1
|
Yang CC. Towards ultra-low-dose CT for detecting pulmonary nodules using DenseNet. Phys Eng Sci Med 2025; 48:379-389. [PMID: 39928290 DOI: 10.1007/s13246-025-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Low-radiation techniques should be used to detect and follow lung nodules on CT images, but reducing radiation dose to ultra-low-dose CT with submilliSievert dose level would drastically impede image quality and sensitivity for nodule detection. This study investigated the feasibility of using DenseNet to suppress image noise in ultra-low-dose CT for lung cancer screening. DenseNet was trained using input-label pairs from 1, 2, 4, and 6 patients. After training, the model was tested with chest CT from 14 patients that were not used in training process. Seven patients have solid nodules and 7 patients have subsolid nodules. Root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) were calculated to quantify the difference between reference and test images. The contrast-to-noise ratio (CNR) between lung nodule and lung parenchyma was calculated to evaluate the target detectability of chest CT. Subjective image quality assessment was performed using 4-point ranking scale to evaluate the visual quality of CT images perceived by end user. Substantial improvements in RMSE and PSNR were observed after denoising. The lung nodules in denoised images could be distinguished more easily in comparison with those in the original ultra-low-dose CT, which is supported by the CNRs and subjective image quality scores. The comparison of intensity profiles for lung nodules demonstrated that the image noise in ultra-low-dose CT could be suppressed effectively after denoising without causing edge blurring or variation in Hounsfield unit (HU) values. A two-sample t-test revealed no statistically significant differences between full-dose CT and denoised ultra-low-dose CT in the evaluation of lung nodules, lung parenchyma, paraspinal muscle, or vertebral body. Since the linear no-threshold model suggests that no amount of ionizing radiation is entirely risk-free, the quest for further dose reduction remains a consistently important focus in radiology. Overall, our findings suggest that DenseNet could be a viable approach for reducing image noise in ultra-low-dose CT scans used for lung cancer screening.
Collapse
Affiliation(s)
- Ching-Ching Yang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Ye K, Xu L, Pan B, Li J, Li M, Yuan H, Gong NJ. Deep learning-based image domain reconstruction enhances image quality and pulmonary nodule detection in ultralow-dose CT with adaptive statistical iterative reconstruction-V. Eur Radiol 2025:10.1007/s00330-024-11317-y. [PMID: 39792163 DOI: 10.1007/s00330-024-11317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR. MATERIALS AND METHODS A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.28 mSv) and ULDCT (0.17 ± 0.03 mSv) scans. ULDCT images were reconstructed with ASiR-V (ULDCT-ASiR-V) and post-processed using DLIR (ULDCT-DLIR). The quality of the three CT images was analyzed. Three radiologists detected and measured pulmonary nodules on all CT images, with LDCT results serving as references. Nodule conspicuity was assessed using a five-point Likert scale, followed by further statistical analyses. RESULTS A total of 463 nodules were detected using LDCT. The image noise of ULDCT-DLIR decreased by 60% compared to that of ULDCT-ASiR-V and was lower than that of LDCT (p < 0.001). The subjective image quality scores for ULDCT-DLIR (4.4 [4.1, 4.6]) were also higher than those for ULDCT-ASiR-V (3.6 [3.1, 3.9]) (p < 0.001). The overall nodule detection rates for ULDCT-ASiR-V and ULDCT-DLIR were 82.1% (380/463) and 87.0% (403/463), respectively (p < 0.001). The percentage difference between diameters > 1 mm was 2.9% (ULDCT-ASiR-V vs. LDCT) and 0.5% (ULDCT-DLIR vs. LDCT) (p = 0.009). Scores of nodule imaging sharpness on ULDCT-DLIR (4.0 ± 0.68) were significantly higher than those on ULDCT-ASiR-V (3.2 ± 0.50) (p < 0.001). CONCLUSION DLIR-based image domain improves image quality, nodule detection rate, nodule imaging sharpness, and nodule measurement accuracy of ASiR-V on ULDCT. KEY POINTS Question Deep learning post-processing is simple and cheap compared with raw data processing, but its performance is not clear on ultralow-dose CT. Findings Deep learning post-processing enhanced image quality and improved the nodule detection rate and accuracy of nodule measurement of ultralow-dose CT. Clinical relevance Deep learning post-processing improves the practicability of ultralow-dose CT and makes it possible for patients with less radiation exposure during lung cancer screening.
Collapse
Affiliation(s)
- Kai Ye
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Libo Xu
- Laboratory for Intelligent Medical Imaging, Tsinghua Cross-strait Research Institute, Xiamen, China
| | | | - Jie Li
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Meijiao Li
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Nan-Jie Gong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Ding L, Chen M, Li X, Wu Y, Li J, Deng S, Xu Y, Chen Z, Yan C. Ultra-low dose dual-layer detector spectral CT for pulmonary nodule screening: image quality and diagnostic performance. Insights Imaging 2025; 16:11. [PMID: 39792229 PMCID: PMC11723867 DOI: 10.1186/s13244-024-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules. MATERIALS AND METHODS Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV. Quantitative and qualitative image analysis, nodule detectability, and Lung-RADS evaluation were compared using repeated one-way analysis of variance, Friedman test, and weighted kappa coefficient. RESULTS A total of 249 participants (mean age ± standard deviation, 50.0 years ± 12.9; 126 male) with 637 lung nodules were included. ULDCT resulted in a significantly lower mean radiation dose than RDCT (0.3 mSv ± 0.0 vs. 3.6 mSv ± 0.8; p < 0.001). Compared with RDCT, ULDCT EDM showed significantly higher signal-noise-ratio (44.0 ± 77.2 vs. 4.6 ± 6.6; p < 0.001) and contrast-noise-ratio (26.7 ± 17.7 vs. 5.0 ± 4.4; p < 0.001) with qualitative scores ranked higher or equal to the average. Using the regular-dose images as a reference, ULDCT EDM images had a satisfactory nodule detection rate (84.6%) and good inter-observer agreements compared with RDCT (κw > 0.60). CONCLUSION Ultra-low dose dual-layer detector CT with 91.2% radiation dose reduction achieves sufficient image quality and diagnostic performance of pulmonary nodules. CRITICAL RELEVANCE STATEMENT Dual-layer detector spectral CT enables substantial radiation dose reduction without impairing image quality for the follow-up of pulmonary nodules or lung cancer screening. KEY POINTS Radiation dose is a major concern for patients requiring pulmonary nodules CT screening. Ultra-low dose dual-layer detector spectral CT with 91.2% dose reduction demonstrated satisfactory performance. Dual-layer detector spectral CT has the potential for lung cancer screening and management.
Collapse
Affiliation(s)
- Li Ding
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingwang Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingxu Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuting Deng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Yao Y, Su X, Deng L, Zhang J, Xu Z, Li J, Li X. Effects of tube voltage, radiation dose and adaptive statistical iterative reconstruction strength level on the detection and characterization of pulmonary nodules in ultra-low-dose chest CT. Cancer Imaging 2024; 24:123. [PMID: 39278933 PMCID: PMC11402195 DOI: 10.1186/s40644-024-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE To explore the effects of tube voltage, radiation dose and adaptive statistical iterative reconstruction (ASiR-V) strength level on the detection and characterization of pulmonary nodules by an artificial intelligence (AI) software in ultra-low-dose chest CT (ULDCT). MATERIALS AND METHODS An anthropomorphic thorax phantom containing 12 spherical simulated nodules (Diameter: 12 mm, 10 mm, 8 mm, 5 mm; CT value: -800HU, -630HU, 100HU) was scanned with three ULDCT protocols: Dose-1 (70kVp:0.11mSv, 100kVp:0.10mSv), Dose-2 (70kVp:0.34mSv, 100kVp:0.32mSv), Dose-3 (70kVp:0.53mSv, 100kVp:0.51mSv). All scanning protocols were repeated five times. CT images were reconstructed using four different strength levels of ASiR-V (0%=FBP, 30%, 50%, 70%ASiR-V) with a slice thickness of 1.25 mm. The characteristics of the physical nodules were used as reference standards. All images were analyzed using a commercially available AI software to identify nodules for calculating nodule detection rate (DR) and to obtain their long diameter and short diameter, which were used to calculate the deformation coefficient (DC) and size measurement deviation percentage (SP) of nodules. DR, DC and SP of different imaging groups were statistically compared. RESULTS Image noise decreased with the increase of ASiR-V strength level, and the 70 kV images had lower noise under the same strength level (mean-value 70 kV: 40.14 ± 7.05 (dose 1), 27.55 ± 7.38 (dose 2), 23.88 ± 6.98 (dose 3); 100 kV: 42.36 ± 7.62 (dose 1); 30.78 ± 6.87 (dose 2); 26.49 ± 6.61 (dose 3)). Under the same dose level, there were no differences in DR between 70 kV and 100 kV (dose 1: 58.76% vs. 58.33%; dose 2: 73.33% vs. 70.83%; dose 3: 75.42% vs. 75.42%, all p > 0.05). The DR of GGNs increased significantly at dose 2 and higher (70 kV: 38.12% (dose 1), 60.63% (dose 2), 64.38% (dose 3); 100 kV: 37.50% (dose 1), 59.38% (dose 2), 66.25% (dose 3)). In general, the use of ASiR-V at higher strength levels (> 50%) and 100 kV provided better (lower) DC and SP. CONCLUSION Detection rates are similar between 70 kV and 100 kV scans. The 70 kV images have better noise performance under the same ASiR-V level, while images of 100 kV and higher ASiR-V levels are better in preserving the nodule morphology (lower DC and SP); the dose levels above 0.33mSv provide high sensitivity for nodules detection, especially the simulated ground glass nodules.
Collapse
Affiliation(s)
- Yue Yao
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Su
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lei Deng
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - JingBin Zhang
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zengmiao Xu
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | - Xiaohui Li
- Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Wang J, Sui X, Zhao R, Du H, Wang J, Wang Y, Qin R, Lu X, Ma Z, Xu Y, Jin Z, Song L, Song W. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window. Eur Radiol 2024; 34:1053-1064. [PMID: 37581663 DOI: 10.1007/s00330-023-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To explore the performance of low-dose computed tomography (LDCT) with deep learning reconstruction (DLR) for the improvement of image quality and assessment of lung parenchyma. METHODS Sixty patients underwent chest regular-dose CT (RDCT) followed by LDCT during the same examination. RDCT images were reconstructed with hybrid iterative reconstruction (HIR) and LDCT images were reconstructed with HIR and DLR, both using lung algorithm. Radiation exposure was recorded. Image noise, signal-to-noise ratio, and subjective image quality of normal and abnormal CT features were evaluated and compared using the Kruskal-Wallis test with Bonferroni correction. RESULTS The effective radiation dose of LDCT was significantly lower than that of RDCT (0.29 ± 0.03 vs 2.05 ± 0.65 mSv, p < 0.001). The mean image noise ± standard deviation was 33.9 ± 4.7, 39.6 ± 4.3, and 31.1 ± 3.2 HU in RDCT, LDCT HIR-Strong, and LDCT DLR-Strong, respectively (p < 0.001). The overall image quality of LDCT DLR-Strong was significantly better than that of LDCT HIR-Strong (p < 0.001) and comparable to that of RDCT (p > 0.05). LDCT DLR-Strong was comparable to RDCT in evaluating solid nodules, increased attenuation, linear opacity, and airway lesions (all p > 0.05). The visualization of subsolid nodules and decreased attenuation was better with DLR than with HIR in LDCT but inferior to RDCT (all p < 0.05). CONCLUSION LDCT DLR can effectively reduce image noise and improve image quality. LDCT DLR provides good performance for evaluating pulmonary lesions, except for subsolid nodules and decreased lung attenuation, compared to RDCT-HIR. CLINICAL RELEVANCE STATEMENT The study prospectively evaluated the contribution of DLR applied to chest low-dose CT for image quality improvement and lung parenchyma assessment. DLR can be used to reduce radiation dose and keep image quality for several indications. KEY POINTS • DLR enables LDCT maintaining image quality even with very low radiation doses. • Chest LDCT with DLR can be used to evaluate lung parenchymal lesions except for subsolid nodules and decreased lung attenuation. • Diagnosis of pulmonary emphysema or subsolid nodules may require higher radiation doses.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Ruijie Zhao
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Huayang Du
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Jiaru Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Yun Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Ruiyao Qin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Xiaoping Lu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Zhuangfei Ma
- Canon Medical System (China), No. 10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100024, China
| | - Yinghao Xu
- Canon Medical System (China), No. 10, Jiuxianqiao North Road, Chaoyang District, Beijing, 100024, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Zheng Y, Dong J, Yang X, Shuai P, Li Y, Li H, Dong S, Gong Y, Liu M, Zeng Q. Benign-malignant classification of pulmonary nodules by low-dose spiral computerized tomography and clinical data with machine learning in opportunistic screening. Cancer Med 2023. [PMID: 37248730 DOI: 10.1002/cam4.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Many people were found with pulmonary nodules during physical examinations. It is of great practical significance to discriminate benign and malignant nodules by using data mining technology. METHODS The subjects' demographic data, baseline examination results, and annual follow-up low-dose spiral computerized tomography (LDCT) results were recorded. The findings from annual physical examinations of positive nodules, including highly suspicious nodules and clinically tentative benign nodules, was analyzed. The extreme gradient boosting (XGBoost) model was constructed and the Grid Search CV method was used to select the super parameters. External unit data were used as an external validation set to evaluate the generalization performance of the model. RESULTS A total of 135,503 physical examinees were enrolled. Baseline testing found that 27,636 (20.40%) participants had clinically tentative benign nodules and 611 (0.45%) participants had highly suspicious nodules. The proportion of highly suspicious nodules in participants with negative baseline was about 0.12%-0.46%, which was lower than the baseline level except the follow-up of >5 years. In the 27,636 participants with clinically tentative benign nodules, only in the first year of LDCT re-examination was the proportion of highly suspicious nodules (1.40%) significantly greater than that of baseline screening (0.45%) (p < 0.001), and the proportion of highly suspicious nodules was not different between the baseline screening and other follow-up years (p > 0.05). Furthermore, 322 cases with benign nodules and 196 patients with malignant nodules confirmed by surgery and pathology were compared. A model and the top 15 most important clinical variables were determined by XGBoost algorithm. The area under the curve (AUC) of the model was 0.76 [95% CI: 0.67-0.84], and the accuracy was 0.75. The sensitivity and specificity of the model under this threshold were 0.78 and 0.73, respectively. In the validation of model using external data, the AUC was 0.87 and the accuracy was 0.80. The sensitivity and specificity were 0.83 and 0.77, respectively. CONCLUSIONS It is important that pulmonary nodules could be more accurately identified at the first LDCT examination. A model with 15 variables which are routinely measured in the clinic could be helpful to distinguish benign and malignant nodules. It could help the radiological team issue a more accurate report; and it may guide the clinical team regarding LDCT follow-up.
Collapse
Affiliation(s)
- Yansong Zheng
- Department of Health Medicine, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jing Dong
- Research of Medical Big Data Center & National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Xue Yang
- Department of Health Medicine, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongli Li
- Department of Health Management/ Henan Provincial People's Hospital of Zhengzhou University, Henan Key Laboratory of Chronic Disease Management, Zhengzhou, China
| | - Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Shengyong Dong
- Department of Health Medicine, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Gong
- Department of Health Medicine, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Miao Liu
- Graduate School, Chinese PLA general hospital, Beijing, China
| | - Qiang Zeng
- Department of Health Medicine, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Han D, Cai J, Heus A, Heuvelmans M, Imkamp K, Dorrius M, Pelgrim GJ, de Jonge G, Oudkerk M, van den Berge M, Vliegenthart R. Detection and size quantification of pulmonary nodules in ultralow-dose versus regular-dose CT: a comparative study in COPD patients. Br J Radiol 2023; 96:20220709. [PMID: 36728829 PMCID: PMC10078877 DOI: 10.1259/bjr.20220709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To evaluate detectability and semi-automatic diameter and volume measurements of pulmonary nodules in ultralow-dose CT (ULDCT) vs regular-dose CT (RDCT). METHODS Fifty patients with chronic obstructive pulmonary disease (COPD) underwent RDCT on 64-multidetector CT (120 kV, filtered back projection), and ULDCT on third-generation dual source CT (100 kV with tin filter, advanced modeled iterative reconstruction). One radiologist evaluated the presence of nodules on both scans in random order, with discrepancies judged by two independent radiologists and consensus reading. Sensitivity of nodule detection on RDCT and ULDCT was compared to reader consensus. Systematic error in semi-automatically derived diameter and volume, and 95% limits of agreement (LoA) were evaluated. Nodule classification was compared by κ statistics. RESULTS ULDCT resulted in 83.1% (95% CI: 81.0-85.2) dose reduction compared to RDCT (p < 0.001). 45 nodules were present, with diameter range 4.0-25.3 mm and volume range 16.0-4483.0 mm3. Detection sensitivity was non-significant (p = 0.503) between RDCT 88.8% (95% CI: 76.0-96.3) and ULDCT 95.5% (95% CI: 84.9-99.5). No systematic bias in diameter measurements (median difference: -0.2 mm) or volumetry (median difference: -6 mm3) was found for ULDCT compared to RDCT. The 95% LoA for diameter and volume measurements were ±3.0 mm and ±33.5%, respectively. κ value for nodule classification was 0.852 for diameter measurements and 0.930 for volumetry. CONCLUSION ULDCT based on Sn100 kV enables comparable detectability of solid pulmonary nodules in COPD patients, at 83% reduced radiation dose compared to RDCT, without relevant difference in nodule measurement and size classification. ADVANCES IN KNOWLEDGE Pulmonary nodule detectability and measurements in ULDCT are comparable to RDCT.
Collapse
Affiliation(s)
- Daiwei Han
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jiali Cai
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Heus
- Department of Radiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marjolein Heuvelmans
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Kai Imkamp
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Monique Dorrius
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gert-Jan Pelgrim
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gonda de Jonge
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs Oudkerk
- Institute for Diagnostic Accuracy Research B.V., Groningen, The Netherlands
- University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Gobi K, Arunachalam VK, Varatharajaperumal RK, Cherian M, Periaswamy G, Rajesh S. The role of ultra-low-dose computed tomography in the detection of pulmonary pathologies: a prospective observational study. Pol J Radiol 2022; 87:e597-e605. [PMID: 36532248 PMCID: PMC9749781 DOI: 10.5114/pjr.2022.121433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/21/2021] [Indexed: 10/14/2024] Open
Abstract
PURPOSE The aim of the study was to compare the image noise, radiation dose, and image quality of ultra-low-dose computed tomography (CT) and standard CT in the imaging of pulmonary pathologies. MATERIAL AND METHODS This observational study was performed between July 2020 and August 2021. All enrolled patients underwent both ultra-low-dose and standard CTs. The image noise, image quality for normal pulmonary structures, presence or absence of various pulmonary lesions, and radiation dose were recorded for each of the scans. The findings of standard-dose CT were regarded as the gold standard and compared with that of ultra-low-dose CT. RESULTS A total of 124 patients were included in the study. The image noise was higher in the ultra-low-dose CT compared to standard-dose CT. The overall image quality was determined to be diagnostic in 100% of standard CT images and in 96.77% of ultra-low-dose CT images with proportional worsening of the image quality as the body mass index (BMI) range was increased. Ultra-low-dose CT offered higher (> 90%) sensitivity for lesions like consolidation (97%), pleural effusion (95%), fibrosis (92%), and solid pulmonary nodules (91%). The effective radiation dose (mSv) was many times lower in ultra-low-dose CT when compared to standard-dose CT (mean ± SD: 0.50 ± 0.005 vs. 3.99 ± 1.57). CONCLUSIONS The radiation dose of ultra-low-dose chest CT was almost equal to that of a chest X-ray. It could be used for the screening and/or follow-up of patients with solid pulmonary nodules (> 3 mm) and consolidation.
Collapse
Affiliation(s)
- K. Gobi
- Kovai Medical Centre and Hospital, Coimbatore, India
| | | | | | | | | | - S. Rajesh
- Kovai Medical Centre and Hospital, Coimbatore, India
| |
Collapse
|
9
|
Guo X, Jia D, He L, Jia X, Zhang D, Dou Y, Shen S, Ji H, Zhang S, Chen Y. Evaluation of ultralow-dose computed tomography on detection of pulmonary nodules in overweight or obese adult patients. J Appl Clin Med Phys 2022; 23:e13589. [PMID: 35293673 PMCID: PMC8992951 DOI: 10.1002/acm2.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To evaluate the accuracy of pulmonary nodule (PN) detection in overweight or obese adult patients using ultralow‐dose computed tomography (ULDCT) with tin filtration at 100 kV and advanced model‐based iterative reconstruction (ADMIRE). Methods Eighty‐one patients with body mass indices of ≥25 kg/m2 were enrolled. All patients underwent low‐dose chest CT (LDCT), followed by ULDCT. Two radiologists experienced in LDCT established the standard of reference (SOR) for PNs. The number, type, size, and location of PNs were identified in the SOR. Effective dose, objective image quality (IQ), and subjective IQ based on two radiologists’ scores were compared between ULDCT and LDCT. The detection performances of radiologists based on ULDCT were calculated according to the nodule analyses. Logistic regression was used to test for independent predictors of PN detection sensitivity. Results Both the effective dose and objective IQ were lower for ULDCT than for LDCT (both p < 0.001). Both radiologists rated the subjective IQ of the overall IQ on ULDCT to be diagnostically sufficient. In total, 234 nodules (mean diameter, 3.4 ± 1.9 mm) were classified into 32 subsolid, 149 solid, and 53 calcified nodules according to the SOR. The overall sensitivity of ULDCT for nodule detection was 93.6%. Based on multivariate analyses, the nodule types (p = 0.015) and sizes (p = 0.013) were independent predictors of nodule detection. Conclusions Compared with LDCT, ULDCT with tin filtration at 100 kV and ADMIRE could significantly reduce the radiation dose in overweight or obese patients while maintaining good sensitivity for nodule detection.
Collapse
Affiliation(s)
- Xiaowan Guo
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Dezhao Jia
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Lei He
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Xudong Jia
- Department of Urology, The Second Hospital of Hebei Medical University, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Danqing Zhang
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Yana Dou
- Siemens Healthcare Ltd., Chaoyang District, Beijing, China
| | - Shanshan Shen
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Hong Ji
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Shuqian Zhang
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Yingmin Chen
- Department of Radiology, Hebei General Hospital, Xinhua District, Shijiazhuang, Hebei Province, China
| |
Collapse
|
10
|
Gheysens G, De Wever W, Cockmartin L, Bosmans H, Coudyzer W, De Vuysere S, Lefere M. Detection of pulmonary nodules with scoutless fixed-dose ultra-low-dose CT: a prospective study. Eur Radiol 2022; 32:4437-4445. [PMID: 35238969 DOI: 10.1007/s00330-022-08584-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To determine the accuracy of scoutless, fixed-dose ultra-low-dose (ULD) CT compared to standard-dose (SD) CT for pulmonary nodule detection and semi-automated nodule measurement, across different patient sizes. METHODS Sixty-three patients underwent ULD and SD CT. Two readers examined all studies visually and with computer-aided detection (CAD). Nodules detected on SD CT were included in the reference standard by consensus and stratified into 4 categories (nodule category, NODCAT) from the Dutch-Belgian Lung Cancer Screening trial (NELSON). Effects of NODCAT and patient size on nodule detection were determined. For each nodule, volume and diameter were compared between both scans. RESULTS The reference standard comprised 173 nodules. For both readers, detection rates on ULD versus SD CT were not significantly different for NODCAT 3 and 4 nodules > 50 mm3 (reader 1: 93% versus 89% (p = 0.257); reader 2: 96% versus 98% (p = 0.317)). For NODCAT 1 and 2 nodules < 50 mm3, detection rates on ULD versus SD CT dropped significantly (reader 1: 66% versus 80% (p = 0.023); reader 2: 77% versus 87% (p = 0.039)). Body mass index and chest circumference did not influence nodule detectability (p = 0.229 and p = 0.362, respectively). Calculated volumes and diameters were smaller on ULD CT (p < 0.0001), without altering NODCAT (84% agreement). CONCLUSIONS Scoutless ULD CT reliably detects solid lung nodules with a clinically relevant volume (> 50 mm3) in lung cancer screening, irrespective of patient size. Since detection rates were lower compared to SD CT for nodules < 50 mm3, its use for lung metastasis detection should be considered on a case-by-case basis. KEY POINTS • Detection rates of pulmonary nodules > 50 mm3are not significantly different between scoutless ULD and SD CT (i.e. volumes clinically relevant in lung cancer screening based on the NELSON trial), but were different for the detection of nodules < 50 mm3(i.e. volumes still potentially relevant in lung metastasis screening). • Calculated nodule volumes were on average 0.03 mL or 9% smaller on ULD CT, which is below the 20-25% interscan variability previously reported with software-based volumetry. • Even though a scoutless, fixed-dose ULD CT protocol was used (CTDIvol0.15 mGy), pulmonary nodule detection was not influenced by patient size.
Collapse
Affiliation(s)
- Gerald Gheysens
- Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium.
| | - Walter De Wever
- Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Lesley Cockmartin
- Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Hilde Bosmans
- Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium.,Medical Physics and Quality Assessment, Department of Imaging and Pathology, KULeuven, Leuven, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospital Gasthuisberg, Leuven, Belgium
| | | | - Mathieu Lefere
- Department of Radiology, Imelda Hospital, Bonheiden, Belgium
| |
Collapse
|
11
|
Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, Vliegenthart R, Xie X. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology 2022; 303:202-212. [PMID: 35040674 DOI: 10.1148/radiol.210551] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Ultra-low-dose (ULD) CT could facilitate the clinical implementation of large-scale lung cancer screening while minimizing the radiation dose. However, traditional image reconstruction methods are associated with image noise in low-dose acquisitions. Purpose To compare the image quality and lung nodule detectability of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-V (ASIR-V) in ULD CT. Materials and Methods Patients who underwent noncontrast ULD CT (performed at 0.07 or 0.14 mSv, similar to a single chest radiograph) and contrast-enhanced chest CT (CECT) from April to June 2020 were included in this prospective study. ULD CT images were reconstructed with filtered back projection (FBP), ASIR-V, and DLIR. Three-dimensional segmentation of lung tissue was performed to evaluate image noise. Radiologists detected and measured nodules with use of a deep learning-based nodule assessment system and recognized malignancy-related imaging features. Bland-Altman analysis and repeated-measures analysis of variance were used to evaluate the differences between ULD CT images and CECT images. Results A total of 203 participants (mean age ± standard deviation, 61 years ± 12; 129 men) with 1066 nodules were included, with 100 scans at 0.07 mSv and 103 scans at 0.14 mSv. The mean lung tissue noise ± standard deviation was 46 HU ± 4 for CECT and 59 HU ± 4, 56 HU ± 4, 53 HU ± 4, 54 HU ± 4, and 51 HU ± 4 in FBP, ASIR-V level 40%, ASIR-V level 80% (ASIR-V-80%), medium-strength DLIR, and high-strength DLIR (DLIR-H), respectively, of ULD CT scans (P < .001). The nodule detection rates of FBP reconstruction, ASIR-V-80%, and DLIR-H were 62.5% (666 of 1066 nodules), 73.3% (781 of 1066 nodules), and 75.8% (808 of 1066 nodules), respectively (P < .001). Bland-Altman analysis showed the percentage difference in long diameter from that of CECT was 9.3% (95% CI of the mean: 8.0, 10.6), 9.2% (95% CI of the mean: 8.0, 10.4), and 6.2% (95% CI of the mean: 5.0, 7.4) in FBP reconstruction, ASIR-V-80%, and DLIR-H, respectively (P < .001). Conclusion Compared with adaptive statistical iterative reconstruction-V, deep learning image reconstruction reduced image noise, increased nodule detection rate, and improved measurement accuracy on ultra-low-dose chest CT images. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee in this issue.
Collapse
Affiliation(s)
- Beibei Jiang
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nianyun Li
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xiaomeng Shi
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shuai Zhang
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jianying Li
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Geertruida H de Bock
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rozemarijn Vliegenthart
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xueqian Xie
- From the Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd, Shanghai 200080, China (B.J., N.L., X.X.); CT Imaging Research Center, GE Healthcare China, Shanghai, China (X.S., S.Z., J.L.); and Departments of Epidemiology (G.H.d.B.) and Radiology (R.V.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Bie Y, Yang S, Li X, Zhao K, Zhang C, Zhong H. Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:409-418. [PMID: 35124575 PMCID: PMC9108564 DOI: 10.3233/xst-211105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To evaluate image quality of deep learning-based image reconstruction (DLIR) in contrast-enhanced renal and adrenal computed tomography (CT) compared with adaptive statistical iterative reconstruction-Veo (ASiR-V). METHODS We prospectively recruited 52 patients. All images were reconstructed with ASiR-V 30%, ASiR-V 70%, and DLIR at low, medium, and high reconstruction strengths. CT number, noise, noise reduction rate, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated within the region of interest (ROI) on subcutaneous fat, bilateral renal cortices, renal medulla, renal arteries, and adrenal glands. For qualitative analyses, the differentiation of the renal cortex and medulla, conspicuity of the adrenal gland boundary, sharpness, artifacts, and subjective noise were assessed. The overall image quality was calculated on a scale from 0 (worst) to 15 (best) based on the five values above and the score≥9 was acceptable. RESULTS CT number does not significantly differ between the reconstruction datasets. Noise does not significantly differ between ASiR-V 30% and DLIR-L, but it is significantly lower using ASiR-V 70%, DLIR-M, and DLIR-H. The noise reduction rate relative to ASiR-V 30% is significantly different between the DLIR groups and ASiR-V 70%, and DLIR-H yields the highest noise reduction rate (61.6%). SNR and CNR are higher for DLIR-M, DLIR-H, and ASiR-V 70% than for ASiR-V 30% and DLIR-L. DLIR-H shows the best SNR and CNR. The overall image quality yields the same pattern for DLIR-H, with the highest score. Percentages of cases with overall image quality score≥9 are 100% (DLIR-H), 94.23% (DLIR-M), 90.38% (ASiR-V70%), 67.31% (DLIR-L), and 63.46% (ASiR-V30%), respectively. CONCLUSIONS DLIR significantly improved the objective and subjective image quality of renal and adrenal CTs, yielding superior noise reduction compared with ASiR-V.
Collapse
Affiliation(s)
- Yifan Bie
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuo Yang
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingchao Li
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kun Zhao
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changlei Zhang
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hai Zhong
- Department of Radiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Mohammadinejad P, Mileto A, Yu L, Leng S, Guimaraes LS, Missert AD, Jensen CT, Gong H, McCollough CH, Fletcher JG. CT Noise-Reduction Methods for Lower-Dose Scanning: Strengths and Weaknesses of Iterative Reconstruction Algorithms and New Techniques. Radiographics 2021; 41:1493-1508. [PMID: 34469209 DOI: 10.1148/rg.2021200196] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iterative reconstruction (IR) algorithms are the most widely used CT noise-reduction method to improve image quality and have greatly facilitated radiation dose reduction within the radiology community. Various IR methods have different strengths and limitations. Because IR algorithms are typically nonlinear, they can modify spatial resolution and image noise texture in different regions of the CT image; hence traditional image-quality metrics are not appropriate to assess the ability of IR to preserve diagnostic accuracy, especially for low-contrast diagnostic tasks. In this review, the authors highlight emerging IR algorithms and CT noise-reduction techniques and summarize how these techniques can be evaluated to help determine the appropriate radiation dose levels for different diagnostic tasks in CT. In addition to advanced IR techniques, we describe novel CT noise-reduction methods based on convolutional neural networks (CNNs). CNN-based noise-reduction techniques may offer the ability to reduce image noise while maintaining high levels of image detail but may have unique drawbacks. Other novel CT noise-reduction methods are being developed to leverage spatial and/or spectral redundancy in multiphase or multienergy CT. Radiologists and medical physicists should be familiar with these different alternatives to adapt available CT technology for different diagnostic tasks. The scope of this article is (a) to review the clinical applications of IR algorithms as well as their strengths, weaknesses, and methods of assessment and (b) to explore new CT image reconstruction and noise-reduction techniques that promise to facilitate radiation dose reduction. ©RSNA, 2021.
Collapse
Affiliation(s)
- Payam Mohammadinejad
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Achille Mileto
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Luis S Guimaraes
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Andrew D Missert
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Corey T Jensen
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Hao Gong
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| | - Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.M., L.Y., S.L., A.D.M., H.G., C.H.M., J.G.F.); Department of Radiology, Harborview Medical Center, Seattle, Wash (A.M.); Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada (L.S.G.); and Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.T.J.)
| |
Collapse
|
14
|
Ye K, Chen M, Zhu Q, Lu Y, Yuan H. Effect of adaptive statistical iterative reconstruction-V (ASiR-V) levels on ultra-low-dose CT radiomics quantification in pulmonary nodules. Quant Imaging Med Surg 2021; 11:2344-2353. [PMID: 34079706 DOI: 10.21037/qims-20-932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The weightings of iterative reconstruction algorithm can affect CT radiomic quantification. But, the effect of ASiR-V levels on the reproducibility of CT radiomic features between ultra-low-dose computed tomography (ULDCT) and low-dose computed tomography (LDCT) is still unknown. The purpose of study is to investigate whether adaptive statistical iterative reconstruction-V (ASiR-V) levels affect radiomic feature quantification using ULDCT and to assess the reproducibility of radiomic features between ULDCT and LDCT. Methods Sixty-three patients with pulmonary nodules underwent LDCT (0.70±0.16 mSv) and ULDCT (0.15±0.02 mSv). LDCT was reconstructed with ASiR-V 50%, and ULDCT with ASiR-V 50%, 70%, and 90%. Radiomics analysis was applied, and 107 features were extracted. The concordance correlation coefficient (CCC) was calculated to describe agreement among ULDCTs and between ULDCT and LDCT for each feature. The proportion of features with CCC >0.9 among ULDCTs and between ULDCT and LDCT, and the mean CCC for all features between ULDCT and LDCT were also compared. Results Sixty-three solid nodules (SNs) and 48 pure ground-glass nodules (pGGNs) were analyzed. There was no difference for the proportion of features in SNs among ULDCTs and between ULDCT and LDCT (P>0.05). The proportion of features in pGGNs were highest for ULDCT70% vs. 90% (78.5%) and ULDCT90% vs. LDCT50% (50.5%). In SNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.67±0.26, not different with that for ULDCT50% vs. LDCT50% (0.68±0.24) and ULDCT70% vs. LDCT50% (0.64±0.21) (P>0.05). In pGGNs, the mean CCC for ULDCT90% vs. LDCT50% was 0.79±0.19, higher than that for ULDCT50% vs. LDCT50% (0.61±0.28) and ULDCT70% vs. LDCT50% (0.76±0.24) (P<0.05). Conclusions ASiR-V levels significantly affected ULDCT radiomic feature quantification in pulmonary nodules, with stronger effects in pGGNs than in SNs. The reproducibility of radiomic features was highest between ULDCT90% and LDCT50%.
Collapse
Affiliation(s)
- Kai Ye
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Min Chen
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10,9000, Ghent, Belgium
| | - Qiao Zhu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yuliu Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Tringali G, Milanese G, Ledda RE, Pastorino U, Sverzellati N, Silva M. Lung Cancer Screening: Evidence, Risks, and Opportunities for Implementation. ROFO-FORTSCHR RONTG 2021; 193:1153-1161. [PMID: 33772489 DOI: 10.1055/a-1382-8648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lung cancer is the most common cause of cancer death worldwide. Several trials with different screening approaches have recognized the role of lung cancer screening with low-dose CT for reducing lung cancer mortality. The efficacy of lung cancer screening depends on many factors and implementation is still pending in most European countries. METHODS This review aims to portray current evidence on lung cancer screening with a focus on the potential for opportunities for implementation strategies. Pillars of lung cancer screening practice will be discussed according to the most updated literature (PubMed search until November 16, 2020). RESULTS AND CONCLUSION The NELSON trial showed reduction of lung cancer mortality, thus confirming previous results of independent European studies, notably by volume of lung nodules. Heterogeneity in patient recruitment could influence screening efficacy, hence the importance of risk models and community-based screening. Recruitment strategies develop and adapt continuously to address the specific needs of the heterogeneous population of potential participants, the most updated evidence comes from the UK. The future of lung cancer screening is a tailored approach with personalized continuous stratification of risk, aimed at reducing costs and risks. KEY POINTS · Secondary prevention of lung cancer by low-dose computed tomography showed a reduction of lung cancer mortality.. · Semi-automated volume measurement and use of volume doubling time should be the reference method for optimization of risks, namely controlling measurement variability and the false-positive rate.. · A conservative approach with surveillance of subsolid nodules can be one of the strategies to reduce the risk of overdiagnosis and overtreatment.. · The goal of a tailored approach with personalized risk stratification aims to reduce costs and risks. A longer interval between rounds is one option for participants at lower risk.. CITATION FORMAT · Tringali G, Milanese G, Ledda RE et al. Lung Cancer Screening: Evidence, Risks, and Opportunities for Implementation. Fortschr Röntgenstr 2021; 193: 1153 - 1161.
Collapse
Affiliation(s)
- Giulia Tringali
- Department of Medicine and Surgery (DiMeC - Scienze Radiologiche), University of Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery (DiMeC - Scienze Radiologiche), University of Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery (DiMeC - Scienze Radiologiche), University of Parma, Italy
| | - Ugo Pastorino
- Department of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery (DiMeC - Scienze Radiologiche), University of Parma, Italy
| | - Mario Silva
- Department of Medicine and Surgery (DiMeC - Scienze Radiologiche), University of Parma, Italy
| |
Collapse
|
16
|
Yan C, Lin J, Li H, Xu J, Zhang T, Chen H, Woodruff HC, Wu G, Zhang S, Xu Y, Lambin P. Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis. Korean J Radiol 2021; 22:983-993. [PMID: 33739634 PMCID: PMC8154783 DOI: 10.3348/kjr.2020.0988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jie Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianjing Zhang
- Clinical and Technical Solution, Philips Healthcare, Guangzhou, China
| | - Hao Chen
- Jiangsu JITRI Sioux Technologies Co., Ltd., Suzhou, China
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Siqi Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Imaging, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
17
|
Vonder M, Dorrius MD, Vliegenthart R. Latest CT technologies in lung cancer screening: protocols and radiation dose reduction. Transl Lung Cancer Res 2021; 10:1154-1164. [PMID: 33718053 PMCID: PMC7947397 DOI: 10.21037/tlcr-20-808] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this review is to provide clinicians and technicians with an overview of the development of CT protocols in lung cancer screening. CT protocols have evolved from pre-fixed settings in early lung cancer screening studies starting in 2004 towards automatic optimized settings in current international guidelines. The acquisition protocols of large lung cancer screening studies and guidelines are summarized. Radiation dose may vary considerably between CT protocols, but has reduced gradually over the years. Ultra-low dose acquisition can be achieved by applying latest dose reduction techniques. The use of low tube current or tin-filter in combination with iterative reconstruction allow to reduce the radiation dose to a submilliSievert level. However, one should be cautious in reducing the radiation dose to ultra-low dose settings since performed studies lacked generalizability. Continuous efforts are made by international radiology organizations to streamline the CT data acquisition and image quality assurance and to keep track of new developments in CT lung cancer screening. Examples like computer-aided diagnosis and radiomic feature extraction are discussed and current limitations are outlined. Deep learning-based solutions in post-processing of CT images are provided. Finally, future perspectives and recommendations are provided for lung cancer screening CT protocols.
Collapse
Affiliation(s)
- Marleen Vonder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Monique D Dorrius
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Aslan MF, Unlersen MF, Sabanci K, Durdu A. CNN-based transfer learning-BiLSTM network: A novel approach for COVID-19 infection detection. Appl Soft Comput 2021; 98:106912. [PMID: 33230395 PMCID: PMC7673219 DOI: 10.1016/j.asoc.2020.106912] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.
Collapse
Affiliation(s)
- Muhammet Fatih Aslan
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | | | - Kadir Sabanci
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Akif Durdu
- Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|
19
|
Ye K, Chen M, Li J, Zhu Q, Lu Y, Yuan H. Ultra-low-dose CT reconstructed with ASiR-V using SmartmA for pulmonary nodule detection and Lung-RADS classifications compared with low-dose CT. Clin Radiol 2020; 76:156.e1-156.e8. [PMID: 33293025 DOI: 10.1016/j.crad.2020.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the accuracy of ultra-low-dose computed tomography (ULDCT) with ASiR-V using a noise index (SmartmA) for pulmonary nodule detection and Lung CT Screening Reporting And Data System (Lung-RADS) classifications compared with low-dose CT (LDCT). MATERIALS AND METHODS Two-hundred and ten patients referred for lung cancer screening underwent conventional chest LDCT (0.80 ± 0.28 mSv) followed immediately by ULDCT (0.16 ± 0.03 mSv). ULDCT was scanned using 120 kV/SmartmA with a noise index of 28 HU and reconstructed with ASiR-V70%. The types and diameters of all nodules were recorded. The attenuation of pure ground-glass nodules (pGGNs) was measured on LDCT. All nodules were further classified using Lung-RADS. Sensitivities of nodule detection on ULDCT were analysed using LDCT as the reference standard. Logistic regression was used to establish a prediction model for the sensitivity of nodules. RESULTS LDCT revealed 362 nodules and the overall sensitivity on ULDCT was 90.1%. The sensitivity for solid nodules (SNs) of ≥1 mm diameter was 96.6% (228/236) and 100% (26/26) for SNs of ≥6 mm diameter. For pGGNs of ≥6 mm, the overall sensitivity was 93% (40/43) and 100% (29/29) for nodules with a attenuation value -700 HU or more. The agreement of Lung-RADS classification between two scans was good. On logistic regression, diameter was the only independent predictor for sensitivity of SNs (p<0.05). Diameter and attenuation value were predictors for pGGNs (p<0.05). CONCLUSION ULDCT with ASiR-V using SmartmA is suitable for lung-cancer screening in people with a BMI ≤35 kg/m2 as it has a low radiation dose of 0.16 mSv, high sensitivity for nodule detection and good performance of Lung-RADS classifications.
Collapse
Affiliation(s)
- K Ye
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - M Chen
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - J Li
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Q Zhu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Y Lu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - H Yuan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
20
|
Fletcher JG, Levin DL, Sykes AMG, Lindell RM, White DB, Kuzo RS, Suresh V, Yu L, Leng S, Holmes DR, Inoue A, Johnson MP, Carter RE, McCollough CH. Observer Performance for Detection of Pulmonary Nodules at Chest CT over a Large Range of Radiation Dose Levels. Radiology 2020; 297:699-707. [PMID: 32990514 DOI: 10.1148/radiol.2020200969] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background There is a wide variation in radiation dose levels that can be used with chest CT in order to detect indeterminate pulmonary nodules. Purpose To compare the performance of lower-radiation-dose chest CT with that of routine dose in the detection of indeterminate pulmonary nodules 5 mm or greater. Materials and Methods In this retrospective study, CT projection data from 83 routine-dose chest CT examinations performed in 83 patients (120 kV, 70 quality reference mAs [QRM]) were collected between November 2013 and April 2014. Reference indeterminate pulmonary nodules were identified by two nonreader thoracic radiologists. By using validated noise insertion, five lower-dose data sets were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR; 30 QRM with FBP, 10 QRM with IR, 5 QRM with FBP, 5 QRM with IR, and 2.5 QRM with IR). Three thoracic radiologists circled pulmonary nodules, rating confidence that the nodule was a 5-mm-or-greater indeterminate pulmonary nodule, and graded image quality. Analysis was performed on a per-nodule basis by using jackknife alternative free-response receiver operating characteristic figure of merit (FOM) and noninferiority limit of -0.10. Results There were 66 indeterminate pulmonary nodules (mean size, 8.6 mm ± 3.4 [standard deviation]; 21 part-solid nodules) in 42 patients (mean age, 51 years ± 17; 21 men and 21 women). Compared with the FOM for routine-dose CT (size-specific dose estimate, 6.5 mGy ± 1.8; FOM, 0.86 [95% confidence interval: 0.80, 0.91]), FOM was noninferior for all lower-dose configurations except for 2.5 QRM with IR. The sensitivity for subsolid nodules at 70 QRM was 60% (range, 48%-72%) and was significantly worse at a dose of 5 QRM and lower, whether or not IR was used (P < .05). Diagnostic image quality decreased with decreasing dose (P < .001) and was better with IR at 5 QRM (P < .05). Conclusion CT images reconstructed at dose levels down to 10 quality reference mAs (size-specific dose estimate, 0.9 mGy) had noninferior performance compared with routine dose in depicting pulmonary nodules. Iterative reconstruction improved subjective image quality but not performance at low dose levels. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by White and Kazerooni in this issue.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - David L Levin
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Anne-Marie G Sykes
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Rebecca M Lindell
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Darin B White
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Ronald S Kuzo
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Vighnesh Suresh
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Lifeng Yu
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Shuai Leng
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - David R Holmes
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Akitoshi Inoue
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Matthew P Johnson
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Rickey E Carter
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Cynthia H McCollough
- From the Department of Radiology (J.G.F., D.L.L., A.M.G.S., R.M.L., D.B.W., R.S.K., V.S., L.Y., S.L., A.I., C.H.M.), Department of Physiology and Biomedical Engineering (D.R.H.), and Department of Health Science Research (M.P.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| |
Collapse
|
21
|
Computed tomography screening for lung cancer. Gen Thorac Cardiovasc Surg 2020; 68:660-664. [PMID: 32447627 DOI: 10.1007/s11748-020-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Cigarette smoking is the attributable cause for 90% of lung cancers. To complement preventative strategies, the advent of lung cancer screening programs targeted at prior and active smokers has been explored to reduce the mortality and morbidity of this lethal malignancy. In this article, we discuss the results of major computed tomography-based lung cancer screening trials, cost-effectiveness of screening, guidelines from major societies and future directions of the field.
Collapse
|