1
|
Xiao W, Li M, Li D, Shi B, Zhong R, Zhao Y, Tai Q, He S, Dong Q. Schottky Interface Enabled Electrospun Rhodium Oxide Doped Gold for Both pH Sensing and Glucose Measurements in Neutral Buffer and Human Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20797-20810. [PMID: 39287604 PMCID: PMC11447893 DOI: 10.1021/acs.langmuir.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS), etc. The prepared materials were used for both pH responsive testing and amperometric glucose measurements. The rhodium oxide nanocoral doped gold demonstrated a sensitivity of 3.52 μA mM-1 cm-2 and limit of detection of 20 μM with linear range up to 3 mM glucose concentration compared to solely electrodeposited gold for a sensitivity of 0.46 μA mM-1 cm-2 and a limit of detection of 450 μM. The Mott-Schottky method was used for the analysis of an electron transfer process from noble metal to metal oxide to electrolyte in demonstrating the improved sensitivity at neutral pH for glucose measurements due to the Schottky barrier adjustment mechanism at an applied flat band potential of 0.3 V. This work opens a new venue in illustrating the metal oxide/metal materials in the glucose neutral response mechanism. In the end, human serum samples were tested against current commercial glucose meter to certify the accuracy of the proposed sensor.
Collapse
Affiliation(s)
- Weiyu Xiao
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Mingman Li
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Danlei Li
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| | - Bo Shi
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Runze Zhong
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Yiyuan Zhao
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Qingliang Tai
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Songbing He
- Department of General Surgery, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu Province, People's Republic of China
| | - Qiuchen Dong
- Department of Chemistry, School of Science, Xi'an Jiaotong-Liverpool University, No. 111 Ren'ai Road, Suzhou Industrial Park, Dushu Lake Higher Education and Innovation Park, Suzhou 215123, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Liu W, Berge-Lefranc D, Chaspoul F, Slaveykova VI. Cytochrome c - silver nanoparticle interactions: Spectroscopy, thermodynamic and enzymatic activity studies. Chem Biol Interact 2023; 382:110647. [PMID: 37499996 DOI: 10.1016/j.cbi.2023.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Cytochrome c, an iron containing metalloprotein in the mitochondria of the cells with an oxide/redox property, plays key role in the cell apoptotic pathway. In this study, the interaction of silver nanoparticles (AgNPs) with cytochrome c (Cyt c) was investigated by using a combination of spectroscopic, imaging and thermodynamic techniques, including dynamic light scattering (DLS), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). DLS and UV-vis analysis evidenced the formation of surface complexes of Cyt c on AgNPs. The saturation of surface coverage of AgNPs was observed at 4.36 Cyt c molecules per nm2 of AgNPs. The surface complexation resulted in a promotion of the Ag dissolution overtime. The negative sign of enthalpic (ΔH) contribution suggested that electrostatic forces are indicative forces in the interaction between protein and AgNPs. Moreover, the fluorescence spectra revealed that the conformation of protein was altered around tryptophan (Trp) and tyrosine (Tyr) residues indicating the alteration of the tertiary structure of Cyt c. CD analysis evidenced that the secondary structure of Cyt c was modified under AgNPs-Cyt c interactions and the binding of Cyt c onto AgNPs resulted in remarkable structural perturbation around the active site heme, which in turn alter the protein enzymatic activity. The results of the present study contributed to a deeper insight on the mechanisms of interaction between NPs and biomacromolecules and could help establish the in vivo fate of AgNPs on cellular redox homeostasis.
Collapse
Affiliation(s)
- Wei Liu
- University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Switzerland.
| | - David Berge-Lefranc
- ICR UMR Aix Marseille Université - CNRS 7273, IMBE UMR Aix Marseille Université - CNRS - IRD - AUPV 7263, France
| | - Florence Chaspoul
- ICR UMR Aix Marseille Université - CNRS 7273, IMBE UMR Aix Marseille Université - CNRS - IRD - AUPV 7263, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Switzerland
| |
Collapse
|
3
|
Yadav S, Sawarni N, Kumari P, Sharma M. Advancement in analytical techniques fabricated for the quantitation of cytochrome c. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Radfar S, Ghanbari R, Attaripour Isfahani A, Rezaei H, Kheirollahi M. A novel signal amplification tag to develop rapid and sensitive aptamer-based biosensors. Bioelectrochemistry 2022; 145:108087. [DOI: 10.1016/j.bioelechem.2022.108087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
|
5
|
Alizadeh V. Preparation a novel 1-pyreneacetic acid functionalized graphene/self-assembled monolayer modified gold electrode to immobilize and study interfacial electron transfer of cytochrome c by electrochemical approaches. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Aggas JR, Walther BK, Abasi S, Kotanen CN, Karunwi O, Wilson AM, Guiseppi-Elie A. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosens Bioelectron 2020; 176:112889. [PMID: 33358581 DOI: 10.1016/j.bios.2020.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Brandon K Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20814, USA.
| | - Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics, Anderson University, 316 Boulevard, Anderson, SC, 29621, USA.
| | - Ann M Wilson
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| |
Collapse
|
7
|
Shayeh JS, Sefidbakht Y, Omidi M, Yazdian F, Tayebi L. Graphite/gold nanoparticles electrode for direct protein attachment: characterization and gas sensing application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43202-43211. [PMID: 32734546 DOI: 10.1007/s11356-020-10286-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In this work, graphite/gold nanoparticles (G/AuNPs) were synthesized through a facile chemical method, and its potential application for direct protein attachment for electrochemical detection of carbon monoxide (CO) was investigated. The preparation of G/AuNPs electrodes was optimized by synthesizing the nanoparticles in different concentration of HAuCl4.3H2O at various temperatures. The G/AuNPs electrode was subsequently modified by four types of mercaptopropionic acid, including 1-mercaptopropionic, 3-mercaptopropionic, 6-mercaptopropionic, and 11-mercaptopropionic acid, to achieve the best structure for protein attachment. Visible absorption and electrochemical studies showed that 3-mercaptopropionic acid possesses the best performance regarding the electrical conductivity between electrode and protein redox center. The cyclic voltammetry results revealed that the modified electrode has an appropriate performance for CO detection at very low concentrations while keeping a linear response. The limit of detection for the modified electrode was calculated to be about 0.2 ppb. Finally, the interactions of cytochrome C and carbon monoxides were simulated using molecular dynamics (MD), and the effect of protein conformation changes on the electrochemical signal was thoroughly examined. The simulation results suggested that the proposed electrochemical sensor has an acceptable performance for the detection of CO due to less fluctuation of amino acids near the protein chain in the presence of CO molecules.
Collapse
Affiliation(s)
- Javad Shabani Shayeh
- Protein Research Center, Shahid Beheshti University, G. C., Velenjak, Tehran, Iran.
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G. C., Velenjak, Tehran, Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University, G. C., Velenjak, Tehran, Iran.
| | - Fatemeh Yazdian
- Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| |
Collapse
|
8
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Shen Z, He L, Wang W, Tan L, Gan N. Highly sensitive and simultaneous detection of microRNAs in serum using stir-bar assisted magnetic DNA nanospheres-encoded probes. Biosens Bioelectron 2019; 148:111831. [PMID: 31706172 DOI: 10.1016/j.bios.2019.111831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
There are critical interests in the detection of microRNA (miRNA) because it can be a blood-borne biomarker, but analytical strategies are still limited by its small size, high sequence homology among family members and low abundance. In this work, three-dimensional magnetic DNA nanospheres were synthesized and immobilized on a gold stir-bar as encoded probes for miRNA capture and signal amplification. Electrochemical tags-labeled DNAs were immobilized on gold coated magnetic nanospheres via a hyperbranched hybridization chain reaction (HHCR). Subsequently, the magnetic DNA nanospheres were immobilized on the gold stir-bar as encoded probes. Target miRNAs were captured on the surface of the stir-bar by replacing the magnetic DNA nanospheres-encoded probes, and the probes were magnetically enriched for highly sensitive and selective electrochemical detection. The gold stir-bar assisted magnetic DNA nanospheres-encoded probes possess dual functions: They are as a nanocarrier to increase the loading amounts of HHCR products, and they are also a platform for efficient electrochemical signal amplification via magnetic enrichment. The method was successfully applied for the detection of miRNA21 and miRNA155 in a wide linear range of 5 fM to 2 nM, and with detection limits of 1.5 fM and 1.8 fM, respectively. The preliminary application of the method suggests that it has great potential in the detection of miRNAs in serum samples.
Collapse
Affiliation(s)
- Zhipeng Shen
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Liyong He
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wenhai Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
He L, Shen Z, Cao Y, Li T, Wu D, Dong Y, Gan N. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. Analyst 2019; 144:2755-2764. [PMID: 30869681 DOI: 10.1039/c9an00106a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ratiometric and sensitive microfluidic chip based aptasensor was developed for antibiotic detection with kanamycin (Kana) as a model analyte. A novel stir bar assisted sorptive extraction and rolling circle amplification strategy was designed to largely amplify the signal and overcome complex matrix interference in food samples. The detection mechanism was as follows: firstly, many duplex DNA probes (a single-stranded DNA as a primer hybrid with an aptamer sequence) were modified on a stir bar. In the presence of Kana, the probes on the bar could specifically capture Kana and release the primer to trigger RCA in the presence of a circular DNA template (CDT). As the reaction proceeds, the amount of CDT decreased and the number of RCA products increased. It is worth mentioning that they can be efficiently separated and detected using a microfluidic chip. The signal ratio of RCA products and CDT (IR/IC) can be employed to qualify Kana in a wide linear range from 0.8 pg mL-1 to 10 ng mL-1 with a low detection limit of 0.3 pg mL-1. This method exhibited excellent sensitivity and selectivity and can obviously reduce the matrix interference through a ratiometric strategy combined with stir bar extraction. The aptasensor was successfully tested in milk and fish samples, confirming that it can be applied for on-site quantitation of antibiotic residues in foods.
Collapse
Affiliation(s)
- Liyong He
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Miethe JF, Lübkemann F, Bigall NC, Dorfs D. Photoluminescence Lifetime Based Investigations of Linker Mediated Electronic Connectivity Between Substrate and Nanoparticle. Front Chem 2019; 7:207. [PMID: 31024893 PMCID: PMC6467932 DOI: 10.3389/fchem.2019.00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
The evolution of systems based on nanoparticles as the main component seems to be a self-accelerating process during the last five decades. Hence, an overview across this field gets more and more challenging. It is sometimes rewarding to focus on the fundamental physical phenomenon of the electronic interconnection between the different building blocks of the obtained devices. Therefore, the investigation of charge transport among the utilized particles and their substrate is one of the mandatory steps in the development of semiconductor nanoparticle based devices like e.g., sensors and LEDs. The investigation of the influence of tunneling barriers on the properties of nanoparticle-functionalized surfaces is a challenging task. The different basic influences on the charge transport dynamics are often difficult to separate from each other. Non-invasive and easily viable experiments are still required to resolve the charge distributing mechanisms in the systems. In the presented work, we want to focus on thin and transparent indium tin oxide (ITO) layers covered glass slides since this substrate is frequently utilized in nanoelectronics. CdSe/CdS nanorods (NRs) are applied as an optically addressable probe for the electronic surface states of the conductive glass. The presented experimental design provides the proof of electronic interconnections in ITO coated glass/linker/NR electrodes via easy reproducible functionalization and polishing experiments. UV/Vis absorption and photoluminescence (PL) lifetime measurements revealed changes in the optical properties caused by differences in the charge carrier dynamics between the system. Our work is focused on the modification of charge carrier dynamics due to the application of linker molecules with different functional groups like (3-mercaptopropyl)methoxysilane (MPTMS) and (3-aminopropyl)trimethoxysilane (APTMS). The presented observations are explained with a simple kinetic model.
Collapse
Affiliation(s)
- Jan F Miethe
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Franziska Lübkemann
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Dirk Dorfs
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
12
|
Zeng J, Gan N, Zhang K, He L, Lin J, Hu F, Cao Y. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta 2019; 199:491-498. [PMID: 30952289 DOI: 10.1016/j.talanta.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
It's important to eliminate matrix interference for accurate detecting antibiotic residues in complex food samples. In this study, we designed a zero-backgrounded fluorescence aptasensor to achieve on-site detection of antibiotic residues, with chloramphenicol (CAP) as representative analyte. Moreover, a three stir-bars assisted target recycling system (TSBTR) was designed to achieve triple signal amplification and increase the sensitivity. The bars included one magnetic stir-bar modified with two kinds of long DNA chains, and two gold stir-bars modified with Y shape-duplex DNA probes respectively. In the presence of CAP, the target could recurrently react with the probes on the bars and replace a large amount of long DNA chains into supernatant. After then, the bars were taken out and SYBR green dye was added to the solution. The dye can specifically intercalate into the duplex structures of DNA chains to emit fluorescence while not emitting a signal in its free state. Under the optimized experimental conditions, a wide linear response range of 5 orders of magnitude from 0.001 ng mL-1 to 10 ng mL-1 was achieved with a detection limit of 0.033 pg mL-1 CAP. The assay was successfully employed to detect CAP in food samples (milk & fish) with consistent results with ELISA's. High selectivity and sensitivity were attributed to the zero background signal and triple signal-amplification strategy. Moreover, the detection time can be shortened to 40 min due to that three signal amplified process can occur simultaneously. The fluorescent aptasensor was also label- and enzyme-free. All these ensure the platform to be rapid, cost-effective, easily-used, and is especially appropriate for detection antibiotics in food safety.
Collapse
Affiliation(s)
- Jin Zeng
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Kai Zhang
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Liyong He
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Jianyuan Lin
- School of food and environment, Zhejiang wanli university, Ningbo 315200, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China.
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
13
|
Huang S, Gan N, Zhang X, Wu Y, Shao Y, Jiang Z, Wang Q. Portable fluoride-selective electrode as signal transducer for sensitive and selective detection of trace antibiotics in complex samples. Biosens Bioelectron 2018; 128:113-121. [PMID: 30641453 DOI: 10.1016/j.bios.2018.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
Abstract
Ion-selective electrodes (ISE) can rapidly, sensitively detect their corresponding ions and are suitable for field testing. However, most ISE methods cannot detect other targets directly which limits their practice application. Herein, we established an aptamer-sensing platform to detect organic small molecule using a portable fluoride-selective electrode (FSE). To achieve the purpose, novel signal tags were fabricated based on nano metal-organic frameworks (NMOF) encapsulating F- and labeling aptamers. They were then immobilized on one stir-bar. Subsequently, a double stir-bars (bar-a and b) assisted target recycling strategy was designed to convert organic small molecular target to F- for signal development and amplification. The movement of tags from bar-a to b can be triggered by the analytes. After reaction, the transferred signal tags in bar-b were washed and released F- which can be measured by FSE for qualification of the target. The assay was evaluated to detect kanamycin or chloramphenicol which was employed as the representatives of organic small molecular with a low detection limit of 0.35 nmol L-1 or 0.46 nmol L-1, respectively. Satisfactory performance was observed in complex sample analysis of kanamycin (milk, fish, urine and serum) with a recovery of 91-108% and an RSD (n = 6) <5%. The proposed method broadens the application of traditional FSE to the detection of organic small molecule. And the employment of NMOF which has higher encapsulating capacity of F- for preparing signal tags can be extended to FSE based aptasensors.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xinyu Zhang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yongxiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yong Shao
- College of chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Shen Z, He L, Cao Y, Hong F, Zhang K, Hu F, Lin J, Wu D, Gan N. Multiplexed electrochemical aptasensor for antibiotics detection using metallic-encoded apoferritin probes and double stirring bars-assisted target recycling for signal amplification. Talanta 2018; 197:491-499. [PMID: 30771967 DOI: 10.1016/j.talanta.2018.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/23/2022]
Abstract
Simultaneous and sensitive detection of various antibiotic residues in one sample is essential to evaluation of food safety status. Herein, a multiplexed electrochemical aptasensor for multiplex antibiotics detection, with kanamycin (KANA) and ampicillin (AMP) as representative analytes, was designed by using metal ions encoded apoferrtin probes and double stirring bars-assisted target recycling for signal amplification. The encoded probes were prepared by apoferritin loading Cd2+ and Pb2+ ions and labeling with duplex DNAs (aptamers corresponding to KANA and AMP hybrid with its complementary DNA sequence), respectively. In the presence of KANA and AMP, the targets can recurrently react with the probes on the bars, and then replace a lot of Apo-Mencoded signal tags into supernatant. The peak currents of Cd2+and Pb2+from the tags corresponding with the concentrations of KANA and AMP were detected by square wave voltammetry in one run. As a result, KANA and AMP can be detected simultaneously within the range from 0.05 pM to 50 nM. And the detection limits were 18 fM KANA and 15 fM AMP (S/N = 3). The assay was testified to detect KANA and AMP residues with consistent results of ELISA in samples, e.g. milks and fishes. The assay was highly-sensitive, selective, cost-effective and easy-to-operate due to Apo-M encoded probes with high loading capacity of signal source substances. Moreover, double stirring bar-assisted target recycling, which was enzyme-free and could overcome matrix interference, was fabricated for signal amplification. Thus, the assay showed potential advantages for sensitively screening of antibiotic residues in foods.
Collapse
Affiliation(s)
- Zhipeng Shen
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Liyong He
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuting Cao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Feng Hong
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Kai Zhang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Futao Hu
- Faculty of Marine, Ningbo University, Ningbo 315211, PR China
| | - Jianyuan Lin
- Zhejiang wanly University, Ningbo, 315100, China
| | - Dazhen Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
15
|
Bahrani S, Razmi Z, Ghaedi M, Asfaram A, Javadian H. Ultrasound-accelerated synthesis of gold nanoparticles modified choline chloride functionalized graphene oxide as a novel sensitive bioelectrochemical sensor: Optimized meloxicam detection using CCD-RSM design and application for human plasma sample. ULTRASONICS SONOCHEMISTRY 2018; 42:776-786. [PMID: 29429731 DOI: 10.1016/j.ultsonch.2017.12.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
In this research, gold nanoparticles modified choline chloride functionalized graphene oxide (AuNPs-ChCl-GO) was synthesized through the assistance of ultrasound and fabricated as a novel bioelectrochemical sensor and utilized for the sensitive detection of meloxicam (MEL). The morphological and structural features of the AuNPs-ChCl-GO were characterized using different techniques including FTIR, TEM, FE-SEM, EDX, and XRD. The modified electrode showed a remarkable improvement in the anodic oxidation activity of MEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The biosensor composition and measurement conditions were optimized using an experimental design. The differential pulse voltammetry (DPVs) exhibited expanded linear dynamic in the range of 9.0 × 10-9 to 8.5 × 10-7 M for MEL in Britton-Robinson buffer at pH = 4.0 with a detection limit of 1.008 × 10-9 M. The practical utility of the modified electrode was demonstrated by the accurate detection of MEL in human plasma sample.
Collapse
Affiliation(s)
- Sonia Bahrani
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Zahra Razmi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Anal Bioanal Chem 2018; 410:3253-3264. [PMID: 29564502 PMCID: PMC5937911 DOI: 10.1007/s00216-018-0991-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
We report on the influence of pH and monovalent/divalent cations on the catalytic current response, internal electron transfer (IET), and structure of fructose dehydrogenase (FDH) by using amperometry, spectrophotometry, and circular dichroism (CD). Amperometric measurements were performed on graphite electrodes, onto which FDH was adsorbed and the effect on the response current to fructose was investigated when varying the pH and the concentrations of divalent/monovalent cations in the contacting buffer. In the presence of 10 mM CaCl2, a current increase of up to ≈ 240% was observed, probably due to an intra-complexation reaction between Ca2+ and the aspartate/glutamate residues found at the interface between the dehydrogenase domain and the cytochrome domain of FDH. Contrary to CaCl2, addition of MgCl2 did not show any particular influence, whereas addition of monovalent cations (Na+ or K+) led to a slight linear increase in the maximum response current. To complement the amperometric investigations, spectrophotometric assays were carried out under homogeneous conditions in the presence of a 1-electron non-proton-acceptor, cytochrome c, or a 2-electron-proton acceptor, 2,6-dichloroindophenol (DCIP), respectively. In the case of cytochrome c, it was possible to observe a remarkable increase in the absorbance up to 200% when 10 mM CaCl2 was added. However, by further increasing the concentration of CaCl2 up to 50 mM and 100 mM, a decrease in the absorbance with a slight inhibition effect was observed for the highest CaCl2 concentration. Addition of MgCl2 or of the monovalent cations shows, surprisingly, no effect on the electron transfer to the electron acceptor. Contrary to the case of cytochrome c, with DCIP none of the cations tested seem to affect the rate of catalysis. In order to correlate the results obtained by amperometric and spectrophotometric measurements, CD experiments have been performed showing a great structural change of FDH when increasing the concentration CaCl2 up to 50 mM, at which the enzyme molecules start to agglomerate, hindering the substrate access to the active site probably due to a chelation reaction occurring at the enzyme surface with the glutamate/aspartate residues. Fructose dehydrogenase (FDH) consists of three subunits, but only two are involved in the electron transfer process: (I) 2e−/2H+ fructose oxidation, (II) internal electron transfer (IET), (III) direct electron transfer (DET) through 2 heme c; FDH activity either in solution or when immobilized onto an electrode surface is enhanced about 2.5-fold by adding 10 mM CaCl2 to the buffer solution, whereas MgCl2 had an “inhibition” effect. Moreover, the additions of KCl or NaCl led to a slight current increase ![]()
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Wu C, Cui M, Chen X, Zhai M, Ren J, Yu C, Yu X, Ji X. Electrochemical Determination of the Superoxide Anion Radical Using a Gold Nanoparticle Poly(3,4-Ethylenedioxythiophene) Ferrocyanide Multiwalled Carbon Nanotube Glassy Carbon Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1381107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cong Wu
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Min Cui
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiangmin Chen
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Miao Zhai
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Congcong Yu
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xudong Yu
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xueping Ji
- Department of Medical Chemistry, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Mikrochim Acta 2018; 185:181. [PMID: 29594631 DOI: 10.1007/s00604-017-2635-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/22/2017] [Indexed: 01/12/2023]
Abstract
The authors describe an enzyme-free aptamer-based assay for the determination of the model antibiotic kanamycin (Kana). The method is making use of (a) microfluidic chip electrophoresis; (b) a stirring bar carrying a gold-labeled aptamer probe, and (c) the hybridization chain reaction (HCR) for signal amplification. Firstly, a stirring bar (length: 1 cm; diameter: 0.2 mm) was modified with a large amount of duplex DNA and then hybridized with aptamer and its partially complementary chains (cDNA). In the presence of Kana, the binding between the Kana and aptamer unwinds the duplex structures and releases a corresponding amount of cDNA into the supernatant. The released cDNA triggers the HCR in the presence of H1 and H2 DNA hairpin to produce a large amount of duplex DNA chains with different lengths. At the same time, the amounts of H1 and H2 are reduced. The decreased signal of H1/H2 after several HCR cycles can be used to quantify kana in the 1 pg·mL-1 to 10 ng·mL-1, with a detection limit of 0.29 pg·mL-1. The signal is generated by reading the fluorescence, best at excitation/emission maxima of 470/525 nm. The whole detection process takes 3 min only. The assay was employed to the detection of Kana in spiked milk and fish samples. Results are consistent with those of an enzyme linked immunosorbent assay. The assay has high throughput, high selectivity, and high amplification capability. Graphical abstract Schematic of a stirring bar functionalized with gold-labeled aptamer acting as the capture probe. It can capture the target and release primer simultaneously. The primer triggers the hybridization chain reaction inducing the consumption of H1 and H2. After a certain reaction time, the mixture is injected into the MCE platform for microfluidic electrophoretic separation and fluorometric detection.
Collapse
|
19
|
|
20
|
La JA, Jeon JM, Sang BI, Yang YH, Cho EC. A Hierarchically Modified Graphite Cathode with Au Nanoislands, Cysteamine, and Au Nanocolloids for Increased Electricity-Assisted Production of Isobutanol by Engineered Shewanella oneidensis MR-1. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43563-43574. [PMID: 29172431 DOI: 10.1021/acsami.7b09874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is necessary to understand the surface structural effects of electrodes on the bioalcohol productivity of Shewanella oneidensis MR-1, but this research area has not been deeply explored. Here, we report that the electricity-assisted isobutanol productivity of Shewanella oneidensis MR-1::pJL23 can be enhanced by sequentially modifying a graphite felt (GF) surface with Au nanoislands (Au), cysteamine (NH2), and Au nanoparticles (Au NPs). After bacteria were incubated for 50 h with the unmodified GF under various electrode potentials (vs Ag/AgCl), the bacterial isobutanol concentrations increased from 2.9 ± 1 mg/L under no electricity supply to a maximum of 5.9 ± 1 mg/L at -0.6 V. At this optimum electrode potential, the concentrations continued increasing to 9.1 ± 1, 14 ± 2, and 27 ± 2 mg/L when the GF electrodes were modified with Au, NH2-Au, and Au NP-NH2-Au, respectively. We further studied how each surface structure affected the bacterial adsorptions, current profiles, and biofilms' electrochemical performances. In particular, these modifications induced the adsorption of elongated bacteria, with the amount dependent on the electrode structure. In the presence of electric supply, the amount of elongated bacteria further increased. We also found that the NH2-Au-GF and Au NP-NH2-Au-GF electrodes themselves could increase the concentrations to 11 ± 0.3 and 12 ± 2 mg/L, respectively, upon the bacterial incubation without electricity. Among the electrodes tested, the contribution of electricity to the bacterial isobutanol production was the greatest with the Au NP-NH2-Au-GF electrode. After 96 h of incubation, the concentration increased to 72 ± 2 mg/L, which was 4.7 and 3.7 times the previously reported values obtained without and with electricity, respectively.
Collapse
Affiliation(s)
- Ju A La
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University , Seoul 05030, South Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University , Seoul 05030, South Korea
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University , Seoul 04763, South Korea
| |
Collapse
|
21
|
Miethe JF, Lübkemann F, Poppe J, Steinbach F, Dorfs D, Bigall NC. Spectroelectrochemical Investigation of the Charge Carrier Kinetics of Gold-Decorated Cadmium Chalcogenide Nanorods. ChemElectroChem 2017. [DOI: 10.1002/celc.201700798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan F. Miethe
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Franziska Lübkemann
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Jan Poppe
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Frank Steinbach
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Dirk Dorfs
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Nadja C. Bigall
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| |
Collapse
|
22
|
Huang S, Gan N, Li T, Zhou Y, Cao Y, Dong Y. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta 2017; 179:28-36. [PMID: 29310232 DOI: 10.1016/j.talanta.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023]
Abstract
An ultrasensitive electrochemical aptasensor for multiplex antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy was proposed. Kanamycin and chloramphenicol were selected as candidates. Firstly, aptamers of the antibiotics were immobilized on bar A and then binding with their endonuclease labeled complementary DNA strands to construct enzyme-cleavage probes. Secondly, The nano zirconium-metal organic framework (NMOF) particles with 1,4-benzene-dicarboxylate (BDC) as linker was defined as UiO-66. And its updated version, hierarchically porous UiO-66 (HP-UIO-66) decorated with different electroactive materials as signal tags were synthesized. Then they were immobilized on bar B linked by two duplex DNA strands which can be specifically cleaved by corresponding enzyme-cleavage probes in bar A. Once targets were introduced into system, aptamers can capture them and then release enzyme-cleavage probes. In the presence of exonuclease-I, exonuclease assisted target recycling amplification was triggered and more enzyme-cleavage probes were released into solution. The probes can trigger endonuclease assisted recycles and repeatedly cleave their corresponding duplex DNA strands on bar B then released numerous signal tags into supernatant. Thus two recycling amplification was performed in the system. Finally, MB and Fc in the signal tags were detected by square wave voltammetry after removing bar A/B and the current intensities were correspondent with the concentration of KANA and CAP respectively. Under the optimum condition, the limits of detection for the KANA and CAP were 35fM and 21fM respectively with a wide linear range from 1 × 10-4 to 50nM. This dual recycling amplification detection system exhibited high sensitivities and specificity. It can be easily extended to detect other targets if changing the corresponding aptamers and has potential application values for screening of multiplex antibiotics residues in food safety.
Collapse
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Tianhua Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Youren Dong
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
23
|
Pandey PC, Pandey G, Walcarius A. 3-Aminopropyltrimethoxysilane mediated solvent induced synthesis of gold nanoparticles for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
López-Bernabeu S, Gamero-Quijano A, Huerta F, Morallón E, Montilla F. Enhancement of the direct electron transfer to encapsulated cytochrome c by electrochemical functionalization with a conducting polymer. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Bollella P, Mazzei F, Favero G, Fusco G, Ludwig R, Gorton L, Antiochia R. Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration. Biosens Bioelectron 2017; 88:196-203. [DOI: 10.1016/j.bios.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
26
|
Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F, De Micheli G, Carrara S. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 2016; 112:125-31. [DOI: 10.1016/j.bioelechem.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
|
27
|
Le TXH, Bechelany M, Engel AB, Cretin M, Tingry S. Gold particles growth on carbon felt for efficient micropower generation in a hybrid biofuel cell. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 2016; 79:386-397. [PMID: 26735873 DOI: 10.1016/j.bios.2015.12.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
The electrochemical biosensor with enzyme as biorecognition element is traditionally pursued as an attractive research topic owing to their high commercial perspective in healthcare and environmental sectors. The research interest on the subject is sharply increased since the beginning of 21st century primarily, due to the concomitant increase in knowledge in the field of material science. The remarkable effects of many advance materials such as, conductive polymers and nanomaterials, were acknowledged in the developing efficient 3rd generation enzyme bioelectrodes which offer superior selectivity, sensitivity, reagent less detection, and label free fabrication of biosensors. The present review article compiles the major knowledge surfaced on the subject since its inception incorporating the key review and experimental papers published during the last decade which extensively cover the development on the redox enzyme based 3rd generation electrochemical biosensors. The tenet involved in the function of these direct electrochemistry based enzyme electrodes, their characterizations and various strategies reported so far for their development such as, nanofabrication, polymer based and reconstitution approaches are elucidated. In addition, the possible challenges and the future prospects in the development of efficient biosensors following this direct electrochemistry based principle are discussed. A comparative account on the design strategies and critical performance factors involved in the 3rd generation biosensors among some selected prominent works published on the subject during last decade have also been included in a tabular form for ready reference to the readers.
Collapse
Affiliation(s)
- Priyanki Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Madhuri Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Somasekhar R Chinnadayyala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Irom Manoj Singha
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
29
|
Dai Y, Proshlyakov DA, Swain GM. Effects of Film Morphology and Surface Chemistry on the Direct Electrochemistry of Cytochrome c at Boron-Doped Diamond Electrodes. Electrochim Acta 2016; 197:129-138. [PMID: 27103750 PMCID: PMC4834903 DOI: 10.1016/j.electacta.2016.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of film morphology and surface termination on the direct electron transfer of horse heart cytochrome c on boron-doped ultrananocrystalline (B-UNCD) and microcrystalline (B-MCD) diamond thin-film electrodes were investigated. Quasi-reversible, diffusion-controlled cyclic voltammetric responses were observed on oxygen-terminated (atomic O/C ~0.015), but not hydrogen-terminated (atomic O/C ~0.02) diamond thin films. The effect of the surface termination was the same for both the nanostructured B-UNCD film with sp2-bonded carbon atoms in the grain boundaries and the well faceted B-MCD film with micron-sized grains and largely devoid of sp2 carbon. Stable cyclic voltammetric i-E curves were recorded with cycling for both oxygen-terminated films indicating the absence of protein denaturation and electrode fouling. The peak currents increased linearly with the square root of the scan rate and the protein concentration; both indicative of a reaction rate limited by semi-infinite linear diffusion of the protein. Similar heterogeneous electron-transfer rate constants were observed for oxygen-terminated B-UNCD (3.48 (± 1.25) × 10-3 cm/s) and B-MCD films (2.38 (± 0.72) × 10-3 cm/s). The results clearly reveal that the oxygen-terminated surface is more active for electron-transfer with this soluble redox protein than is the hydrogen-terminated surface. The film morphology does not influence the diffusion-controlled response of the redox protein.
Collapse
Affiliation(s)
| | | | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
30
|
Othman A, Karimi A, Andreescu S. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. J Mater Chem B 2016; 4:7178-7203. [DOI: 10.1039/c6tb02009g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A review describing functional nanostructures for portable and printable enzyme biosensors. Specific physicochemical and surface properties of nanoparticles used as carriers and sensing components and their assembly are discussed with an overview of current and emerging techniques enabling large scale roll-to-roll fabrication and miniaturization. Their integration in flexible, wearable and inexpensive point-of-use devices, and implementation challenges are also provided with examples of applications.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Anahita Karimi
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
31
|
Luz RAS, Crespilho FN. Gold nanoparticle-mediated electron transfer of cytochrome c on a self-assembled surface. RSC Adv 2016. [DOI: 10.1039/c6ra09830d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gold nanoparticles provide short-range electron transfer between cytochrome c and gold electrode.
Collapse
Affiliation(s)
- Roberto A. S. Luz
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Frank N. Crespilho
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
32
|
Wang T, Zhao D, Alvarez N, Shanov VN, Heineman WR. Optically Transparent Carbon Nanotube Film Electrode for Thin Layer Spectroelectrochemistry. Anal Chem 2015; 87:9687-95. [DOI: 10.1021/acs.analchem.5b01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tingting Wang
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Daoli Zhao
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Noe Alvarez
- Department
of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Vesselin N. Shanov
- Department
of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - William R. Heineman
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
33
|
Ratautas D, Marcinkevičienė L, Meškys R, Kulys J. Mediatorless electron transfer in glucose dehydrogenase/laccase system adsorbed on carbon nanotubes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Hajian R, Mehrayin Z, Mohagheghian M, Zafari M, Hosseini P, Shams N. Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug: Valrubicin-DNA interaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:769-775. [DOI: 10.1016/j.msec.2015.01.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
|
35
|
Madasamy T, Santschi C, Martin OJF. A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst 2015. [DOI: 10.1039/c5an00752f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrochemical point-of-care analysis of homocysteine in a drop of the blood plasma samples.
Collapse
Affiliation(s)
- Thangamuthu Madasamy
- Nanophotonics and Metrology Laboratory (NAM)
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory (NAM)
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory (NAM)
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
36
|
Thiol modified chitosan self-assembled monolayer platform for nucleic acid biosensor. Appl Biochem Biotechnol 2014; 174:1201-13. [PMID: 25205172 DOI: 10.1007/s12010-014-1177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/15/2014] [Indexed: 11/27/2022]
Abstract
A self-assembled monolayer (SAM) of thiol modified chitosan (SH-CHIT), with thioglycolic acid (TGA) as a modifier to bestow thiol groups, has been prepared onto gold (Au)-coated glass plates for fabrication of the nucleic acid biosensor. The chemical modification of CHIT via TGA has been evidenced by Fourier transform infrared spectroscopy (FT-IR) studies, and the biocompatibility studies reveal that CHIT retains its biocompatible nature after chemical modification. The electrochemical studies conducted onto SH-CHIT/Au electrode reveal that thiol modification in CHIT amino end enhances the electrochemical behavior indicating that it may be attributed to delocalization of electrons in CHIT skeleton that participates in the resonance process. The carboxyl group modified end of DNA probe has been immobilized onto SH-CHIT/Au electrode using N-ethyl-N'-(3-dimethylaminopropyl)carbodimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for detection of complementary, one-base mismatch and non-complementary sequence using electrochemical and optical studies for Mycobacterium tuberculosis detection. It has been found that DNA-SH-CHIT/Au bioelectrode can specifically detect 0.01 μM of target DNA concentration with sensitivity of 1.69 × 10(-6) A μM(-1).
Collapse
|
37
|
Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN. Enzyme Biofuel Cells: Thermodynamics, Kinetics and Challenges in Applicability. ChemElectroChem 2014. [DOI: 10.1002/celc.201402141] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kim HY, Jang KJ, Veerapandian M, Kim HC, Seo YT, Lee KN, Lee MH. Reusable urine glucose sensor based on functionalized graphene oxide conjugated Au electrode with protective layers. ACTA ACUST UNITED AC 2014. [PMID: 28626648 PMCID: PMC5466094 DOI: 10.1016/j.btre.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An electrochemical based system with multiple layers coated on a functionalized graphene oxide Au electrode was developed to measure glucose concentration in urine in a more stable way. Two types of gold printed circuit boards were fabricated and graphene oxide was immobilized on their surface by chemical adsorption. Multiple layers, composed of a couple of polymers, were uniformly coated on the surface electrode. This device exhibited higher electrochemical responses against glucose, a greater resistivity in the presence of interferential substances in urine, and durable stabilities for longer periods of time than conventional units. The efficiency in current level according to the order and ratio of solution was evaluated during the immobilization of the layer. The fabricated electrodes were then also evaluated using hyperglycemic clinical samples and compared with the patterns of blood glucose measured with commercially available glucose meters. Our findings show that not only was their pattern similar but this similarity is well correlated.
Collapse
Affiliation(s)
- Hye Youn Kim
- Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi Do 463-816, South Korea
| | - Kuk Jin Jang
- Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi Do 463-816, South Korea
| | - Murugan Veerapandian
- Department of Chemistry, University of Montreal, 2900 Edouard Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Hyung Chul Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul 156-756, South Korea
| | - Yeong Tai Seo
- Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi Do 463-816, South Korea
| | - Kook Nyung Lee
- Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi Do 463-816, South Korea
| | - Min-Ho Lee
- Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi Do 463-816, South Korea
| |
Collapse
|
39
|
Tovide O, Jaheed N, Mohamed N, Nxusani E, Sunday CE, Tsegaye A, Ajayi RF, Njomo N, Makelane H, Bilibana M, Baker PG, Williams A, Vilakazi S, Tshikhudo R, Iwuoha EI. Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Gold nanoparticles coated polystyrene/reduced graphite oxide microspheres with improved dispersibility and electrical conductivity for dopamine detection. Colloids Surf B Biointerfaces 2013; 112:310-4. [DOI: 10.1016/j.colsurfb.2013.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
|
41
|
Carmona-Martínez AA, Harnisch F, Kuhlicke U, Neu TR, Schröder U. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 2013; 93:23-9. [DOI: 10.1016/j.bioelechem.2012.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
|
42
|
Alizadeh V, Mehrgardi MA, Fazlollah Mousavi M. Electrochemical Investigation of Cytochrome c Immobilized onto Self-Assembled Monolayer of Captopril. ELECTROANAL 2013. [DOI: 10.1002/elan.201300036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Mandal SS, Narayan KK, Bhattacharyya AJ. Employing denaturation for rapid electrochemical detection of myoglobin using TiO 2 nanotubes. J Mater Chem B 2013; 1:3051-3056. [PMID: 32261008 DOI: 10.1039/c3tb20409j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 μA mg-1 ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Soumit S Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
44
|
Niu X, Yang W, Wang G, Ren J, Guo H, Gao J. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.064] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Song Y, Liu H, Wan L, Wang Y, Hou H, Wang L. Direct Electrochemistry of CytochromecBased on Poly(diallyldimethylammonium Chloride)- Graphene Nanosheets/Gold Nanoparticles Hybrid Nanocomposites and Its Biosensing. ELECTROANAL 2013. [DOI: 10.1002/elan.201200524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Liu Y, Du Y, Li CM. Direct Electrochemistry Based Biosensors and Biofuel Cells Enabled with Nanostructured Materials. ELECTROANAL 2013. [DOI: 10.1002/elan.201200555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Nakashima D, Marken F, Oyama M. “Indirect Modification” of Glassy Carbon with Gold Nanoparticles Using Nonconducting Support Materials. ELECTROANAL 2013. [DOI: 10.1002/elan.201200557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Liu F, Khan K, Liang JH, Yan JW, Wu DY, Mao BW, Jensen PS, Zhang J, Ulstrup J. On the hopping efficiency of nanoparticles in the electron transfer across self-assembled monolayers. Chemphyschem 2013; 14:952-7. [PMID: 23401384 DOI: 10.1002/cphc.201200901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/17/2012] [Indexed: 11/08/2022]
Abstract
Redox reactions of solvated molecular species at gold-electrode surfaces modified by electrochemically inactive self-assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au-alkanedithiol-NP-molecule hybrid entity. The NP appears to relay long-range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface-confined 6-(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak-to-peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp , for decanedithiol are 1170, 360 and 14 s(-1) for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two-step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy-gap differences between the Fermi levels of the different metals.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bunea AI, Pavel IA, David S, Gáspár S. Modification with hemeproteins increases the diffusive movement of nanorods in dilute hydrogen peroxide solutions. Chem Commun (Camb) 2013; 49:8803-5. [DOI: 10.1039/c3cc44614j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|