1
|
Zhou M, Chen M, Chen M, Yan X, Yang G, Huang H. Predictive value of mono-exponential and multiple mathematical models in locally advanced rectal cancer response to neoadjuvant chemoradiotherapy. Abdom Radiol (NY) 2025; 50:1105-1116. [PMID: 39276193 DOI: 10.1007/s00261-024-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE This prospective study aimed to assess the predictive value of mono-exponential and multiple mathematical diffusion-weighted imaging (DWI) models in determining the response to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). METHODS The study included 103 LARC patients scheduled for preoperative chemoradiotherapy between December 2021 and June 2023 Magnetic resonance imaging (MRI) scans were performed using a 3.0-T MR scanner, encompassing sagittal, axial, and oblique coronal T2-weighted images without fat saturation, along with DWI perpendicular to the rectum's long axis. Various DWI parameters, including apparent diffusion coefficient (ADC), stretched exponential model (SEM), continuous-time random-walk model (CTRW), and fractional-order calculus model (FROC), were measured. The pathologic complete response (pCR) rate and tumor downstaging (T-downstage) rate were determined. RESULTS After nCRT, SEM-α, SEM-DDC, CTRW-α, CTRW-β, CTRW-D, FROC-β, and ADC values were significantly higher in the pCR group compared to the non-pCR group (all P < 0.05). SEM-DDC, CTRW-α, CTRW-D, FROC-β, FROC-µ, and ADC values were significantly higher in the T-downstage group (ypT0-1) than in the non-T-downstage group (ypT2-4) (P < 0.05). The combination of CTRW (α + β + D) exhibited the best diagnostic performance for assessing pCR after nCRT (AUC = 0.840, P < 0.001). Pre-nCRT CTRW (α + β) demonstrated a predictive AUC of 0.652 (95%CI: 0.552-0.743), 90.3% sensitivity, and 43.1% specificity for pCR. Regarding T-downstage assessment after nCRT, the combination of CTRW (α + D) yielded the best diagnostic performance (AUC = 0.877, P = 0.048). CONCLUSION In LARC patients, imaging markers derived from CTRW show promise in predicting tumor response before nCRT and assessing pCR after nCRT.
Collapse
Affiliation(s)
- Mi Zhou
- sichuan provincial orthopedics hospital, Chengdu, China
| | - Mengyuan Chen
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xu Yan
- Siemens Healthineers (China), Pudong, China
| | - Guang Yang
- East China Normal University, Shanghai, China
| | - Hongyun Huang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Sun H, Yan Z, Gao J, Zheng Y, Zheng Y, Song Y, Liu Y, Lin Z, Shen W, Fang J, Qu H, Song Y, Diao Y, Su S, Jiang G. Multi-parametric diffusion spectrum imaging in tuberous sclerosis complex: Identifying cortical tubers and predicting genotypes. Eur J Radiol 2025; 184:111963. [PMID: 39913973 DOI: 10.1016/j.ejrad.2025.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVES This study employed advanced MRI diffusion imaging techniques to identify cortical tubers in Tuberous Sclerosis Complex (TSC) patients and compared the diagnostic efficacy of various diffusion model parameters in predicting TSC genotypes. METHODS From July 2019 to April 2024, a prospective study was conducted at our Hospital. Participants meeting specific criteria underwent genetic testing and Diffusion Spectrum Imaging (DSI) data collection. The Dipy toolbox calculated parameters for Diffusion Tensor Imaging (DTI), Diffusion Kurtosis Imaging (DKI), Neurite Orientation Dispersion and Density Imaging (NODDI), and Mean Apparent Propagator (MAP) models. Lesion visibility and contrast were scored by two neuroradiologists. Significant parameters were identified through univariate logistic regression, and predictive models were developed using multivariate logistic regression and backward stepwise regression, resulting in a nomogram. RESULTS Eighty-three TSC patients were included (49 females, median age 5 years, IQR 3-9 years). Significant differences were found in lesion visibility and contrast among different diffusion model parameter maps (p < 0.001), with NODDI-ICVF and MAP-QIV showing clear advantages. The DTI, DKI, and MAP models struggled to distinguish small lesions near cerebral sulci from cerebrospinal fluid, while NODDI-ICVF performed well. The combined model using ICVF, QIV, and RTOP parameters demonstrated potentially better diagnostic performance compared to single diffusion models, with the nomogram indicating strong discrimination (AUC of 0.89, 95 % CI: 0.86-0.92). Clinical decision curves indicated significant net benefits at probability thresholds of 15 %-95 %. CONCLUSION NODDI and MAP models reveal cortical tubers more clearly. The combined model based on advanced diffusion parameters offers the best predictive efficiency for TSC genotypes.
Collapse
Affiliation(s)
- Hui Sun
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Department of Radiology Guangzhou Guangdong China
| | - Zhiping Yan
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Junhang Gao
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Yingzhi Zheng
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Yueyu Zheng
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd. Shanghai China
| | - Yongji Liu
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Zhixian Lin
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Wencai Shen
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Jin Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Department of Radiology Guangzhou Guangdong China
| | - Hong Qu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Department of Radiology Guangzhou Guangdong China
| | - Yingying Song
- Affiliated Hospital of Jianghan University, Department of Radiology Wuhan Hubei China
| | - Yanzhao Diao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Department of Radiology Guangzhou Guangdong China
| | - Sulian Su
- Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China
| | - Guihua Jiang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Department of Radiology Guangzhou Guangdong China; Fujian Medical University Xiamen Humanity Hospital, Department of Radiology Xiamen Fujian China.
| |
Collapse
|
3
|
Zhou M, Huang H, Bao D, Chen M, Lu F. Assessment of prognostic indicators and KRAS mutations in rectal cancer using a fractional-order calculus MR diffusion model: whole tumor histogram analysis. Abdom Radiol (NY) 2025; 50:569-578. [PMID: 39152230 DOI: 10.1007/s00261-024-04523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE This study aims to explore the relationship between apparent diffusion coefficient (ADC) and fractional-order calculus (FROC)-specific parameters with prognostic indicators and Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation status in rectal cancer. METHODS One hundred fifty-eight patients with rectal cancer were retrospectively enrolled. Histogram measurements of ADC, diffusion coefficient (D), intravoxel diffusion heterogeneity (β), and a microstructural quantity (μ) were estimated for the whole-tumor volume. The relationships between histogram measurements and prognostic indicators were evaluated. The efficacy of histogram measurements, both conducted singly and in conjunction, for evaluating different KRAS mutation statuses was also assessed. The performance of mean and median histogram measurements in evaluating various KRAS mutation statuses was assessed using Receiver Operating Characteristic (ROC) curve analysis. A p-value of less than 0.05 was considered statistically significant. RESULTS The histogram measurements of ADC, D, β, and μ differed significantly between well-moderately differentiated groups and poorly differentiated groups, T1-2 and T3-4 subgroups, lymph node metastasis (LNM)-negative and LNM-positive subgroups, extranodal extension (ENE)-negative and ENE-positive subgroups, tumor deposit (TD)-negative and TD-positive subgroups, and lymphovascular invasion (LVI)-negative and LVI-positive subgroups. The combination of Dmean, βmean, and μmean achieved the highest performance [The area under the ROC curve (AUC) = 0.904] in evaluating the KRAS mutation status. CONCLUSION When assessing parameters from the FROC model as potential biomarkers through histograms, they surpass traditional ADC values in distinguishing prognostic indicators and determining KRAS mutation status in rectal cancer.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthpaedics Hospital, Chengdu, 610041, People's Republic of China.
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Deying Bao
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, 200135, China
| | - Fulin Lu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
4
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
5
|
Zhou M, Huang H, Bao D, Chen M. Fractional order calculus model-derived histogram metrics for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. Clin Imaging 2024; 116:110327. [PMID: 39454478 DOI: 10.1016/j.clinimag.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
AIM This study evaluates the value of diffusion fractional order calculus (FROC) model for the assessment of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer (LARC) by using histogram analysis derived from whole-tumor volumes. MATERIALS AND METHODS Ninety-eight patients were prospectively included. Every patient received MRI scans before and after nCRT using a 3.0-Tesla MRI machine. Parameters of the FROC model, including the anomalous diffusion coefficient (D), intravoxel diffusion heterogeneity (β), spatial parameter (μ), and the standard apparent diffusion coefficient (ADC), were calculated. Changes in median values (ΔX-median) and ratio (rΔX-median) were calculated. Receiver operating characteristic (ROC) curves were used for evaluating the diagnostic performance. RESULTS Pre-treatmentβ-10th percentile values were significantly lower in the pCR group compared to the non-pCR group (p < 0.001). The Δβ-median showed higher diagnostic accuracy (AUC = 0.870) and sensitivity (76.67 %) for predicting tumor response compared to MRI tumor regression grading (mrTRG) scores (AUC = 0.722; sensitivity = 90.0 %). DISCUSSION The use of FROC alongside comprehensive tumor histogram analysis was found to be practical and effective in evaluating the tumor response to nCRT in LARC patients.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthpaedics Hospital, Chengdu 610041, PR China.
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Deying Bao
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai 200135, PR China
| |
Collapse
|
6
|
Zeng S, Ma H, Xie D, Huang Y, Yang J, Lin F, Ma Z, Wang M, Yang Z, Zhao J, Chu J. Tumor Multiregional Mean Apparent Propagator (MAP) Features in Evaluating Gliomas-A Comparative Study With Diffusion Kurtosis Imaging (DKI). J Magn Reson Imaging 2024; 60:1532-1546. [PMID: 38131220 DOI: 10.1002/jmri.29202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Glioma classification affects treatment and prognosis. Reliable imaging methods for preoperatively evaluating gliomas are essential. PURPOSE To evaluate tumor multiregional mean apparent propagator (MAP) features in glioma diagnosis and to compare those with diffusion-kurtosis imaging (DKI). STUDY TYPE Retrospective study. SUBJECTS 70 untreated glioma patients (31 LGGs (low-grade gliomas), 34 women; mean age, 47 ± 12 years, training (60%, n = 42) and testing cohorts (40%, n = 28)). FIELD STRENGTH/SEQUENCE 3-T, diffusion-MRI using q-space Cartesian grid sampling with 11 different b-values. ASSESSMENT Tumor multiregional MAP (mean squared displacement (MSD); q-space inverse variance (QIV); non-Gaussianity (NG); axial/radial non-Gaussianity (NGAx, NGRad); return-to-origin/axis/plane probability (RTOP, RTAP, and RTPP)); and DKI metrics (axial/mean/radial kurtosis (AK, MK, and RK)) on tumor parenchyma (TP) and peritumoral areas (PT) in histopathologically gliomas grading and genotyping were assessed. STATISTICAL TESTS Mann-Whitney U; Kruskal-Wallis; Benjamini-Hochberg; Bonferroni-correction; receiver operating curve (ROC) and area under curve (AUC); DeLong's test; Random Forest (RF). P value<0.05 was considered statistically significant after multiple comparisons correction. RESULTS Compared with LGGs, MSD, and QIV were significantly lower in TP, whereas NG, NGAx, NGRad, RTOP, RTAP, RTPP, and DKI metrics were significantly higher in HGGs (high-grade gliomas) (P ≤ 0.007), as well as in isocitrate-dehydrogenase (IDH)-mutated than IDH-wildtype gliomas (P ≤ 0.039). These trends were reversed for PT (tumor grades, P ≤ 0.011; IDH-mutation status, P ≤ 0.012). ROC analysis showed that, in TP, DKI metrics performed best in TP (AUC 0.83), whereas in PT, RTPP performed best (AUC 0.77) in glioma grading. AK performed best in TP (AUC 0.77), whereas MSD and RTPP performed best in PT (AUC 0.73) in IDH genotyping. Further RF analysis with DKI and MAP demonstrated good performance in grading (AUC 0.91, Accuracy 82%) and IDH genotyping (AUC 0.87, Accuracy 79%). DATA CONCLUSION Tumor multiregional MAP features could effectively evaluate gliomas. The performance of MAP may be similar to DKI in TP, while in PT, MAP may outperform DKI. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shanmei Zeng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dingxiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingqian Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fangzeng Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zuliwei Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengzhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou, Guangdong, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zhong J, Liu X, Hu Y, Xing Y, Ding D, Ge X, Song Y, Wang S, Chen L, Zhu Y, Lu W, Zhang H, Yao W. Robustness of Quantitative Diffusion Metrics from Four Models: A Prospective Study on the Influence of Scan-Rescans, Voxel Size, Coils, and Observers. J Magn Reson Imaging 2024; 60:1470-1483. [PMID: 38112305 DOI: 10.1002/jmri.29192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Quantitative diffusion metrics provide additional microstructural information of diseases. The robustness of quantitative diffusion metrics should be established before clinical application. PURPOSE To evaluate the variability and reproducibility of quantitative diffusion MRI metrics. STUDY TYPE Prospective. POPULATION 14 volunteers (7 men; median age, range, 28, 26-59 years). FIELD STRENGTH/SEQUENCE 3.0-T/Diffusion spectrum imaging. ASSESSMENT Brain MRI studies were performed four times per subject: involving different combinations of coil types and voxel sizes. Regions of interest of 13 brain anatomical sites were drawn by one observer twice and another observer once to allow interobserver and intraobserver reproducibility assessment. Twenty-five quantitative metrics were calculated using four diffusion models. STATISTICAL TESTS The variability was evaluated with coefficients of variation (CV), and quartile coefficient of dispersion (QCD). The reproducibility was assessed with intraclass correlation coefficient (ICC), and concordance correlation coefficient (CCC). Wilcoxon signed rank test was used to compare the influence of factors on robustness of quantitative diffusion metrics. A two-tailed P < 0.05 was considered statistically significant. RESULTS The variability of quantitative diffusion metrics showed CV of 2.4%-68.2%, and QCD of 0.6%-48.2%, respectively. The reproducibility of scans using 20-channel coils with voxels of 2 × 2 × 2 mm3 and 3 × 3 × 3 mm3, respectively (ICC 0.03-0.84, CCC 0.03-0.84) was significantly worse than that of repeated scans using a 20-channel coil with a voxel size of 2 × 2 × 2 mm3 (ICC of 0.74-0.97, CCC 0.74-0.97) and that of scans using 20- and 64-channel coils, respectively, with a voxel size of 2 × 2 × 2 mm3 (ICC 0.59-0.95, CCC 0.59-0.95). The intraobserver reproducibility (ICC 0.49-0.94, CCC 0.49-0.94) was significantly better than the interobserver reproducibility (ICC 0.28-0.91, CCC 0.28-0.91). DATA CONCLUSION Our study indicated that the voxel size has a greater influence on the reproducibility of quantitative diffusion metrics than scan-rescans and coils. The reproducibility within one observer was higher than that between two observers. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianwei Liu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, Shanghai, China
| | - Silian Wang
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Chen
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Lu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Medhi G, Varadharajan S. Editorial for "Tumor Multiregional Mean Apparent Propagator (MAP) Features in Evaluating Gliomas-A Comparative Study With Diffusion Kurtosis Imaging (DKI)". J Magn Reson Imaging 2024; 60:1547-1548. [PMID: 38279661 DOI: 10.1002/jmri.29257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024] Open
Affiliation(s)
- Gorky Medhi
- Division of Interventional Neuroradiology & Endovascular Neurosurgery, Neuroradiology, Gauhati Medical College Hospital, Guwahati, Assam, India
- Department of Neurosurgery, Cardiothoracic & Neuroscience Center, Gauhati Medical College Hospital, Guwahati, Assam, India
| | - Shriram Varadharajan
- Department of Neuroradiology, Vebinar Telegroup, Kauvery Institute of Brain & Spine, Kuvery Hospital, Chennai, India
| |
Collapse
|
9
|
Zhou M, Bao D, Huang H, Chen M, Jiang W. Utilization of diffusion-weighted derived mathematical models to predict prognostic factors of resectable rectal cancer. Abdom Radiol (NY) 2024; 49:3282-3293. [PMID: 38744701 DOI: 10.1007/s00261-024-04239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE This study explored models of monoexponential diffusion-weighted imaging (DWI), diffusion kurtosis imaging (DKI), stretched exponential (SEM), fractional-order calculus (FROC), and continuous-time random-walk (CTRW) as diagnostic tools for assessing pathological prognostic factors in patients with resectable rectal cancer (RRC). METHODS RRC patients who underwent radical surgery were included. The apparent diffusion coefficient (ADC), the mean kurtosis (MK) and mean diffusion (MD) from the DKI model, the distributed diffusion coefficient (DDC) and α from the SEM model, D, β and u from the FROC model, and D, α and β from the CTRW model were assessed. RESULTS There were a total of 181 patients. The area under the receiver operating characteristic (ROC) curve (AUC) of CTRW-α for predicting histology type was significantly higher than that of FROC-u (0.780 vs. 0.671, p = 0.043). The AUC of CTRW-α for predicting pT stage was significantly higher than that of FROC-u and ADC (0.786 vs.0.683, p = 0.043; 0.786 vs. 0.682, p = 0.030), the difference in predictive efficacy of FROC-u between ADC and MK was not statistically significant [0.683 vs. 0.682, p = 0.981; 0.683 vs. 0.703, p = 0.720]; the difference between the predictive efficacy of MK and ADC was not statistically significant (p = 0.696). The AUC of CTRW (α + β) (0.781) was significantly higher than that of FROC-u (0.781 vs. 0.625, p = 0.003) in predicting pN stage but not significantly different from that of MK (p = 0.108). CONCLUSION The CTRW and DKI models may serve as imaging biomarkers to predict pathological prognostic factors in RRC patients before surgery.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Radiology, Sichuan Provincial Orthopedic Hospital, Chengdu, China.
| | - Deying Bao
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hongyun Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meining Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, 200135, China
| | - Wenli Jiang
- Department of Radiology, Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, 400010, China
| |
Collapse
|
10
|
Han L, Yang J, Yuan C, Zhang W, Huang Y, Zeng L, Zhong J. Assessing brain microstructural changes in chronic kidney disease: a diffusion imaging study using multiple models. Front Neurol 2024; 15:1387021. [PMID: 38751882 PMCID: PMC11094287 DOI: 10.3389/fneur.2024.1387021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Objectives To explore the effectiveness of diffusion quantitative parameters derived from advanced diffusion models in detecting brain microstructural changes in patients with chronic kidney disease (CKD). Methods The study comprised 44 CKD patients (eGFR<59 mL/min/1.73 m2) and 35 age-and sex-matched healthy controls. All patients underwent diffusion spectrum imaging (DSI) and conventional magnetic resonance imaging. Reconstructed to obtain diffusion MRI models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) and Mean Apparent Propagator (MAP)-MRI, were processed to obtain multi-parameter maps. The Tract-Based Spatial Statistics (TBSS) analysis was utilized for detecting microstructural differences and Pearson correlation analysis assessed the relationship between renal metabolism markers and diffusion parameters in the brain regions of CKD patients. Receiver operating characteristic (ROC) curve analysis assessed the diagnostic performance of diffusion models, with AUC comparisons made using DeLong's method. Results Significant differences were noted in DTI, NODDI, and MAP-MRI parameters between CKD patients and controls (p < 0.05). DTI indicated a decrease in Fractional Anisotropy(FA) and an increase in Mean and Radial Diffusivity (MD and RD) in CKD patients. NODDI indicated decreased Intracellular and increased Extracellular Volume Fractions (ICVF and ECVF). MAP-MRI identified extensive microstructural changes, with elevated Mean Squared Displacement (MSD) and Q-space Inverse Variance (QIV) values, and reduced Non-Gaussianity (NG), Axial Non-Gaussianity (NGAx), Radial Non-Gaussianity (NGRad), Return-to-Origin Probability (RTOP), Return-to-Axis Probability (RTAP), and Return-to-Plane Probability (RTPP). There was a moderate correlation between serum uric acid (SUA) and diffusion parameters in six brain regions (p < 0.05). ROC analysis showed the AUC values of DTI_FA ranged from 0.70 to 0.793. MAP_NGAx in the Retrolenticular part of the internal capsule R reported a high AUC value of 0.843 (p < 0.05), which was not significantly different from other diffusion parameters (p > 0.05). Conclusion The advanced diffusion models (DTI, NODDI, and MAP-MRI) are promising for detecting brain microstructural changes in CKD patients, offering significant insights into CKD-affected brain areas.
Collapse
Affiliation(s)
- Limei Han
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Jie Yang
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Chao Yuan
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Wei Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Yantao Huang
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Lingli Zeng
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Jianquan Zhong
- Department of Radiology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| |
Collapse
|
11
|
Gangolli M, Pajevic S, Kim JH, Hutchinson EB, Benjamini D, Basser PJ. Correspondence of mean apparent propagator MRI metrics with phosphorylated tau and astrogliosis in chronic traumatic encephalopathy. Brain Commun 2023; 5:fcad253. [PMID: 37901038 PMCID: PMC10600571 DOI: 10.1093/braincomms/fcad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Chronic traumatic encephalopathy is a neurodegenerative disease that is diagnosed and staged based on the localization and extent of phosphorylated tau pathology. Although its identification remains the primary diagnostic criteria to distinguish chronic traumatic encephalopathy from other tauopathies, the hyperphosphorylated tau that accumulates in neurofibrillary tangles in cortical grey matter and perivascular regions is often accompanied by concomitant pathology such as astrogliosis. Mean apparent propagator MRI is a clinically feasible diffusion MRI method that is suitable to characterize microstructure of complex biological media efficiently and comprehensively. We performed quantitative correlations between propagator metrics and underlying phosphorylated tau and astroglial pathology in a cross-sectional study of 10 ex vivo human tissue specimens with 'high chronic traumatic encephalopathy' at 0.25 mm isotropic voxels. Linear mixed effects analysis of regions of interest showed significant relationships of phosphorylated tau with propagator-estimated non-Gaussianity in cortical grey matter (P = 0.002) and of astrogliosis with propagator anisotropy in superficial cortical white matter (P = 0.0009). The positive correlation between phosphorylated tau and non-Gaussianity was found to be modest but significant (R2 = 0.44, P = 6.0 × 10-5) using linear regression. We developed an unsupervised clustering algorithm with non-Gaussianity and propagator anisotropy as inputs, which was able to identify voxels in superficial cortical white matter that corresponded to astrocytes that were accumulated at the grey-white matter interface. Our results suggest that mean apparent propagator MRI at high spatial resolution provides a means to not only identify phosphorylated tau pathology but also detect regions with astrocytic pathology and may therefore prove diagnostically valuable in the evaluation of concomitant pathology in cortical tissue with complex microstructure.
Collapse
Affiliation(s)
- Mihika Gangolli
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sinisa Pajevic
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joong Hee Kim
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth B Hutchinson
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 20892, USA
| | - Dan Benjamini
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD 20817, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter J Basser
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD 20817, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Zhang X, Shi Z, Xie Y, Wang Y, Shen C, Qi Z, Zhang L, Yang B, Yu J, Ding H. Quantitative analysis using intraoperative contrast-enhanced ultrasound in adult-type diffuse gliomas with isocitrate dehydrogenase mutations: association between hemodynamics and molecular features. Ultrasonography 2023; 42:561-571. [PMID: 37710388 PMCID: PMC10555694 DOI: 10.14366/usg.23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
PURPOSE The relationship between contrast-enhanced ultrasound (CEUS) hemodynamics and the molecular biomarkers of adult-type diffuse gliomas, particularly isocitrate dehydrogenase (IDH), remains unclear. This study was conducted to provide a comprehensive description of the vascularization of adult-type diffuse gliomas using quantitative indicators. Additionally, it was designed to identify any variables with the potential to intraoperatively predict IDH mutation status. METHODS This prospective study enrolled patients with adult-type diffuse gliomas between November 2021 and September 2022. Intraoperative CEUS was performed, and CEUS videos were recorded for 90-second periods. Hemodynamic parameters, including the peak enhancement (PE) difference, were calculated based on the time-intensity curve of the region of interest. A differential analysis was performed on the CEUS parameters with respect to molecular biomarkers and grades. Receiver operating characteristic curves for various parameters were analyzed to evaluate the ability of those parameters to predict IDH mutation status. RESULTS Sixty patients with adult-type diffuse gliomas were evaluated. All hemodynamic parameters, apart from rising time, demonstrated significant differences between IDH-mutant and IDH-wildtype adult-type diffuse gliomas. The PE difference emerged as the optimal indicator for differentiating between IDH-wildtype and IDH-mutant gliomas, with an area under the curve of 0.958 (95% confidence interval, 0.406 to 0.785). Additionally, the hemodynamic parameters revealed significant differences across both grades and types of adult-type diffuse gliomas. CONCLUSION Hemodynamic parameters can be used intraoperatively to effectively distinguish between IDHwildtype and IDH-mutant adult-type diffuse gliomas. Additionally, quantitative CEUS equips neurosurgeons with dynamic perfusion information for various types and grades of adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhifeng Shi
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanxin Xie
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Shen
- Institute of Neurosurgery, Fudan University, Shanghai, China
| | - Zengxin Qi
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiong Zhang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Bojie Yang
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
She D, Huang H, Guo W, Jiang D, Zhao X, Kang Y, Cao D. Grading meningiomas with diffusion metrics: a comparison between diffusion kurtosis, mean apparent propagator, neurite orientation dispersion and density, and diffusion tensor imaging. Eur Radiol 2023; 33:3671-3681. [PMID: 36897347 DOI: 10.1007/s00330-023-09505-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES To compare the histogram features of multiple diffusion metrics in predicting the grade and cellular proliferation of meningiomas. METHODS Diffusion spectrum imaging was performed in 122 meningiomas (30 males, 13-84 years), which were divided into 31 high-grade meningiomas (HGMs, grades 2 and 3) and 91 low-grade meningiomas (LGMs, grade 1). The histogram features of multiple diffusion metrics obtained from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator (MAP), and neurite orientation dispersion and density imaging (NODDI) in the solid tumours were analysed. All values between the two groups were compared with the Man-Whitney U test. Logistic regression analysis was applied to predict meningioma grade. The correlation between diffusion metrics and Ki-67 index was analysed. RESULTS The DKI_AK (axial kurtosis) maximum, DKI_AK range, MAP_RTPP (return-to-plane probability) maximum, MAP_RTPP range, NODDI_ICVF (intracellular volume fraction) range, and NODDI_ICVF maximum values were lower (p < 0.0001), whilst the DTI_MD (mean diffusivity) minimum values were higher in LGMs than those in HGMs (p < 0.001). Amongst the DTI, DKI, MAP, NODDI, and combined diffusion models, no significant differences were found in areas under the receiver operating characteristic curves (AUCs) for grading meningiomas (AUCs, 0.75, 0.75, 0.80, 0.79, and 0.86, respectively; all corrected p > 0.05, Bonferroni correction). Significant but weak positive correlations were found between the Ki-67 index and DKI, MAP, and NODDI metrics (r = 0.26-0.34, all p < 0.05). CONCLUSIONS Whole tumour histogram analyses of the multiple diffusion metrics from four diffusion models are promising methods in grading meningiomas. The DTI model has similar diagnostic performance compared with advanced diffusion models. KEY POINTS • Whole tumour histogram analyses of multiple diffusion models are feasible for grading meningiomas. • The DKI, MAP, and NODDI metrics are weakly associated with the Ki-67 proliferation status. • DTI has similar diagnostic performance compared with DKI, MAP, and NODDI in grading meningiomas.
Collapse
Affiliation(s)
- Dejun She
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China
| | - Hao Huang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
| | - Wei Guo
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
| | - Dongmei Jiang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
| | - Xiance Zhao
- Philips, Healthineers Ltd., Beijing, 100000, People's Republic of China
| | - Yun Kang
- Philips, Healthineers Ltd., Beijing, 100000, People's Republic of China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China.
| |
Collapse
|
14
|
Bouhrara M, Avram AV, Kiely M, Trivedi A, Benjamini D. Adult lifespan maturation and degeneration patterns in gray and white matter: A mean apparent propagator (MAP) MRI study. Neurobiol Aging 2023; 124:104-116. [PMID: 36641369 PMCID: PMC9985137 DOI: 10.1016/j.neurobiolaging.2022.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The relationship between brain microstructure and aging has been the subject of intense study, with diffusion MRI perhaps the most effective modality for elucidating these associations. Here, we used the mean apparent propagator (MAP)-MRI framework, which is suitable to characterize complex microstructure, to investigate age-related cerebral differences in a cohort of cognitively unimpaired participants and compared the results to those derived using diffusion tensor imaging. We studied MAP-MRI metrics, among them the non-Gaussianity (NG) and propagator anisotropy (PA), and established an opposing pattern in white matter of higher NG alongside lower PA among older adults, likely indicative of axonal degradation. In gray matter, however, these two indices were consistent with one another, and exhibited regional pattern heterogeneity compared to other microstructural parameters, which could indicate fewer neuronal projections across cortical layers along with an increased glial concentration. In addition, we report regional variations in the magnitude of age-related microstructural differences consistent with the posterior-anterior shift in aging paradigm. These results encourage further investigations in cognitive impairments and neurodegeneration.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Alexandru V. Avram
- Section on Quantitative Imaging and Tissue Sciences,Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Aparna Trivedi
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
15
|
París G, Pieciak T, Aja‐Fernández S, Tristán‐Vega A. Efficient estimation of propagator anisotropy and non-Gaussianity in multishell diffusion MRI with micro-structure adaptive convolution kernels and dual Fourier integral transforms. Magn Reson Med 2023; 89:440-453. [PMID: 36121312 PMCID: PMC9826470 DOI: 10.1002/mrm.29435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP). THEORY AND METHODS First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework. Then a comparison between the resulting maps is drawn by means of a visual analysis, a quantitative assessment via numerical simulations, a test-retest study across the MICRA dataset (6 subjects scanned five times) and, finally, a computational time evaluation. RESULTS Findings illustrate the visual similarity between the indices computed with either technique. Evaluation against synthetic ground truth data, however, demonstrates MiSFIT's improved accuracy. In addition, the test-retest study reveals MiSFIT's higher degree of reliability in most of white matter regions. Finally, the computational time evaluation shows MiSFIT's time reduction up to two orders of magnitude. CONCLUSIONS Despite being a direct development on the MAP-MRI representation, the PA and the NG can be reliably and efficiently computed within MiSFIT's framework. This, together with the previous findings in the original MiSFIT's article, could mean the difference that definitely qualifies diffusion MRI to be incorporated into regular clinical settings.
Collapse
Affiliation(s)
- Guillem París
- Laboratorio de Procesado de Imagen (LPI)Universidad de ValladolidValladolidCastilla y LeónSpain
| | - Tomasz Pieciak
- Laboratorio de Procesado de Imagen (LPI)Universidad de ValladolidValladolidCastilla y LeónSpain,AGH University of Science and TechnologyKrakowPoland
| | - Santiago Aja‐Fernández
- Laboratorio de Procesado de Imagen (LPI)Universidad de ValladolidValladolidCastilla y LeónSpain
| | - Antonio Tristán‐Vega
- Laboratorio de Procesado de Imagen (LPI)Universidad de ValladolidValladolidCastilla y LeónSpain
| |
Collapse
|
16
|
Guo H, Liu J, Hu J, Zhang H, Zhao W, Gao M, Zhang Y, Yang G, Cui Y. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models. J Magn Reson Imaging 2022; 56:1834-1844. [PMID: 35488516 PMCID: PMC9790544 DOI: 10.1002/jmri.28211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The focus of neuro-oncology research has changed from histopathologic grading to molecular characteristics, and medical imaging routinely follows this change. PURPOSE To compare the diagnostic performance of amide proton transfer (APT) and four diffusion models in gliomas grading and isocitrate dehydrogenase (IDH) genotype. STUDY TYPE Prospective. POPULATION A total of 62 participants (37 males, 25 females; mean age, 52 ± 13 years) whose IDH genotypes were mutant in 6 of 14 grade II gliomas, 8 of 20 of grade III gliomas, and 4 of 28 grade IV gliomas. FIELD STRENGTH/SEQUENCE APT imaging using sampling perfection with application optimized contrasts by using different flip angle evolutions (SPACE) and DWI with q-space Cartesian grid sampling were acquired at 3 T. ASSESSMENT The ability of diffusion kurtosis imaging, diffusion kurtosis imaging, neurite orientation dispersion and density imaging (NODDI), mean apparent propagator (MAP), and APT imaging for glioma grade and IDH status were assessed, with histopathological grade and genetic testing used as a reference standard. Regions of interest (ROIs) were drawn by two neuroradiologists after consensus. STATISTICAL TESTS T-test and Mann-Whitney U test; one-way analysis of variance (ANOVA); receiver operating curve (ROC) and area under the curve (AUC); DeLong test. P value < 0.05 was considered statistically significant. RESULTS Compared with IDH-mutant gliomas, IDH-wildtype gliomas showed a significantly higher mean, 5th-percentile (APT5 ), and 95th-percentile from APTw, the 95th-percentile value of axial, mean, and radial diffusivity from DKI, and 95th-percentile value of isotropic volume fraction from NODDI, and no significantly different parameters from DTI and MAP (P = 0.075-0.998). The combined APT model showed a significantly wider area under the curve (AUC 0.870) for IDH status, when compared with DKI and NODDI. APT5 was significantly different between two of the three groups (glioma II vs. glioma III vs. glioma IV: 1.35 ± 0.75 vs. 2.09 ± 0.93 vs. 2.71 ± 0.81). DATA CONCLUSION APT has higher diagnostic accuracy than DTI, DKI, MAP, and NODDI in glioma IDH genotype. APT5 can effectively identify both tumor grading and IDH genotyping, making it a promising biomarker for glioma classification. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hu Guo
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Jun Liu
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China,Department of Radiology Quality Control CenterHunan ProvinceChangsha410011China
| | - JunJiao Hu
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - HuiTing Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd.Wuhan430071China
| | - Wei Zhao
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Min Gao
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Road, ChangshaHunan410011China
| | - Yi Zhang
- Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouZhejiangChina
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic ResonanceSchool of Physics and Electronic, East China Normal UniversityShanghaiChina
| | - Yan Cui
- Department of NeurosurgeryThe Second Xiangya Hospital, Central South UniversityNo. 139 Middle Renmin Rd, ChangshaHunan Province410011P.R. China
| |
Collapse
|
17
|
Wang P, He J, Ma X, Weng L, Wu Q, Zhao P, Ban C, Hao X, Hao Z, Yuan P, Hao F, Wang S, Zhang H, Xie S, Gao Y. Applying MAP-MRI to Identify the WHO Grade and Main Genetic Features of Adult-type Diffuse Gliomas: A Comparison of Three Diffusion-weighted MRI Models. Acad Radiol 2022:S1076-6332(22)00546-3. [DOI: 10.1016/j.acra.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
|
18
|
Qiu Y, Li Q, Wu D, Zhang Y, Cheng J, Cao Z, Zhou Y. Altered mean apparent propagator-based microstructure and the corresponding functional connectivity of the parahippocampus and thalamus in Crohn’s disease. Front Neurosci 2022; 16:985190. [PMID: 36203806 PMCID: PMC9530355 DOI: 10.3389/fnins.2022.985190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) is a chronic and relapsing inflammatory bowel disorder that has been shown to generate neurological impairments, which has the potential to signify disease activity in an underlying neurological manner. The objective of this study was to investigate the abnormalities of brain microstructure and the corresponding functional connectivity (FC) in patients with CD, as well as their associations with disease condition. Twenty-two patients with CD and 22 age-, gender-, and education-matched healthy controls (HCs) were enrolled in this study. All subjects underwent mean apparent propagator (MAP)-MRI and resting-state functional magnetic resonance imaging (MRI) (rs-fMRI) data collection. Each patient was evaluated clinically for the condition and duration of the disease. The MAP metrics were extracted and compared between two groups. Pearson’s correlation analysis was conducted to determine the relationship between disease characteristics and significantly abnormal MAP metrics in the CD group. Regions of interest (ROIs) for ROI-wise FC analysis were selected based on their correlation with MAP metrics. Results showed that multiple brain regions, including the parahippocampus and thalamus, exhibited statistically significant differences in MAP metrics between CD patients and HCs. Additionally, CD patients exhibited decreased FC between the left parahippocampus and bilateral thalamus, as well as the right parahippocampus and bilateral thalamus. The findings of this work provide preliminary evidence that structural abnormalities in the parahippocampal gyrus (PHG) and thalamus, as well as decreased FC between them, may reflect the degree of inflammatory of the disease and serve as brain biomarkers for evaluating CD activity.
Collapse
Affiliation(s)
- Yage Qiu
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingshang Li
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University School of Physics and Electronics Science, Shanghai, China
| | - Yiming Zhang
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Cao
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhijun Cao,
| | - Yan Zhou
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yan Zhou,
| |
Collapse
|
19
|
Afzali M, Pieciak T, Jones DK, Schneider JE, Özarslan E. Cumulant expansion with localization: A new representation of the diffusion MRI signal. FRONTIERS IN NEUROIMAGING 2022; 1:958680. [PMID: 37555138 PMCID: PMC10406302 DOI: 10.3389/fnimg.2022.958680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low b-value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths. Here, we propose a new representation for the diffusion MR signal. Our method provides not only a robust estimate of the first three cumulants but also a meaningful extrapolation of the entire signal decay.
Collapse
Affiliation(s)
- Maryam Afzali
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Tomasz Pieciak
- LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Wang P, Gao E, Qi J, Ma X, Zhao K, Bai J, Zhang Y, Zhang H, Yang G, Cheng J, Zhao G. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis. Eur J Radiol 2022; 154:110430. [DOI: 10.1016/j.ejrad.2022.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
|
21
|
Sun Y, Su C, Deng K, Hu X, Xue Y, Jiang R. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status. Eur Radiol 2022; 32:3744-3754. [PMID: 35076759 DOI: 10.1007/s00330-021-08522-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the glioma grade, Ki-67 expression, and IDH-1 mutation status using mean apparent propagator (MAP) MRI. METHODS Forty enrolled glioma patients underwent structural and diffusion MRI. The diffusion metric values including fractional anisotropy (FA), mean diffusivity (MD), mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probability (RTAP), and return-to-plane probability (RTPP) in tumor parenchyma (TP) and contralateral normal-appearing white matter (NAWM) were calculated. The TP/NAWM ratios of diffusion metric values were correlated with tumor grades, Ki-67, and IDH-1 mutation statuses, and the diagnostic performance was assessed. RESULTS QIV were significantly higher, whereas RTAP and RTOP were significantly lower in low-grade gliomas (LGGs) than those in high-grade gliomas (HGGs); QIV and MD were significantly higher, whereas RTAP and RTOP were significantly lower in lower-grade gliomas (grade II and III) than those in grade IV gliomas (p < 0.05 for all). RTAP performed best in grading gliomas. MSD, QIV, and MD were significantly higher, whereas RTAP, RTOP, RTPP, and FA were significantly lower in the IDH-1 mutant gliomas than those in the IDH-1 wild-type ones both for all gliomas and lower-grade gliomas (p < 0.05 for all). RTAP performed best in all gliomas, while QIV performed best in lower-grade gliomas. Additionally, RTAP, RTOP, and FA correlated positively, whereas MSD, QIV, and MD correlated negatively with Ki-67 (p < 0.05 for all). CONCLUSIONS MAP-MRI is a potent approach in evaluating the microstructural changes in gliomas with different grades, cellular proliferation, and IDH-1 mutation statuses. KEY POINTS • MAP-MRI, a newly developed diffusion technique, accurately reveals microstructure-related features in the complex white matter by recovering important microstructural tissue parameters. • MAP-MRI is a potent approach in evaluating the glioma grade, IDH-1 mutation status, and Ki-67 expression. • Compared with DTI, MAP-MRI seems to demonstrate higher diagnostic performance.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Changliang Su
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, NO.29 Xinquan Road, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
22
|
Gao A, Zhang H, Yan X, Wang S, Chen Q, Gao E, Qi J, Bai J, Zhang Y, Cheng J. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping. Radiology 2021; 302:652-661. [PMID: 34874198 DOI: 10.1148/radiol.210820] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The isocitrate dehydrogenase (IDH) genotype and 1p/19q codeletion status are key molecular markers included in glioma pathologic diagnosis. Advanced diffusion models provide additional microstructural information. Purpose To compare the diagnostic performance of histogram features of multiple diffusion metrics in predicting glioma IDH and 1p/19q genotyping. Materials and Methods In this prospective study, participants were enrolled from December 2018 to December 2020. Diffusion-weighted imaging was performed by using a spin-echo echo-planar imaging sequence with five b values (500, 1000, 1500, 2000, and 2500 sec/mm2) in 30 directions for every b value and one b value of 0. Diffusion metrics of diffusion-tensor imaging (DTI), diffusion-kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and mean apparent propagator (MAP) were calculated, and their histogram features were analyzed in regions that included the entire tumor and peritumoral edema. Comparisons between groups were performed according to IDH genotype and 1p/19q codeletion status. Logistic regression analysis was used to predict the IDH and 1p/19q genotypes. Results A total of 215 participants (115 men, 100 women; mean age, 48 years ± 13 [standard deviation]) with grade II (n = 68), grade III (n = 35), and grade IV (n = 112) glioma were included. Among the DTI, DKI, NODDI, MAP, and total diffusion models, there were no significant differences in the areas under the receiver operating characteristic curve (AUCs) for predicting IDH mutations (AUC, 0.76, 0.82, 0.78, 0.81, and 0.82, respectively; P > .05) and 1p/19q codeletion in gliomas with IDH mutations (AUC, 0.83, 0.81, 0.82, 0.83, and 0.88, respectively; P > .05). A regression model with an R2 value of 0.84 was used for the Ki-67 labeling index and histogram features of the diffusion metrics. Conclusion Whole-tumor histogram analysis of multiple diffusion metrics is a promising approach for glioma isocitrate dehydrogenase and 1p/19q genotyping, and the performance of diffusion-tensor imaging is similar to that of advanced diffusion models. Clinical trial registration no. ChiCTR2100048119 © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ankang Gao
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Huiting Zhang
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Xu Yan
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Shaoyu Wang
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Qianqian Chen
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Eryuan Gao
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Jinbo Qi
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Jie Bai
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Yong Zhang
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| | - Jingliang Cheng
- From the Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (A.G., Q.C., E.G., J.Q., J.B., Y.Z., J.C.); and Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, China (H.Z., X.Y., S.W.)
| |
Collapse
|