• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5067987)   Today's Articles (150)
For: Tsujimura S, Nishina A, Hamano Y, Kano K, Shiraishi S. Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. Electrochem commun 2010;12:446-9. [DOI: 10.1016/j.elecom.2010.01.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open

Collapse
Number Cited by Other Article(s)
1
Komkova MA, Alexandrovich AS, Karyakin AA. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis. Talanta 2024;267:125219. [PMID: 37734286 DOI: 10.1016/j.talanta.2023.125219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
2
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023;35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
3
Reagentless D-Tagatose Biosensors Based on the Oriented Immobilization of Fructose Dehydrogenase onto Coated Gold Nanoparticles- or Reduced Graphene Oxide-Modified Surfaces: Application in a Prototype Bioreactor. BIOSENSORS 2021;11:bios11110466. [PMID: 34821682 PMCID: PMC8615923 DOI: 10.3390/bios11110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
4
Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes. Catalysts 2020. [DOI: 10.3390/catal10121447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]  Open
5
WANIBUCHI M, TAKAHASHI Y, KITAZUMI Y, SHIRAI O, KANO K. Significance of Nano-Structures of Carbon Materials for Direct-Electron-Transfer-type Bioelectrocatalysis of Bilirubin Oxidase. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-64063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
6
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
7
Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Bioelectrochemistry 2020;133:107457. [PMID: 31978858 DOI: 10.1016/j.bioelechem.2020.107457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
8
KANO K. Fundamentals and Applications of Redox Enzyme-functionalized Electrode Reactions. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.19-6-e2676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
9
Cai B, Eychmüller A. Promoting Electrocatalysis upon Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019;31:e1804881. [PMID: 30536681 DOI: 10.1002/adma.201804881] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/20/2018] [Indexed: 05/27/2023]
10
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Anal Chem 2018;90:12131-12136. [PMID: 30148350 DOI: 10.1021/acs.analchem.8b03093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
11
Sakai K, Kitazumi Y, Shirai O, Kano K. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis. ANAL SCI 2018;34:1317-1322. [PMID: 30101833 DOI: 10.2116/analsci.18p302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
12
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018;18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
13
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Anal Bioanal Chem 2018;410:3253-3264. [PMID: 29564502 PMCID: PMC5937911 DOI: 10.1007/s00216-018-0991-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]

Fructose dehydrogenase (FDH) consists of three subunits, but only two are involved in the electron transfer process: (I) 2e/2H+ fructose oxidation, (II) internal electron transfer (IET), (III) direct electron transfer (DET) through 2 heme c; FDH activity either in solution or when immobilized onto an electrode surface is enhanced about 2.5-fold by adding 10 mM CaCl2 to the buffer solution, whereas MgCl2 had an “inhibition” effect. Moreover, the additions of KCl or NaCl led to a slight current increase

  • Paolo Bollella
    • Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
  • Yuya Hibino
    • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
  • Kenji Kano
    • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
  • Lo Gorton
    • Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
  • Riccarda Antiochia
    • Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
Collapse
14
Mazurenko I, Clément R, Byrne-Kodjabachian D, de Poulpiquet A, Tsujimura S, Lojou E. Pore size effect of MgO-templated carbon on enzymatic H2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
15
Kizling M, Bilewicz R. Fructose Dehydrogenase Electron Transfer Pathway in Bioelectrocatalytic Reactions. ChemElectroChem 2017. [DOI: 10.1002/celc.201700861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
16
Funabashi H, Takeuchi S, Tsujimura S. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 2017;7:45147. [PMID: 28332583 PMCID: PMC5362814 DOI: 10.1038/srep45147] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022]  Open
17
Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD+/NADH redox couples with tungsten-containing formate dehydrogenase. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
18
How to Lengthen the Long-Term Stability of Enzyme Membranes: Trends and Strategies. Catalysts 2017. [DOI: 10.3390/catal7020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
19
SUGIMOTO Y, KITAZUMI Y, SHIRAI O, KANO K. Effects of Mesoporous Structures on Direct Electron Transfer-Type Bioelectrocatalysis: Facts and Simulation on a Three-Dimensional Model of Random Orientation of Enzymes. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.82] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
20
Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
21
Köse K, Erol K, Ali Köse D, Evcı E, Uzun L. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016;45:574-583. [DOI: 10.3109/21691401.2016.1161642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
22
Sugimoto Y, Kawai S, Kitazumi Y, Shirai O, Kano K. Function of C-terminal hydrophobic region in fructose dehydrogenase. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M. Stretchable biofuel cell with enzyme-modified conductive textiles. Biosens Bioelectron 2015;74:947-52. [PMID: 26257187 DOI: 10.1016/j.bios.2015.07.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
24
Sugimoto Y, Kitazumi Y, Shirai O, Yamamoto M, Kano K. Role of 2-mercaptoethanol in direct electron transfer-type bioelectrocatalysis of fructose dehydrogenase at Au electrodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
25
Sun W, Vallooran JJ, Mezzenga R. Enzyme Kinetics in Liquid Crystalline Mesophases: Size Matters, But Also Topology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015;31:4558-4565. [PMID: 25806598 DOI: 10.1021/acs.langmuir.5b00579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
26
Ogawa Y, Kato K, Miyake T, Nagamine K, Ofuji T, Yoshino S, Nishizawa M. Organic transdermal iontophoresis patch with built-in biofuel cell. Adv Healthc Mater 2015;4:506-10. [PMID: 25402232 DOI: 10.1002/adhm.201400457] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Indexed: 01/11/2023]
27
Samanman S, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode. Anal Chim Acta 2015;853:521-532. [DOI: 10.1016/j.aca.2014.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
28
SHITANDA I, TSUJIMURA S, YANAI H, HOSHI Y, ITAGAKI M. Electrochemical Impedance Simulation of Branch Structure Porous Carbon Electrode Using Transmission Line Model. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
29
SHIBA S, INOUE J, KATO D, YOSHIOKA K, NIWA O. Graphene Modified Electrode for the Direct Electron Transfer of Bilirubin Oxidase. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
30
FUNABASHI H, MURATA K, TSUJIMURA S. Effect of Pore Size of MgO-templated Carbon on the Direct Electrochemistry of D-fructose Dehydrogenase. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.372] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
31
SHITANDA I, NAKAFUJI H, TSUJIMURA S, HOSHI Y, ITAGAKI M. Electrochemical Impedance Study of Screen-printed Branch Structure Porous Carbon Electrode using MgO-templated Carbon and MgO Particle and its Application for Bilirubin Oxidase-immobilized Biocathode. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
32
Tsujimura S, Murata K, Akatsuka W. Exceptionally high glucose current on a hierarchically structured porous carbon electrode with "wired" flavin adenine dinucleotide-dependent glucose dehydrogenase. J Am Chem Soc 2014;136:14432-7. [PMID: 25244161 DOI: 10.1021/ja5053736] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
33
Murata K, Akatsuka W, Tsujimura S. Bioelectrocatalytic Oxidation of Glucose on MgO-templated Mesoporous Carbon-modified Electrode. CHEM LETT 2014. [DOI: 10.1246/cl.140189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
34
Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P. A Conductive Porous Structured Chitosan-grafted Polyaniline Cryogel for use as a Sialic Acid Biosensor. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
35
Wen D, Herrmann AK, Borchardt L, Simon F, Liu W, Kaskel S, Eychmüller A. Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J Am Chem Soc 2014;136:2727-30. [PMID: 24475875 DOI: 10.1021/ja412062e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
36
So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys Chem Chem Phys 2014;16:4823-9. [DOI: 10.1039/c3cp54888k] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Tsujimura S, Suraniti E, Durand F, Mano N. Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Flexible, layered biofuel cells. Biosens Bioelectron 2013;40:45-9. [DOI: 10.1016/j.bios.2012.05.041] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/11/2023]
39
Flexer V, Brun N, Destribats M, Backov R, Mano N. A novel three-dimensional macrocellular carbonaceous biofuel cell. Phys Chem Chem Phys 2013;15:6437-45. [DOI: 10.1039/c3cp50807b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Hamano Y, Tsujimura S, Shirai O, Kano K. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase. Bioelectrochemistry 2012;88:114-7. [DOI: 10.1016/j.bioelechem.2012.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/03/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
41
Haneda K, Yoshino S, Ofuji T, Miyake T, Nishizawa M. Sheet-shaped biofuel cell constructed from enzyme-modified nanoengineered carbon fabric. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.01.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
42
Ha S, Wee Y, Kim J. Nanobiocatalysis for Enzymatic Biofuel Cells. Top Catal 2012. [DOI: 10.1007/s11244-012-9903-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
43
Enzymatic Biofuel Cells Based on Three-Dimensional Conducting Electrode Matrices. Top Catal 2012. [DOI: 10.1007/s11244-012-9895-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
44
Shitanda I, Ohta N, Konya M, Hoshino K, Nakanishi J, Itagaki M. Faradaic impedance simulation of mediator-type enzyme-functional electrode. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
45
Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Talanta 2011;87:67-73. [DOI: 10.1016/j.talanta.2011.09.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022]
46
Flexer V, Durand F, Tsujimura S, Mano N. Efficient direct electron transfer of PQQ-glucose dehydrogenase on carbon cryogel electrodes at neutral pH. Anal Chem 2011;83:5721-7. [PMID: 21662989 DOI: 10.1021/ac200981r] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
47
Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M. Self-Regulating Enzyme−Nanotube Ensemble Films and Their Application as Flexible Electrodes for Biofuel Cells. J Am Chem Soc 2011;133:5129-34. [DOI: 10.1021/ja111517e] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
48
NODA T, UKAI T, YAO T. Nano-Molar Level Hydrogen Peroxide Detection by Horseradish Peroxidase Adsorbed Cup-Stacked Carbon Nanotube Electrodes and Applications to L-Glutamate Detection. ANAL SCI 2010;26:675-9. [DOI: 10.2116/analsci.26.675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA