1
|
Liao Y, Li Y, Wang L, Zhang Y, Sang L, Wang Q, Li P, Xiong K, Qiu M, Zhang J. The Injury Progression in Acute Blast-Induced Mild Traumatic Brain Injury in Rats Reflected by Diffusion Tensor Imaging and Immunohistochemical Examination. J Neurotrauma 2024; 41:2478-2492. [PMID: 38877821 DOI: 10.1089/neu.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Diffusion tensor imaging (DTI) has emerged as a promising neuroimaging tool for detecting blast-induced mild traumatic brain injury (bmTBI). However, lack of refined acute-phase monitoring and reliable imaging biomarkers hindered its clinical application in early diagnosis of bmTBI, leading to potential long-term disability of patients. In this study, we used DTI in a rat model of bmTBI generated by exposing to single lateral blast waves (151.16 and 349.75 kPa, lasting 47.48 ms) released in a confined bioshock tube, to investigate whole-brain DTI changes at 1, 3, and 7 days after injury. Combined assessment of immunohistochemical analysis, transmission electron microscopy, and behavioral readouts allowed for linking DTI changes to synchronous cellular damages and identifying stable imaging biomarkers. The corpus callosum (CC) and brainstem were identified as predominantly affected regions, in which reduced fractional anisotropy (FA) was detected as early as the first day after injury, with a maximum decline occurring at 3 days post-injury before returning to near normal levels by 7 days. Axial diffusivity (AD) values within the CC and brainstem also significantly reduced at 3 days post-injury. In contrast, the radial diffusivity (RD) in the CC showed acute elevation, peaking at 3 days after injury before normalizing by the 7-day time point. Damages to nerve fibers, including demyelination and axonal degeneration, progressed in lines with changes in DTI parameters, supporting a real-time macroscopic reflection of microscopic neuronal fiber injury by DTI. The most sensitive biomarker was identified as a decrease in FA, AD, and an increase in RD within the CC on the third day after injury, supporting the diagnostic utility of DTI in cases of bmTBI in the acute phase.
Collapse
Affiliation(s)
- Yalan Liao
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Qiannan Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Joseph CR. Assessing Mild Traumatic Brain Injury-Associated Blood-Brain Barrier (BBB) Damage and Restoration Using Late-Phase Perfusion Analysis by 3D ASL MRI: Implications for Predicting Progressive Brain Injury in a Focused Review. Int J Mol Sci 2024; 25:11522. [PMID: 39519073 PMCID: PMC11547134 DOI: 10.3390/ijms252111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence around the world, associated with a variety of blunt force and torsion injuries affecting all age groups. Most never reach medical attention, and the identification of acute injury and later clearance to return to usual activities is relegated to clinical evaluation-particularly in sports injuries. Advanced structural imaging is rarely performed due to the usual absence of associated acute anatomic/hemorrhagic changes. This review targets physiologic imaging techniques available to identify subtle blood-brain barrier dysfunction and white matter tract shear injury and their association with chronic traumatic encephalopathy. These techniques provide needed objective measures to assure recovery from injury in those patients with persistent cognitive/emotional symptoms and in the face of repetitive mTBI.
Collapse
Affiliation(s)
- Charles R Joseph
- Department of Neurology and Internal Medicine, College of Osteopathic Medicine, Liberty University, Lynchburg, VA 24502, USA
| |
Collapse
|
3
|
Hack L, Singh B, Binkofski F, Helmich I. Repetitive Subconcussive Head Impacts in Sports and Their Impact on Brain Anatomy and Function: A Systematic Review. Int J Sports Med 2024; 45:871-883. [PMID: 38857880 DOI: 10.1055/a-2342-3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Repetitive subconcussive head impacts occur regularly in sports. However, the exact relationship between their biomechanical properties and their consequences on brain structure and function has not been clarified yet. We therefore reviewed prospective cohort studies that objectively reported the biomechanical characteristics of repetitive subconcussive head impacts and their impact on brain anatomy and function. Only studies with a pre- to post-measurement design were included. Twenty-four studies met the inclusion criteria. Structural white matter alterations, such as reduced fractional anisotropy and an increase in mean diffusivity values, seem to be evident in athletes exposed to repetitive subconcussive head impacts exceeding 10 g. Such changes are observable after only one season of play. Furthermore, a dose-response relationship exists between white matter abnormalities and the total number of subconcussive head impacts. However, functional changes after repetitive subconcussive head impacts remain inconclusive. We therefore conclude that repetitive subconcussive head impacts induce structural changes, but thus far without overt functional changes.
Collapse
Affiliation(s)
- Lukas Hack
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
- Department of Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Bhagyashree Singh
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
| | - Ferdinand Binkofski
- Clinical Cognitive Sciences, University Hospital RWTH Aachen, Aachen , Germany
| | - Ingo Helmich
- Department of Motor Behavior in Sports, German Sport University Cologne, Koln, Germany
- Department of Exercise and Sport Studies, Smith College, Northampton, United States
- Department of Neurology, Psychosomatic Medicine and Psychiatry, German Sport University Cologne, Koln, Germany
| |
Collapse
|
4
|
Beucler N. Safety of emergency extra-cranial surgery for life-threatening trauma lesions in patients suffering from traumatic brain injury. Neurochirurgie 2024; 70:101579. [PMID: 38924845 DOI: 10.1016/j.neuchi.2024.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Nathan Beucler
- Neurosurgery Department, Sainte-Anne Military Teaching Hospital, 2 Boulevard Sainte-Anne, 83800 Toulon Cedex 9, France.
| |
Collapse
|
5
|
Walter AE, Savalia K, Yoon J, Morrison J, Schneider ALC, Diaz-Arrastia R, Sandsmark DK. Change in Enlarged Perivascular Spaces over Time and Associations with Outcomes After Traumatic Brain Injury. Neurotrauma Rep 2024; 5:738-748. [PMID: 39144451 PMCID: PMC11319858 DOI: 10.1089/neur.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Enlarged perivascular spaces (EPVs) can be seen on magnetic resonance imaging (MRI) scans in various neurological diseases, including traumatic brain injury (TBI). EPVs have been associated with cognitive dysfunction and sleep disturbances; however, their clinical significance remains unclear. The goal of this study was to identify MRI burden of EPVs over time following TBI and to explore their relationship with postinjury outcomes. Individuals with TBI underwent postinjury data collection at Day 1 (blood), 2 weeks (blood, MRI, outcomes), and 6 months (blood, MRI, outcomes). EPV burden was assessed using T1 and FLAIR sequences on representative slices in the centrum semiovale, basal ganglia, and midbrain. Serum blood was assayed to measure concentrations of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP). Thirty-two participants with TBI were included (mean age 36.8 years, 78% male, 50% White). Total EPVs count did not significantly change from 2 weeks (23.5 [95% confidence interval or CI = 22.0-32.0]) to 6 months (26.0 [95% CI = 22.0-30.0], p = 0.16). For self-reported measures of sleep, there were no significant associations between EPVs count and Insomnia Severity Index (2 weeks: β = -0.004; 95% CI = -0.094, 0.086; 6 months: β = 0.002; 95% CI = -0.122, 0.125) or the subset of sleep questions on the Rivermead Post-Concussion Symptoms Questionnaire (2 weeks: β = -0.005; 95% CI = -0.049, 0.039; 6 months: β = -0.019; 95% CI = -0.079, 0.042). Functional outcome, determined by 6 months incomplete recovery (Glasgow Outcome Scale-Extended [GOS-E < 8]) versus complete recovery (GOS-E = 8), was significantly associated with a higher number of EPVs at 2 weeks (odds ratio = 0.94, 95% CI = 0.88-0.99). Spearman correlations showed no significant relationship between EPVs count and GFAP or NfL. This study used commonly acquired MRI sequences to quantify EPVs and investigated their utility as a potential imaging biomarker in TBI. Given the minimal change in EPVs over time, this period may not be long enough for potential recovery or may indicate that EPVs are structural findings that do not significantly change over time.
Collapse
Affiliation(s)
- Alexa E. Walter
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Krupa Savalia
- Departments of Neurology and Neurological Surgery, University of California Davis, Davis, California, USA
| | - Jason Yoon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Morrison
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea L. C. Schneider
- Departments of Neurology and Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle K. Sandsmark
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Gimbel SI, Hungerford LD, Twamley EW, Ettenhofer ML. White Matter Organization and Cortical Thickness Differ Among Active Duty Service Members With Chronic Mild, Moderate, and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:818-835. [PMID: 37800726 PMCID: PMC11005384 DOI: 10.1089/neu.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Abstract This study compared findings from whole-brain diffusion tensor imaging (DTI) and volumetric magnetic resonance imaging (MRI) among 90 Active Duty Service Members with chronic mild traumatic brain injury (TBI; n = 52), chronic moderate-to-severe TBI (n = 17), and TBI-negative controls (n = 21). Data were collected on a Philips Ingenia 3T MRI with DTI in 32 directions. Results demonstrated that history of TBI was associated with differences in white matter microstructure, white matter volume, and cortical thickness in both mild TBI and moderate-to-severe TBI groups relative to controls. However, the presence, pattern, and distribution of these findings varied substantially depending on the injury severity. Spatially-defined forms of DTI fractional anisotropy (FA) analyses identified altered white matter organization within the chronic moderate-to-severe TBI group, but they did not provide clear evidence of abnormalities within the chronic mild TBI group. In contrast, DTI FA "pothole" analyses identified widely distributed areas of decreased FA throughout the white matter in both the chronic mild TBI and chronic moderate-to-severe TBI groups. Additionally, decreased white matter volume was found in several brain regions for the chronic moderate-to-severe TBI group compared with the other groups. Greater number of DTI FA potholes and reduced cortical thickness were also related to greater severity of self-reported symptoms. In sum, this study expands upon a growing body of literature using advanced imaging techniques to identify potential effects of brain injury in military Service Members. These findings may differ from work in other TBI populations due to varying mechanisms and frequency of injury, as well as a potentially higher level of functioning in the current sample related to the ability to maintain continued Active Duty status after injury. In conclusion, this study provides DTI and volumetric MRI findings across the spectrum of TBI severity. These results provide support for the use of DTI and volumetric MRI to identify differences in white matter microstructure and volume related to TBI. In particular, DTI FA pothole analysis may provide greater sensitivity for detecting subtle forms of white matter injury than conventional DTI FA analyses.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Elizabeth W. Twamley
- University of California, San Diego, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, USA
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Joseph CR, Lim JK, Grohol BN, Zivcevska M, Lencke J, Rich ED, Arrasmith CJ, Dorman IS, Clark BW, Love K, Ferry B, Rolfs ME. Identifying delay in glymphatic clearance of labeled protons post-acute head trauma utilizing 3D ASL MRI (arterial spin labeling): a pilot study. Sci Rep 2024; 14:6188. [PMID: 38485759 PMCID: PMC10940642 DOI: 10.1038/s41598-024-56236-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
This study correlated mild traumatic brain injury (mTBI) cognitive changes with ASL-MRI glymphatic clearance rates (GCRs) and recovery with GCR improvement. mTBI disrupts the blood brain barrier (BBB), reducing capillary mean transit time and GCRs. mTBI is clinically diagnosed utilizing history/examination findings with no physiologic biomarkers. 3D TGSE (turbo-gradient spin-echo) pulsed arterial spin-labeling 3T MRI with 7 long inversion times (TIs) assessed the signal clearance of labeled protons 2800-4000 ms postlabeling in bifrontal, bitemporal, and biparietal regions within 7 days of mTBI and once clinically cleared to resume activities. The Sport Concussion Assessment Tool Version 5 (SKAT5) and Brief Oculomotor/Vestibular Assessment evaluated injured athletes' cognitive function prior to MRIs. The pilot study demonstrated significant GCRs improvement (95% CI - 0.06 to - 0.03 acute phase; to CI-recovery CI 0.0772 to - 0.0497; P < 0.001 in frontal lobes; and parietal lobes (95% CI - 0.0584 to - 0.0251 acute; CI - 0.0727 to - 0.0392 recovery; P = 0.024) in 9 mTBI athletes (8 female, 1 male). Six age/activity-matched controls (4 females, 2 males) were also compared. mTBI disrupts the BBB, reducing GCR measured using the 3D ASL MRI technique. ASL MRI is a potential noninvasive biomarker of mTBI and subsequent recovery.
Collapse
Affiliation(s)
- Charles R Joseph
- Liberty University College of Osteopathic Medicine, Lynchburg, USA.
| | - Jubin Kang Lim
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Bryce N Grohol
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Joshua Lencke
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Ethan Dean Rich
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | | | | | | | - Kim Love
- K. R. Love Quantitative Consulting and Collaboration, Athens, USA
| | - Ben Ferry
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Mark E Rolfs
- Liberty University College of Osteopathic Medicine, Lynchburg, USA
| |
Collapse
|
8
|
Stolicyn A, Lyall LM, Lyall DM, Høier NK, Adams MJ, Shen X, Cole JH, McIntosh AM, Whalley HC, Smith DJ. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort. Sleep 2024; 47:zsad274. [PMID: 37889226 PMCID: PMC10851840 DOI: 10.1093/sleep/zsad274] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
STUDY OBJECTIVES To assess for associations between sleeping more than or less than recommended by the National Sleep Foundation (NSF), and self-reported insomnia, with brain structure. METHODS Data from the UK Biobank cohort were analyzed (N between 9K and 32K, dependent on availability, aged 44 to 82 years). Sleep measures included self-reported adherence to NSF guidelines on sleep duration (sleeping between 7 and 9 hours per night), and self-reported difficulty falling or staying asleep (insomnia). Brain structural measures included global and regional cortical or subcortical morphometry (thickness, surface area, volume), global and tract-related white matter microstructure, brain age gap (difference between chronological age and age estimated from brain scan), and total volume of white matter lesions. RESULTS Longer-than-recommended sleep duration was associated with lower overall grey and white matter volumes, lower global and regional cortical thickness and volume measures, higher brain age gap, higher volume of white matter lesions, higher mean diffusivity globally and in thalamic and association fibers, and lower volume of the hippocampus. Shorter-than-recommended sleep duration was related to higher global and cerebellar white matter volumes, lower global and regional cortical surface areas, and lower fractional anisotropy in projection fibers. Self-reported insomnia was associated with higher global gray and white matter volumes, and with higher volumes of the amygdala, hippocampus, and putamen. CONCLUSIONS Sleeping longer than recommended by the NSF is associated with a wide range of differences in brain structure, potentially indicative of poorer brain health. Sleeping less than recommended is distinctly associated with lower cortical surface areas. Future studies should assess the potential mechanisms of these differences and investigate long sleep duration as a putative marker of brain health.
Collapse
Affiliation(s)
- Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Nikolaj Kjær Høier
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Copenhagen Research Center for Mental Health CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - James H Cole
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Bielanin JP, Metwally SAH, Paruchuri SS, Sun D. An overview of mild traumatic brain injuries and emerging therapeutic targets. Neurochem Int 2024; 172:105655. [PMID: 38072207 DOI: 10.1016/j.neuint.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequences, including an increased risk of developing Alzheimer's Disease, Parkinson's Disease (PD), chronic traumatic encephalopathy (CTE), and nearly doubling one's risk of suicide. However, the current management of mTBIs in clinical practice and the available treatment options are limited. There exists an unmet need for effective therapy. This review addresses various aspects of mTBIs based on the most up-to-date literature review, with the goal of stimulating translational research to identify new therapeutic targets and improve our understanding of pathogenic mechanisms. First, we provide a summary of mTBI symptomatology and current diagnostic parameters such as the Glasgow Coma Scale (GCS) for classifying mTBIs or concussions, as well as the utility of alternative diagnostic parameters, including imaging techniques like MRI with diffusion tensor imaging (DTI) and serum biomarkers such as S100B, NSE, GFAP, UCH-L1, NFL, and t-tau. Our review highlights several pre-clinical concussion models employed in the study of mTBIs and the underlying cellular mechanisms involved in mTBI-related pathogenesis, including axonal damage, demyelination, inflammation, and oxidative stress. Finally, we examine a selection of new therapeutic targets currently under investigation in pre-clinical models. These targets may hold promise for clinical translation and address the pressing need for more effective treatments for mTBIs.
Collapse
Affiliation(s)
- John P Bielanin
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shamseldin A H Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Satya S Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Sun
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Meyers SP, Hirad A, Gonzalez P, Bazarian JJ, Mirabelli MH, Rizzone KH, Ma HM, Rosella P, Totterman S, Schreyer E, Tamez-Pena JG. Clinical performance of a multiparametric MRI-based post concussive syndrome index. Front Neurol 2023; 14:1282833. [PMID: 38170071 PMCID: PMC10759224 DOI: 10.3389/fneur.2023.1282833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Diffusion Tensor Imaging (DTI) has revealed measurable changes in the brains of patients with persistent post-concussive syndrome (PCS). Because of inconsistent results in univariate DTI metrics among patients with mild traumatic brain injury (mTBI), there is currently no single objective and reliable MRI index for clinical decision-making in patients with PCS. Purpose This study aimed to evaluate the performance of a newly developed PCS Index (PCSI) derived from machine learning of multiparametric magnetic resonance imaging (MRI) data to classify and differentiate subjects with mTBI and PCS history from those without a history of mTBI. Materials and methods Data were retrospectively extracted from 139 patients aged between 18 and 60 years with PCS who underwent MRI examinations at 2 weeks to 1-year post-mTBI, as well as from 336 subjects without a history of head trauma. The performance of the PCS Index was assessed by comparing 69 patients with a clinical diagnosis of PCS with 264 control subjects. The PCSI values for patients with PCS were compared based on the mechanism of injury, time interval from injury to MRI examination, sex, history of prior concussion, loss of consciousness, and reported symptoms. Results Injured patients had a mean PCSI value of 0.57, compared to the control group, which had a mean PCSI value of 0.12 (p = 8.42e-23) with accuracy of 88%, sensitivity of 64%, and specificity of 95%, respectively. No statistically significant differences were found in the PCSI values when comparing the mechanism of injury, sex, or loss of consciousness. Conclusion The PCSI for individuals aged between 18 and 60 years was able to accurately identify patients with post-concussive injuries from 2 weeks to 1-year post-mTBI and differentiate them from the controls. The results of this study suggest that multiparametric MRI-based PCSI has great potential as an objective clinical tool to support the diagnosis, treatment, and follow-up care of patients with post-concussive syndrome. Further research is required to investigate the replicability of this method using other types of clinical MRI scanners.
Collapse
Affiliation(s)
- Steven P. Meyers
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Adnan Hirad
- Department of Vascular Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | - Jeffrey J. Bazarian
- Departments of Emergency Medicine, Neurology, Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Mark H. Mirabelli
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Katherine H. Rizzone
- Department of Orthopedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Heather M. Ma
- Department of Physical Medicine and Rehabilitation, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Peter Rosella
- Department of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | | | - Jose G. Tamez-Pena
- School of Medicine and Health Sciences, Tecnologico de Monterey, Monterrey, Mexico
| |
Collapse
|
11
|
Wu CY, Hsieh HH, Huang SM, Chiu SC, Peng SL. Brain alterations in ovariohysterectomized rats revealed by diffusion tensor imaging. Neuroreport 2023; 34:649-654. [PMID: 37506310 DOI: 10.1097/wnr.0000000000001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Women undergoing hysterectomy with oophorectomy have an increased risk of Alzheimer's disease and Parkinson's disease. However, postoperative neuroimaging data on pathogenic processes in the brain are limited. The aim of this study was to investigate the potential effect of ovariohysterectomy on brain integrity in rat model using diffusion tensor imaging (DTI) technique for the first time. METHODS We enrolled 13 rats each in the control and ovariohysterectomy groups. Rats in the ovariohysterectomy group underwent the ovariohysterectomy at 7 weeks of age, and all rats underwent DTI scans at 9 weeks of age. The DTI-derived parameters, such as fractional anisotropy and mean diffusivity, were compared between the control and ovariohysterectomy groups. RESULTS Compared to the control group, the ovariohysterectomy group showed significantly lower fractional anisotropy in various brain regions, including the corpus callosum, bilateral striatum, and bilateral cortex (all P < 0.05), suggesting neuronal injury in ovariohysterectomized rats. Mean diffusivity did not differ significantly between groups (all P > 0.05). CONCLUSION Rats undergoing ovariohysterectomy had lower fractional anisotropy compared to control in widespread brain regions, suggesting neuronal injury and demyelination. Therefore, neuroimaging should be performed to monitor brain alterations in women after hysterectomy with bilateral oophorectomy in clinical settings.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Pankatz L, Rojczyk P, Seitz-Holland J, Bouix S, Jung LB, Wiegand TLT, Bonke EM, Sollmann N, Kaufmann E, Carrington H, Puri T, Rathi Y, Coleman MJ, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, Marx CE, Shenton ME, Koerte IK. Adverse Outcome Following Mild Traumatic Brain Injury Is Associated with Microstructure Alterations at the Gray and White Matter Boundary. J Clin Med 2023; 12:5415. [PMID: 37629457 PMCID: PMC10455493 DOI: 10.3390/jcm12165415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM microstructure is associated with long-term outcomes following mTBI. The diffusion and structural MRI data of 278 participants between 18 and 65 years of age with and without military background from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness (FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the comparison cohort (n = 131). Associations between imaging features and post-concussive symptom severity, and functional and cognitive impairment were investigated using partial correlations while controlling for mental health comorbidities that are particularly common among military cohorts and were present in both the mTBI and comparison group. Findings revealed significantly lower whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impairment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no significant difference was observed in cortical thickness, nor between cortical thickness and outcome (p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary may be sensitive markers of adverse long-term outcomes following mTBI.
Collapse
Affiliation(s)
- Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Département de génie logiciel et TI, École de Technologie Supérieure, Université du Québec, Montreal, QC H3C 1K3, Canada
| | - Leonard B. Jung
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Elena M. Bonke
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Neurology, University Hospital, LMU, 81377 Munich, Germany
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Twishi Puri
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
- Department of Physical Medicine and Rehabilitation, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- School of Public Health, University of California San Diego, La Jolla, CA 92093, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC 27705, USA;
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Somerville, MA 02145, USA; (L.P.); (P.R.); (J.S.-H.); (S.B.); (L.B.J.); (T.L.T.W.); (E.M.B.); (N.S.); (E.K.); (H.C.); (T.P.); (Y.R.); (M.J.C.); (O.P.); (M.E.S.)
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, 82152 Planegg, Germany
| |
Collapse
|
13
|
Hossain I, Mohammadian M, Maanpää HR, Takala RSK, Tenovuo O, van Gils M, Hutchinson P, Menon DK, Newcombe VF, Tallus J, Hirvonen J, Roine T, Kurki T, Blennow K, Zetterberg H, Posti JP. Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury. BMC Neurol 2023; 23:304. [PMID: 37582732 PMCID: PMC10426141 DOI: 10.1186/s12883-023-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. METHODS Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. RESULTS The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. CONCLUSION In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland.
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland.
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Intensive Care Medicine and Pain Management, Perioperative Services, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Turku, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Moro F, Lisi I, Tolomeo D, Vegliante G, Pascente R, Mazzone E, Hussain R, Micotti E, Dallmeier J, Pischiutta F, Bianchi E, Chiesa R, Wang KK, Zanier ER. Acute Blood Levels of Neurofilament Light Indicate One-Year White Matter Pathology and Functional Impairment in Repetitive Mild Traumatic Brain Injured Mice. J Neurotrauma 2023. [PMID: 36576018 DOI: 10.1089/neu.2022.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.
Collapse
Affiliation(s)
- Federico Moro
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Mazzone
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riaz Hussain
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Julian Dallmeier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
15
|
Stenberg J, Skandsen T, Gøran Moen K, Vik A, Eikenes L, Håberg AK. Diffusion Tensor and Kurtosis Imaging Findings the First Year following Mild Traumatic Brain Injury. J Neurotrauma 2023; 40:457-471. [PMID: 36305387 PMCID: PMC9986024 DOI: 10.1089/neu.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite enormous research interest in diffusion tensor imaging and diffusion kurtosis imaging (DTI; DKI) following mild traumatic brain injury (MTBI), it remains unknown how diffusion in white matter evolves post-injury and relates to acute MTBI characteristics. This prospective cohort study aimed to characterize diffusion changes in white matter the first year after MTBI. Patients with MTBI (n = 193) and matched controls (n = 83) underwent 3T magnetic resonance imaging (MRI) within 72 h and 3- and 12-months post-injury. Diffusion data were analyzed in three steps: 1) voxel-wise comparisons between the MTBI and control group were performed with tract-based spatial statistics at each time-point; 2) clusters of significant voxels identified in step 1 above were evaluated longitudinally with mixed-effect models; 3) the MTBI group was divided into: (A) complicated (with macrostructural findings on MRI) and uncomplicated MTBI; (B) long (1-24 h) and short (< 1 h) post-traumatic amnesia (PTA); and (C) other and no other concurrent injuries to investigate if findings in step 1 were driven mainly by aberrant diffusion in patients with a more severe injury. At 72 h, voxel-wise comparisons revealed significantly lower fractional anisotropy (FA) in one tract and significantly lower mean kurtosis (Kmean) in 11 tracts in the MTBI compared with control group. At 3 months, the MTBI group had significantly higher mean diffusivity in eight tracts compared with controls. At 12 months, FA was significantly lower in four tracts and Kmean in 10 tracts in patients with MTBI compared with controls. There was considerable overlap in affected tracts across time, including the corpus callosum, corona radiata, internal and external capsule, and cerebellar peduncles. Longitudinal analyses revealed that the diffusion metrics remained relatively stable throughout the first year after MTBI. The significant group*time interactions identified were driven by changes in the control rather than the MTBI group. Further, differences identified in step 1 did not result from greater diffusion abnormalities in patients with complicated MTBI, long PTA, or other concurrent injuries, as standardized mean differences in diffusion metrics between the groups were small (0.07 ± 0.11) and non-significant. However, follow-up voxel-wise analyses revealed that other concurrent injuries had effects on diffusion metrics, but predominantly in other metrics and at other time-points than the effects observed in the MTBI versus control group analysis. In conclusion, patients with MTBI differed from controls in white matter integrity already 72 h after injury. Diffusion metrics remained relatively stable throughout the first year after MTBI and were not driven by deviating diffusion in patients with a more severe MTBI.
Collapse
Affiliation(s)
- Jonas Stenberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, Vestre Viken Hospital Trust, Drammen Hospital, Drammen, Norway.,Department of Radiology, Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
17
|
Liu Y, Lu L, Li F, Chen YC. Neuropathological Mechanisms of Mild Traumatic Brain Injury: A Perspective From Multimodal Magnetic Resonance Imaging. Front Neurosci 2022; 16:923662. [PMID: 35784844 PMCID: PMC9247389 DOI: 10.3389/fnins.2022.923662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of the total number of TBI cases. The mechanism of injury for patients with mTBI has a variety of neuropathological processes. However, the underlying neurophysiological mechanism of the mTBI is unclear, which affects the early diagnosis, treatment decision-making, and prognosis evaluation. More and more multimodal magnetic resonance imaging (MRI) techniques have been applied for the diagnosis of mTBI, such as functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-weighted imaging (SWI), and diffusion MRI (dMRI). Various imaging techniques require to be used in combination with neuroimaging examinations for patients with mTBI. The understanding of the neuropathological mechanism of mTBI has been improved based on different angles. In this review, we have summarized the application of these aforementioned multimodal MRI techniques in mTBI and evaluated its benefits and drawbacks.
Collapse
|