nie
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lianzi Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Guo
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Xue
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Yan
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Cui
- Huiying Medical Technology Co. Ltd, Beijing, China
| | - Zhenguang Wang
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Borghesi A, Michelini S, Golemi S, Scrimieri A, Maroldi R. What's New on Quantitative CT Analysis as a Tool to Predict Growth in Persistent Pulmonary Subsolid Nodules? A Literature Review. Diagnostics (Basel) 2020; 10:E55. [PMID: 31973010 PMCID: PMC7168253 DOI: 10.3390/diagnostics10020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary subsolid nodules (SSNs) are observed not infrequently on thin-section chest computed tomography (CT) images. SSNs persisting after a follow-up period of three to six months have a high likelihood of being pre-malignant or malignant lesions. Malignant SSNs usually represent the histologic spectrum of pulmonary adenocarcinomas, and pulmonary adenocarcinomas presenting as SSNs exhibit quite heterogeneous behavior. In fact, while most lesions show an indolent course and may grow very slowly or remain stable for many years, others may exhibit significant growth in a relatively short time. Therefore, it is not yet clear which persistent SSNs should be surgically removed and for how many years stable SSNs should be monitored. In order to solve these two open issues, the use of quantitative analysis has been proposed to define the "tailored" management of persistent SSNs. The main purpose of this review was to summarize recent results about quantitative CT analysis as a diagnostic tool for predicting the behavior of persistent SSNs. Thus, a literature search was conducted in PubMed/MEDLINE, Scopus, and Web of Science databases to find original articles published from January 2014 to October 2019. The results of the selected studies are presented and compared in a narrative way.
Collapse
Affiliation(s)
- Andrea Borghesi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.G.); (A.S.); (R.M.)
| | - Silvia Michelini
- Department of Radiology, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124 Brescia, Italy;
| | - Salvatore Golemi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.G.); (A.S.); (R.M.)
| | - Alessandra Scrimieri
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.G.); (A.S.); (R.M.)
| | - Roberto Maroldi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.G.); (A.S.); (R.M.)
| |
Collapse
|
21
|
Quantitative CT Analysis for Predicting the Behavior of Part-Solid Nodules with Solid Components Less than 6 mm: Size, Density and Shape Descriptors. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent part-solid nodules (PSNs) with a solid component <6 mm usually represent minimally invasive adenocarcinomas and are significantly less aggressive than PSNs with a solid component ≥6 mm. However, not all PSNs with a small solid component behave in the same way: some nodules exhibit an indolent course, whereas others exhibit more aggressive behavior. Thus, predicting the future behavior of this subtype of PSN remains a complex and fascinating diagnostic challenge. The main purpose of this study was to apply open-source software to investigate which quantitative computed tomography (CT) features may be useful for predicting the behavior of a select group of PSNs. We retrospectively selected 50 patients with a single PSN with a solid component <6 mm and diameter <15 mm. Computerized analysis was performed using ImageJ software for each PSN and various quantitative features were calculated from the baseline CT images. The area, perimeter, mean Feret diameter, linear mass density, circularity and solidity were significantly related to nodule growth (p ≤ 0.031). Therefore, quantitative CT analysis was helpful for predicting the future behavior of a select group of PSNs with a solid component <6 mm and diameter <15 mm.
Collapse
|
22
|
Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated by nivolumab: A multicentre retrospective study. Eur J Radiol 2019; 118:251-256. [PMID: 31439251 DOI: 10.1016/j.ejrad.2019.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/24/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to assess computed-tomography histogram analysis (CTHA) as prognostic and predictive factor in platinum-refractory non-small cell lung carcinoma (NSCLC) treated with immune checkpoint inhibitor Nivolumab. METHOD One hundred and four patients were enrolled from 3 different centers. CT was performed using similar parameters among different scanners. CTHA was performed with the proprietary software TexRAD, which extracts histogram features at different spatial scale (spatial scale filters, SSF) producing 30 CTHA features per patients. Cross-validated Least Absolute Shrinkage and Selection Operator LASSO was used to select those features which were related to overall and progression-free survival (OS and PFS, respectively). High- and low-risk subgroups were identified using the best cutoff. RESULTS Median follow-up was 13.8 weeks. Median OS and PFS were 7.3 and 3 months, respectively. LASSO selected kurtosis obtained by SSF = 4 mm as the single feature related to OS, leading to an hazard ratio (HR) of 0.476 (95%CI 0.29-0.77). PFS was related with kurtosis SSF = 6 mm, with HR of 0.556 (95%CI 0.36-0.86). CONCLUSION Despite its limitations, this study is the first which suggests that CTHA could play a role in stratifying prognosis and treatment response in patients with NSCLC treated with Nivolumab.
Collapse
|
23
|
Borghesi A, Michelini S, Scrimieri A, Golemi S, Maroldi R. Solid Indeterminate Pulmonary Nodules of Less Than 300 mm 3: Application of Different Volume Doubling Time Cut-offs in Clinical Practice. Diagnostics (Basel) 2019; 9:diagnostics9020062. [PMID: 31226780 PMCID: PMC6627535 DOI: 10.3390/diagnostics9020062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/01/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
In the British Thoracic Society guidelines for incidental pulmonary nodules, volumetric analysis has become the recommended method for growth assessment in solid indeterminate pulmonary nodules (SIPNs) <300 mm3. In these guidelines, two different volume doubling time (VDT) cut-offs, 400 and 600 days, were proposed to differentiate benign from malignant nodules. The present study aims to evaluate the performance of these VDT cut-offs in a group of SIPNs <300 mm3 which were incidentally detected in a routine clinical setting. During a 7-year period, we retrospectively selected 60 patients with a single SIPN <300 mm3. For each SIPN, the volume and VDT were calculated using semiautomatic software throughout the follow-up period, and the performance of the 400- and 600-day VDT cut-offs was compared. In the selected sample, there were 38 benign and 22 malignant nodules. In this group of nodules, the sensitivity, negative predictive value and accuracy of the 600-day VDT cut-off were higher than those of the 400-day VDT cut-off. Therefore, in the management of SIPNs <300 mm3 which were incidentally detected in a clinical setting, the 600-day VDT cut-off was better at differentiating benign from malignant nodules than the 400-day VDT cut-off, by reducing the number of false negatives.
Collapse
Affiliation(s)
- Andrea Borghesi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Silvia Michelini
- Department of Radiology, Fondazione Poliambulanza Istituto Ospedaliero, Via Leonida Bissolati, 57, 25124 Brescia, Italy.
| | - Alessandra Scrimieri
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Salvatore Golemi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Roberto Maroldi
- Department of Radiology, University and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| |
Collapse
|
24
|
Ledda RE, Milanese G, Gnetti L, Borghesi A, Sverzellati N, Silva M. Spread through air spaces in lung adenocarcinoma: is radiology reliable yet? J Thorac Dis 2019; 11:S256-S261. [PMID: 30997191 PMCID: PMC6424723 DOI: 10.21037/jtd.2019.01.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Roberta E. Ledda
- Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Gianluca Milanese
- Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Andrea Borghesi
- Department of Radiology, University and Spedali Civili of Brescia, Brescia, Italy
| | - Nicola Sverzellati
- Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Mario Silva
- Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| |
Collapse
|