1
|
Lim SH, Chua W, Ng W, Ip E, Marques TM, Tran NT, Gama-Carvalho M, Asghari R, Henderson C, Ma Y, de Souza P, Spring KJ. Circulating Tumour Cell Associated MicroRNA Profiles Change during Chemoradiation and Are Predictive of Response in Locally Advanced Rectal Cancer. Cancers (Basel) 2023; 15:4184. [PMID: 37627212 PMCID: PMC10452825 DOI: 10.3390/cancers15164184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Locally advanced rectal cancer (LARC) has traditionally been treated with trimodality therapy consisting of neoadjuvant radiation +/- chemotherapy, surgery, and adjuvant chemotherapy. There is currently a clinical need for biomarkers to predict treatment response and outcomes, especially during neoadjuvant therapy. Liquid biopsies in the form of circulating tumour cells (CTCs) and circulating nucleic acids in particular microRNAs (miRNA) are novel, the latter also being highly stable and clinically relevant regulators of disease. We studied a prospective cohort of 52 patients with LARC, and obtained samples at baseline, during treatment, and post-treatment. We enumerated CTCs during chemoradiation at these three time-points, using the IsofluxTM (Fluxion Biosciences Inc., Alameda, CA, USA) CTC Isolation and detection platform. We then subjected the isolated CTCs to miRNA expression analyses, using a panel of 106 miRNA candidates. We identified CTCs in 73% of patients at baseline; numbers fell and miRNA expression profiles also changed during treatment. Between baseline and during treatment (week 3) time-points, three microRNAs (hsa-miR-95, hsa-miR-10a, and hsa-miR-16-1*) were highly differentially expressed. Importantly, hsa-miR-19b-3p and hsa-miR-483-5p were found to correlate with good response to treatment. The latter (hsa-miR-483-5p) was also found to be differentially expressed between good responders and poor responders. These miRNAs represent potential predictive biomarkers, and thus a potential miRNA-based treatment strategy. In this study, we demonstrate that CTCs are present and can be isolated in the non-metastatic early-stage cancer setting, and their associated miRNA profiles can potentially be utilized to predict treatment response.
Collapse
Affiliation(s)
- Stephanie H. Lim
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Department of Medical Oncology, Macarthur Cancer Therapy Centre, Campbelltown, NSW 2560, Australia
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Wei Chua
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Emilia Ip
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Tania M. Marques
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (T.M.M.); (M.G.-C.)
| | - Nham T. Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (T.M.M.); (M.G.-C.)
| | - Ray Asghari
- Department of Medical Oncology, Bankstown Hospital, Bankstown, NSW 2200, Australia;
| | | | - Yafeng Ma
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
| | - Paul de Souza
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Kevin J. Spring
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| |
Collapse
|
2
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
de Souza Barbosa Ê, Santos Ibiapina HN, Rocha da Silva S, Costa AG, Val FF, Mendonça-da-Silva I, Carlos de Lima Ferreira L, Sartim MA, Monteiro WM, Cardoso de Melo G, de Almeida Gonçalves Sachett J. Association of cfDNA levels and bothrops envenomation. Toxicon 2021; 192:66-73. [PMID: 33497746 DOI: 10.1016/j.toxicon.2021.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
In the Amazon, around 90% of snakebites are caused by the Bothrops genus. Complications arising from Bothrops envenomations result from the inflammatory and coagulotoxic activities of the venom. The aim of this study was to investigate the potential of cell-free DNA (cfDNA) as a biomarker of severity in Bothrops snakebites. Patients were treated at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, in the Brazilian Amazon. cfDNA plasma levels were measured by amplifying the human telomerase reverse transcriptase (hTERT) sequence using quantitative RT-PCR. Median levels of cfDNA were compared between envenomed and healthy volunteers and among patients presenting different complications, such as renal failure, bleeding and infection. Of the 76 patients included, 82.9% were male, with a mean age of 32.8 years, and envenomations were mainly classified as severe (39.5%). ROC curve analysis showed a good accuracy of cfDNA levels (AUROC of 0.745) in envenomation diagnosis. A correlation analysis using laboratory variables showed positive correlation with lactate dehydrogenase (p = 0.033) and platelet count (p = 0.003). When cfDNA levels were compared with clinical complications, significant statistical differences were only found among individuals with mild and severe pain (p < 0.05). In summary, our results demonstrated that cfDNA levels are sufficiently accurate for discriminating between envenomed and non-envenomed patients, but are not able to distinguish different complications and the level of severity among envenomed patients. Thus, the role of cfDNA in the pathogenesis of the snakebite envenomations needs to be further investigated.
Collapse
Affiliation(s)
- Êndila de Souza Barbosa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | | | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fernando Fonseca Val
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Iran Mendonça-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil; Faculdade de Medicina, Universidade Federal do Amazonas, Manaus, Brazil
| | - Marco Aurélio Sartim
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Gisely Cardoso de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Brazil.
| |
Collapse
|
4
|
A comparative study of RTK gene status between primary tumors, lymph-node metastases, and Krukenberg tumors. Mod Pathol 2021; 34:42-50. [PMID: 32732929 DOI: 10.1038/s41379-020-0636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022]
Abstract
Krukenberg tumor (KT) refers to a rare ovarian tumor that has metastasized from a primary site. Patients with KTs have a poorer prognosis and worse survival. Thus far, little is known about the frequency of receptor tyrosine kinase (RTK) gene amplification and the concordance of gene amplification between primary tumors, lymph-node metastases, and KTs. Herein, 50 paired samples, including primary cancers, metastatic lymph nodes, and KTs were collected, and RTK gene amplification was tested by fluorescence in situ hybridization (FISH). There were four cases positive for human epidermal growth factor receptor type 2 (HER2) amplification, all of which showed conversion of HER2 status between different lesions. Of the two cases with c-mesenchymal-epithelial transition (c-MET) amplification, the primary tumors and lymph nodes were negative while the right involved ovaries were positive. Inconsistent fibroblast growth factor receptor 2 (FGFR2) status in different lesions was observed in three of the six FGFR2-amplified cases. Co-amplification of RTK genes was identified in only one patient for primary cancer and two for KTs. Collectively, there were 46, 48, 50, and 44 cases negative for HER2, c-MET, EGFR, and FGFR2 amplification in all lesions, respectively. There was no significant difference in overall survival between KTs of gastric origin and colorectal origin. However, of all synchronous cancers, KTs of colorectal origin had a better prognosis than those of gastric origin. In conclusion, the positive rate of RTK gene amplification in KTs was low. Intratumoral heterogeneity was frequent in KTs with RTK gene amplification. A mutually exclusive pattern of RTK gene amplification was dominant in primary cancers, lymph-node metastases, and KTs. There was no survival difference between KTs of gastric origin and colorectal origin. However, of all synchronous cancers, KTs of colorectal origin had a better prognosis than those of gastric origin.
Collapse
|
5
|
Costanza B, Turtoi A, Bellahcène A, Hirano T, Peulen O, Blomme A, Hennequière V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V. Innovative methodology for the identification of soluble biomarkers in fresh tissues. Oncotarget 2018. [PMID: 29535834 PMCID: PMC5828218 DOI: 10.18632/oncotarget.24366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Hennequière
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Eugene Mutijima
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Jacques Boniver
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Claire Josse
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Karin Segers
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Karim Fahmy
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium.,GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Vincent Bours
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Behrenbruch C, Shembrey C, Paquet-Fifield S, Mølck C, Cho HJ, Michael M, Thomson BNJ, Heriot AG, Hollande F. Surgical stress response and promotion of metastasis in colorectal cancer: a complex and heterogeneous process. Clin Exp Metastasis 2018; 35:333-345. [PMID: 29335811 DOI: 10.1007/s10585-018-9873-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022]
Abstract
Surgery remains the curative treatment modality for colorectal cancer in all stages, including stage IV with resectable liver metastasis. There is emerging evidence that the stress response caused by surgery as well as other perioperative therapies such as anesthesia and analgesia may promote growth of pre-existing micro-metastasis or potentially initiate tumor dissemination. Therapeutically targeting the perioperative period may therefore reduce the effect that surgical treatments have in promoting metastases, for example by combining β-adrenergic receptor antagonists and cyclooxygenase-2 (COX-2) inhibitors in the perioperative setting. In this paper, we highlight some of the mechanisms that may underlie surgery-related metastatic development in colorectal cancer. These include direct tumor spillage at the time of surgery, suppression of the anti-tumor immune response, direct stimulatory effects on tumor cells, and activation of the coagulation system. We summarize in more detail results that support a role for catecholamines as major drivers of the pro-metastatic effect induced by the surgical stress response, predominantly through activation of β-adrenergic signaling. Additionally, we argue that an improved understanding of surgical stress-induced dissemination, and more specifically whether it impacts on the level and nature of heterogeneity within residual tumor cells, would contribute to the successful clinical targeting of this process. Finally, we provide a proof-of-concept demonstration that ex-vivo analyses of colorectal cancer patient-derived samples using RGB-labeling technology can provide important insights into the heterogeneous sensitivity of tumor cells to stress signals. This suggests that intra-tumor heterogeneity is likely to influence the efficacy of perioperative β-adrenergic receptor and COX-2 inhibition, and that ex-vivo characterization of heterogeneous stress response in tumor samples can synergize with other models to optimize perioperative treatments and further improve outcome in colorectal and other solid cancers.
Collapse
Affiliation(s)
- Corina Behrenbruch
- Department of Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Carolyn Shembrey
- Department of Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Sophie Paquet-Fifield
- Department of Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Christina Mølck
- Department of Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Medical Building, Grattan Street, Parkville, 3010, Australia
| | - Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Benjamin N J Thomson
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, 300 Grattan St, Parkville, 3000, Australia
| | - Alexander G Heriot
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Frédéric Hollande
- Department of Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
7
|
Sekandarzad MW, van Zundert AAJ, Lirk PB, Doornebal CW, Hollmann MW. Perioperative Anesthesia Care and Tumor Progression. Anesth Analg 2017; 124:1697-1708. [PMID: 27828796 DOI: 10.1213/ane.0000000000001652] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This narrative review discusses the most recent up-to-date findings focused on the currently available "best clinical practice" regarding perioperative anesthesia care bundle factors and their effect on tumor progression. The main objective is to critically appraise the current literature on local anesthetics, regional outcome studies, opioids, and nonsteroidal anti-inflammatory drugs (NSAIDs) and their ability to decrease recurrence in patients undergoing cancer surgery. A brief discussion of additional topical perioperative factors relevant to the anesthesiologist including volatile and intravenous anesthetics, perioperative stress and anxiety, nutrition, and immune stimulation is included. The results of several recently published systematic reviews looking at the association between cancer recurrences and regional anesthesia have yielded inconclusive data and provide insufficient evidence regarding a definitive benefit of regional anesthesia. Basic science data suggests an anti tumor effect induced by local anesthetics. New refined animal models show that opioids can safely be used for perioperative pain management. Preliminary evidence suggests that NSAIDs should be an essential part of multimodal analgesia. Volatile anesthetics have been shown to increase tumor formation, whereas preclinical and emerging clinical data from propofol indicate tumor protective qualities. The perioperative period in the cancer patient represents a unique environment where surgically mediated stress response leads to immune suppression. Regional anesthesia techniques when indicated in combination with multimodal analgesia that include NSAIDs, opioids, and local anesthetics to prevent the pathophysiologic effects of pain and neuroendocrine stress response should be viewed as an essential part of balanced anesthesia.
Collapse
Affiliation(s)
- Mir W Sekandarzad
- From the *Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Herston-Brisbane, Queensland, Australia; and †Division of Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Care, University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
8
|
Hinz S, Hendricks A, Wittig A, Schafmayer C, Tepel J, Kalthoff H, Becker T, Röder C. Detection of circulating tumor cells with CK20 RT-PCR is an independent negative prognostic marker in colon cancer patients - a prospective study. BMC Cancer 2017; 17:53. [PMID: 28086834 PMCID: PMC5237158 DOI: 10.1186/s12885-016-3035-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022] Open
Abstract
Background Detection of circulating (CTC) or disseminated tumor cells (DTC) has been associated with negative prognosis and outcome in patients with colorectal cancer, though testing for these cells is not yet part of clinical routine. There are several different methodological approaches to detect tumor cells but standardized detection assays are not implemented so far. Methods In this prospective monocentric study 299 patients with colon cancer were included. CTC and DTC were detected using CK20 RT-PCR as well as immunocytochemistry staining with anti-pan-keratin and anti-EpCAM antibodies. The primary endpoints were: Evaluation of CTC and DTC at the time of surgery and correlation with main tumor characteristics and overall (OS) and disease free survival (DFS). Results Patients with detectable CTC had a 5-year OS rate of 68% compared to a 5-year OS rate of 85% in patients without detectable CTC in the blood (p = 0.002). Detection of DTC in the bone marrow with CK20 RT-PCR was not associated with a worse OS or DFS. Detection of pan-cytokeratin positive DTC in the bone marrow correlated with a significantly reduced 5-year OS rate (p = 0.048), but detection of DTC in the bone marrow with the anti-EpCAM antibody did not significantly influence the 5-year OS rate (p = 0.958). By multivariate analyses only detection of CTC with CK20 RT-PCR in the blood was revealed to be an independent predictor of worse OS (HR1.94; 95% CI 1.0–3.7; p = 0.04) and DFS (HR 1.94; 95% CI 1.1–3.7; p = 0.044). Conclusions Detection of CTC with CK20 RT-PCR is a highly specific and independent prognostic marker in colon cancer patients. Detection of DTC in the bone marrow with CK20 RT-PCR or immunohistochemistry with anti-EpCAM antibody is not associated with a negative prognostic influence. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3035-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Hinz
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany.
| | - Alexander Hendricks
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| | - Amke Wittig
- Division Molecular Oncology, Institute for Experimental Cancer Research, Cancer Center North, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| | - Jürgen Tepel
- Klinikum Osnabrück, Am Finkenhügel 1-3, 49076, Osnabrück, Germany
| | - Holger Kalthoff
- Division Molecular Oncology, Institute for Experimental Cancer Research, Cancer Center North, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| | - Thomas Becker
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| | - Christian Röder
- Division Molecular Oncology, Institute for Experimental Cancer Research, Cancer Center North, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 7, 24105, Kiel, Germany
| |
Collapse
|
9
|
Tripathi P, Rao SX, Zeng MS. Clinical value of MRI-detected extramural venous invasion in rectal cancer. J Dig Dis 2017; 18:2-12. [PMID: 28009094 DOI: 10.1111/1751-2980.12439] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Extramural venous invasion (EMVI) is associated with a poor prognosis and a poor overall survival rate in rectal cancer. It can independently predict local and distant tumor recurrences. Preoperative EMVI detection in rectal cancer is useful for determining the treatment strategy. EMVI status is beneficial for the post-treatment evaluation and analysis of rectal cancer. Magnetic resonance imaging (MRI) is a non-invasive diagnostic modality with no radiation effects. High-resolution MRI can detect EMVI with high accuracy. In addition, MRI results are equal to or even better than pathological results in the detection of medium to large EMVI in rectal cancer. MRI-detected EMVI (mrEMVI) can be used as a potential biomarker that facilitates treatment methods. This review highlights the importance of MRI before and after rectal cancer treatment. In addition, we analyze the prognostic correlation between mrEMVI and circulating tumor cells (CTC) in rectal cancer. This article may help shed light on the significance of mrEMVI.
Collapse
Affiliation(s)
- Pratik Tripathi
- Department of Radiology, Zhongshan Hospital and Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Sheng Xiang Rao
- Department of Radiology, Zhongshan Hospital and Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Meng Su Zeng
- Department of Radiology, Zhongshan Hospital and Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
10
|
Zhu J, Strickler JH. Clinical applications of liquid biopsies in gastrointestinal oncology. J Gastrointest Oncol 2016; 7:675-686. [PMID: 27747082 PMCID: PMC5056252 DOI: 10.21037/jgo.2016.08.08] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
"Liquid biopsies" are blood based assays used to detect and analyze circulating tumor products, including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating messenger RNA (mRNA), circulating microRNA (miRNA), circulating exosomes, and tumor educated platelets (TEP). For patients with gastrointestinal (GI) malignancies, blood based biopsies may offer several advantages. First, tumor tissue samples are often challenging to procure, and when obtainable, are often insufficient for genomic profiling. Second, blood based assays offer a real-time overview of the entire tumor burden, and allow anatomically unbiased genomic profiling. Third, given the convenience and relative safety of liquid biopsies, this technology may facilitate identification of genomic alterations that confer sensitivity and resistance to targeted therapeutics. This review will assess the clinical applications of circulating tumor products for patients with GI tumors.
Collapse
Affiliation(s)
- Jason Zhu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H Strickler
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Piegeler T, Beck-Schimmer B. Anesthesia and colorectal cancer – The perioperative period as a window of opportunity? Eur J Surg Oncol 2016; 42:1286-95. [DOI: 10.1016/j.ejso.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
|
12
|
N. Goltsev A, A. Diabina O, V. Ostankov M, A. Bondarovich N, Ye. Yampolskaya E. Cancer stem cells in tumor pathogenesis after cryoablation. ACTA ACUST UNITED AC 2015. [DOI: 10.15407/cryo25.03.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|