1
|
Yang CY, Guo LM, Li Y, Wang GX, Tang XW, Zhang QL, Zhang LF, Luo JY. Establishment of a cholangiocarcinoma risk evaluation model based on mucin expression levels. World J Gastrointest Oncol 2024; 16:1344-1360. [PMID: 38660669 PMCID: PMC11037065 DOI: 10.4251/wjgo.v16.i4.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer, characterized by frequent mucin overexpression. MUC1 has been identified as a critical oncogene in the progression of CCA. However, the comprehensive understanding of how the mucin family influences CCA progression and prognosis is still incomplete. AIM To investigate the functions of mucins on the progression of CCA and to establish a risk evaluation formula for stratifying CCA patients. METHODS Single-cell RNA sequencing data from 14 CCA samples were employed for elucidating the roles of mucins, complemented by bioinformatic analyses. Subsequent validations were conducted through spatial transcriptomics and immunohistochemistry. The construction of a risk evaluation model utilized the least absolute shrinkage and selection operator regression algorithm, which was further confirmed by independent cohorts and diverse data types. RESULTS CCA tumor cells with elevated levels of MUC1 and MUC4 showed activated nucleotide metabolic pathways and increased invasiveness. MUC5AC-high cells were found to promote CCA progression through WNT signaling. MUC5B-high cells exhibited robust cellular oxidation activities, leading to resistance against antitumoral treatments. MUC13-high cells were observed to secret chemokines, recruiting and transforming macrophages into the M2-polarized state, thereby suppressing antitumor immunity. MUC16-high cells were found to promote tumor progression through interleukin-1/nuclear factor kappa-light-chain-enhancer of activated B cells signaling upon interaction with neutrophils. Utilizing the expression levels of these mucins, a risk factor evaluation formula for CCA was developed and validated across multiple cohorts. CCA samples with higher risk factors exhibited stronger metastatic potential, chemotherapy resistance, and poorer prognosis. CONCLUSION Our study elucidates the functional mechanisms through which mucins contribute to CCA development, and provides tools for risk stratification in CCA.
Collapse
Affiliation(s)
- Chun-Yuan Yang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Li-Mei Guo
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yang Li
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Guang-Xi Wang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Xiao-Wei Tang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Qiu-Lu Zhang
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Ling-Fu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Jian-Yuan Luo
- Department of Medical Genetics, Department of Biochemistry and Biophysics, School of Basic Medical Sciences Peking University, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
2
|
Dolbnya AD, Popov IA, Pekov SI. Molecular Biomarkers in Cholangiocarcinoma: Focus on Bile. Curr Top Med Chem 2024; 24:722-736. [PMID: 38303538 DOI: 10.2174/0115680266290367240130054142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Collapse
Affiliation(s)
- Andrey D Dolbnya
- Siberian State Medical University, Tomsk, 634050, Russian Federation
| | - Igor A Popov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
| | - Stanislav I Pekov
- Siberian State Medical University, Tomsk, 634050, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
| |
Collapse
|
3
|
Benson KK, Sheel A, Rahman S, Esnakula A, Manne A. Understanding the Clinical Significance of MUC5AC in Biliary Tract Cancers. Cancers (Basel) 2023; 15:cancers15020433. [PMID: 36672382 PMCID: PMC9856870 DOI: 10.3390/cancers15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Biliary tract cancers (BTC) arise from biliary epithelium and include cholangiocarcinomas or CCA (including intrahepatic (ICC) and extrahepatic (ECC)) and gallbladder cancers (GBC). They often have poor outcomes owing to limited treatment options, advanced presentations, frequent recurrence, and poor response to available systemic therapy. Mucin 5AC (MUC5AC) is rarely expressed in normal biliary epithelium, but can be upregulated in tissues of benign biliary disease, premalignant conditions (e.g., biliary intraepithelial neoplasia), and BTCs. This mucin's numerous glycoforms can be divided into less-glycosylated immature and heavily-glycosylated mature forms. Reported MUC5AC tissue expression in BTC varies widely, with some associations based on cancer location (e.g., perihilar vs. peripheral ICC). Study methods were variable regarding cancer subtypes, expression positivity thresholds, and MUC5AC glycoforms. MUC5AC can be detected in serum of BTC patients at high concentrations. The hesitancy in developing MUC5AC into a clinically useful biomarker in BTC management is due to variable evidence on the diagnostic and prognostic value. Concrete conclusions on tissue MUC5AC are difficult, but serum detection might be relevant for diagnosis and is associated with poor prognosis. Future studies are needed to further the understanding of the potential clinical value of MUC5AC in BTC, especially regarding predictive and therapeutic value.
Collapse
Affiliation(s)
- Katherine K. Benson
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-366-2982
| |
Collapse
|
4
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
5
|
Rico SD, Mahnken M, Büscheck F, Dum D, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Möller-Koop C, Fraune C, Möller K, Menz A, Bernreuther C, Jacobsen F, Lebok P, Clauditz TS, Sauter G, Uhlig R, Wilczak W, Simon R, Steurer S, Minner S, Burandt E, Krech T, Marx AH. MUC5AC Expression in Various Tumor Types and Nonneoplastic Tissue: A Tissue Microarray Study on 10 399 Tissue Samples. Technol Cancer Res Treat 2021; 20:15330338211043328. [PMID: 34547930 PMCID: PMC8461123 DOI: 10.1177/15330338211043328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Mucin 5AC (MUC5AC) belongs to the glycoprotein family of secreted gel-forming mucins and is physiologically expressed in some epithelial cells. Studies have shown that MUC5AC is also expressed in several cancer types suggesting a potential utility for the distinction of tumor types and subtypes. Methods: To systematically determine MUC5AC expression in normal and cancerous tissues, a tissue microarray containing 10 399 samples from 111 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Results: MUC5AC was expressed in normal mucus-producing cells of various organs. At least weak MUC5AC positivity was seen in 44 of 111 (40%) tumor entities. Of these 44 tumor entities, 28 included also tumors with strong positivity. MUC5AC immunostaining was most commonly seen in esophageal adenocarcinoma (72%), colon adenoma (62%), ductal adenocarcinoma of the pancreas (64%), mucinous carcinoma of the ovary (46%), diffuse gastric adenocarcinoma (44%), pancreatic ampullary adenocarcinoma (41%), intestinal gastric adenocarcinoma (39%), and bronchioloalveolar carcinoma (33%). Clinically relevant tumors with complete or almost complete absence of MUC5AC staining included small cell carcinoma of the lung (0% of 17), clear cell renal cell carcinoma (0% of 507), papillary thyroid carcinoma (0% of 359), breast cancer (2% of 1097), prostate cancer (2% of 228), soft tissue tumors (0.1% of 968), and hematological neoplasias (0% of 111). Conclusion: The highly standardized analysis of a broad range of cancers identified a ranking order of tumors according to their relative prevalence of MUC5AC expression.
Collapse
Affiliation(s)
| | - Moritz Mahnken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Academic Hospital Fuerth, Fuerth, Germany
| |
Collapse
|
6
|
Yamamoto T, Abe T, Oshita A, Yonehara S, Katamura Y, Matsumoto N, Kobayashi T, Nakahara M, Ohdan H, Noriyuki T. Intrahepatic cholangiocarcinoma with clear cell type following laparoscopic curative surgery. Surg Case Rep 2020; 6:264. [PMID: 33026548 PMCID: PMC7539241 DOI: 10.1186/s40792-020-01041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy of primary liver cancer. Among the several pathological types of ICC, only five cases of the clear cell type have been reported, including the one presented below. Here we report a unique case of clear cell type ICC following laparoscopic hepatectomy. Case presentation A 67-year-old woman had a history of hepatitis B virus. Computed tomography revealed a ring-like enhanced mass 35 mm in diameter at segment 7 in the early phase. The enhancement was prolonged to the late phase through the portal phase, while the shape was irregular. Ethoxybenzy magnetic resonance imaging revealed that the tumor had a low signal intensity on T1-weighted imaging and a high signal intensity on T2-weighted imaging. Diffusion-weighted images identified that the tumor had remarkably high signal intensity. Tumor enhancement was not detected throughout the tumor in the hepatocyte phase. Upon ICC diagnosis, a laparoscopic S7 subsegmentectomy was performed. The patient’s postoperative course was uneventful. An immunohistochemical examination revealed that the cells tested positive for cytokeratin 7 (CK7), CK19, and CD56 and negative for CK20, CD10, α-fetoprotein, thyroid transcription factor-1. At 2 years after surgery, the patient remains alive without recurrence. Conclusions Here we presented a case of clear cell ICC that was treated by laparoscopic hepatectomy. Immunological analysis, especially by CD56 and several CK markers, is helpful for diagnosing this disease.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Tomoyuki Abe
- Department of Surgery, Onomichi General Hospital, 1-10-23, Hirahara, Onomichi, Hiroshima, 722-8508, Japan.
| | - Akihiko Oshita
- Department of Surgery, Onomichi General Hospital, 1-10-23, Hirahara, Onomichi, Hiroshima, 722-8508, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuji Yonehara
- Department of Pathology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Yoshio Katamura
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Nozomu Matsumoto
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Nakahara
- Department of Surgery, Onomichi General Hospital, 1-10-23, Hirahara, Onomichi, Hiroshima, 722-8508, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshio Noriyuki
- Department of Surgery, Onomichi General Hospital, 1-10-23, Hirahara, Onomichi, Hiroshima, 722-8508, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Jiang ZM, Li HB, Chen SG. PIMREG, a Marker of Proliferation, Facilitates Aggressive Development of Cholangiocarcinoma Cells Partly Through Regulating Cell Cycle-Related Markers. Technol Cancer Res Treat 2020; 19:1533033820979681. [PMID: 33356974 PMCID: PMC7768323 DOI: 10.1177/1533033820979681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) is a protein associated with cell proliferation. Its aberrant expression was reported to be correlated with the development in multiple tumors. However, its role in cholangiocarcinoma (CAA) has not yet been evaluated in detail. METHODS Data were acquired from the public TCGA database for evaluating the expression pattern of PIMREG and assessing its clinical relevance as well as its correlation with overall survival. RBE and HUH28 cell lines were selected to perform loss- and gain-of-function of PIMREG assays respectively. Quantitative real-time PCR (RT-qPCR) and western blot analyses were used to measure the mRNA and protein levels of PIMREG. Cell Counting Kit-8, colony formation tests, and Transwell assays served to measure the effect of PIMREG on the proliferative, invasive and migratory capacities of CAA cells, appropriately. Gene set enrichment analysis (GSEA) was conducted to identify PIMREG associated gene set, which was further confirmed by western blot. RESULTS PIMREG was found to be highly expressed in CAA tissues and cell lines according to the public dataset and RT-qPCR analysis, and negatively related to the prognosis of patients with CAA. Moreover, knockdown of PIMREG suppressed and overexpression of PIMREG promoted the proliferation, invasion and migration of CAA cells. Furthermore, GSEA revealed that high PIMREG expression was positively associated with cell cycle signaling. And the next western blot analysis demonstrated that silencing PIMREG resulted in a reduction on the levels of p-CDK1, CCNE1, and CCNB1, whereas PIMREG overexpression led to an opposite result. CONCLUSION The results suggested that PIMREG facilitates the growth, invasion and migration of CAA cells partly by regulating the cell cycle relative biomarkers, revealing that PIMREG may be a crucial molecule in the progression of CAA.
Collapse
Affiliation(s)
- Zhao-Ming Jiang
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| | - Hong-Bin Li
- Second Department of Surgery, Menglianggu Branch of Mengyin County
People’s Hospital, Duozhuang Town, Mengyin, People’s Republic of China
| | - Shu-Guo Chen
- Department of General Surgery, Mengyin County People’s Hospital,
Mengyin, People’s Republic of China
| |
Collapse
|
8
|
Expression and Serum Levels of Mucin 5AC (MUC5AC) as a Biomarker for Cholangiocarcinoma: a Meta-analysis. J Gastrointest Cancer 2019; 50:54-61. [PMID: 29139058 DOI: 10.1007/s12029-017-0032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The potential of biomarkers in detecting early cholangiocarcinoma (CCA) is facilitated by examining CCA-associated proteins from primary studies. One such protein is mucin 5AC (MUC5AC) but inconsistency of reported associations between its expression/serum levels and CCA prompts a meta-analysis to obtain more precise estimates. METHODS A literature search yielded 17 included articles where multiple data in some raised the number of studies to 22. We calculated pooled odds ratios (OR) and 95% confidence intervals from negative and positive readings of MUC5AC levels. Data were subgrouped by ethnicity, detection method, sample source, and cancer type. RESULTS Outcome in the overall analysis was non-significant but those in the subgroups were. Thus, significant associations (P < 0.001) indicating high MUC5AC levels were found in three subgroups: (i) Thai (OR 8.32) and (ii) serum (OR 4.52). Heterogeneity of these two outcomes (I2 = 90-93%) was erased with outlier treatment (I2 = 0%) which also modulated the pooled effects (OR 2.48-2.59). (iii) Immunoblot (OR 2.61) had low initial heterogeneity (I2 = 2%). Robustness and significant tests for interaction (Pinteraction = 0.01-0.02) improved MUC5AC associations with CCA in the Thai population. CONCLUSIONS Our pooled effect findings target the biomarker potential of MUC5AC to the Thai population.
Collapse
|
9
|
Harada F, Matsuyama R, Mori R, Kumamoto T, Morioka D, Taguri M, Yamanaka S, Endo I. Outcomes of surgery for 2010 WHO classification-based intraductal papillary neoplasm of the bile duct: Case–control study of a single Japanese institution's experience with special attention to mucin expression patterns. Eur J Surg Oncol 2019; 45:761-768. [DOI: 10.1016/j.ejso.2018.10.532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/18/2023] Open
|
10
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Tanaka M, Shibahara J, Ishikawa S, Ushiku T, Morikawa T, Shinozaki-Ushiku A, Hayashi A, Misumi K, Tanaka A, Katoh H, Sakuma K, Kokudo T, Inagaki Y, Arita J, Sakamoto Y, Hasegawa K, Fukayama M. EVI1 expression is associated with aggressive behavior in intrahepatic cholangiocarcinoma. Virchows Arch 2018; 474:39-46. [DOI: 10.1007/s00428-018-2476-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
|
12
|
Saengboonmee C, Sawanyawisuth K, Chamgramol Y, Wongkham S. Prognostic biomarkers for cholangiocarcinoma and their clinical implications. Expert Rev Anticancer Ther 2018; 18:579-592. [PMID: 29676221 DOI: 10.1080/14737140.2018.1467760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a poorly prognostic cancer with limited treatment options. Most patients have unresectable tumors when they are diagnosed and the chemotherapies provided are of limited benefit. Prognostic markers are therefore necessary to predict the disease outcome, risk of relapse, or to suggest the best treatment option. Areas covered: This article provides an up-to-date review of biomarkers with promising characteristics to be prognostic markers for CCA reported in the past 5 years. The biomarkers are sub-classified into tissue and serum markers. Proteins, RNAs, peripheral blood cells etc., that are associated with aggressive phenotypes, signal pathways, chemo-drug resistance, and those that reflect the survival time of CCA patients are evaluated for their prognostic prediction values. Expert commentary: CCAs are heterogeneous tumors of different histo-pathological subtypes and genetic influences and, therefore, potential markers should be validated in larger collectives with varied epidemiological backgrounds. A systematic review and meta-analysis should be done to clarify the impact of the reported biomolecules for their potential prognostic values. Non- or low-invasive sample collections, as well as the simple and affordable determination methods, should be constructed to make the prognostic biomarkers available in clinical practice.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| | - Kanlayanee Sawanyawisuth
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| | - Yaovalux Chamgramol
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
- c Department of Pathology, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
| | - Sopit Wongkham
- a Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen , Thailand
- b Cholangiocarcinoma Research Institute , Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
13
|
Intrahepatic Mass-Forming Cholangiocarcinoma: Relationship Between Computed Tomography Characteristics and Histological Subtypes. J Comput Assist Tomogr 2018; 42:340-349. [PMID: 29189405 DOI: 10.1097/rct.0000000000000695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to determine the value of multi-detector row computed tomography (MDCT) in differentiating the small-duct (SD) and large-duct (LD) types of intrahepatic mass-forming cholangiocarcinomas (IMCCs) and predicting patient prognosis. METHODS The 4-phase MDCT image findings of 82 patients with surgically confirmed IMCCs (60 SD-type and 22 LD-type IMCCs) were compared between 2 types using univariate and multivariate analyses. Overall survival rates for 78 patients with available information were compared using the Kaplan-Meier method. RESULTS Arterial hyperenhancement, round or lobulated contour, and lack of bile duct encasement were significant MDCT features suggesting the SD type, and lymph node enlargement was significantly associated with the LD type (all P's < 0.05). The presence of those 3 SD-type-suggestive features (MDCT-suggested SD type) demonstrated high specificity (90.9% [20/22]) in differentiating the SD type. Patients of MDCT-suggested SD type without lymph node enlargement (n = 24) demonstrated significantly better overall survival than other groups. CONCLUSIONS Preoperative MDCT features of IMCCs can help differentiate the SD and LD types and predict patient prognosis.
Collapse
|
14
|
Burkhart RA, Laheru DA, Herman JM, Pawlik TM. Multidisciplinary management and the future of treatment in cholangiocarcinoma. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1130618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|