1
|
Komkova MA, Alexandrovich AS, Karyakin AA. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis. Talanta 2024; 267:125219. [PMID: 37734286 DOI: 10.1016/j.talanta.2023.125219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
We report on the drop-cast production of glucose biosensors based on the most efficient bioelectrocatalysis by pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ GDH). To orient the enzyme upon immobilization we suggest using poly(Methylene Green) (p(MG)) nanoparticles acting as anchors. Synthesis of polymeric anchors has been carried out in course of Methylene Green electropolymerization, which allowed to tune polymer-to-monomer ratio in the drop-cast mixtures varying the monomer concentration and applying different number of potential sweep cycles. Except for elimination of electrochemical step for the electrode modification, opening the prospects for mass-production, the use of drop-cast enzyme anchors provides advantageous characteristics of the resulting biosensors. Catalytic current of PQQ GDH immobilized over p(MG) nanoparticles obtained in optimal conditions is increased only 2-2.5 times after addition of the freely diffusing mediator. Obviously, the lowest ratio of mediated-to-reagentless current points to the most efficient bioelectrocatalysis. The obtained ratio is 2.5 times lower than that for biosensors based on electropolymerized p(MG) films and practically an order of magnitude lower than that for the best reagentless sensors based on PQQ GDH immobilized over conductive nanomaterials. The achieved most efficient bioelectrocatalysis provides high sensitivity of the elaborated biosensors even at 0.0 V potential, which allows to operate them in power generation mode and control relative sweat glucose variation as a tool for non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Maria A Komkova
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia.
| | - Anna S Alexandrovich
- Materials Science Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory, 1/73, Moscow, 119991, Russia
| | - Arkady A Karyakin
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow, 119991, Russia
| |
Collapse
|
2
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
3
|
Reagentless D-Tagatose Biosensors Based on the Oriented Immobilization of Fructose Dehydrogenase onto Coated Gold Nanoparticles- or Reduced Graphene Oxide-Modified Surfaces: Application in a Prototype Bioreactor. BIOSENSORS 2021; 11:bios11110466. [PMID: 34821682 PMCID: PMC8615923 DOI: 10.3390/bios11110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
As electrode nanomaterials, thermally reduced graphene oxide (TRGO) and modified gold nanoparticles (AuNPs) were used to design bioelectrocatalytic systems for reliable D-tagatose monitoring in a long-acting bioreactor where the valuable sweetener D-tagatose was enzymatically produced from a dairy by-product D-galactose. For this goal D-fructose dehydrogenase (FDH) from Gluconobacter industrius immobilized on these electrode nanomaterials by forming three amperometric biosensors: AuNPs coated with 4-mercaptobenzoic acid (AuNP/4-MBA/FDH) or AuNPs coated with 4-aminothiophenol (AuNP/PATP/FDH) monolayer, and a layer of TRGO on graphite (TRGO/FDH) were created. The immobilized FDH due to changes in conformation and spatial orientation onto proposed electrode surfaces catalyzes a direct D-tagatose oxidation reaction. The highest sensitivity for D-tagatose of 0.03 ± 0.002 μA mM−1cm−2 was achieved using TRGO/FDH. The TRGO/FDH was applied in a prototype bioreactor for the quantitative evaluation of bioconversion of D-galactose into D-tagatose by L-arabinose isomerase. The correlation coefficient between two independent analyses of the bioconversion mixture: spectrophotometric and by the biosensor was 0.9974. The investigation of selectivity showed that the biosensor was not active towards D-galactose as a substrate. Operational stability of the biosensor indicated that detection of D-tagatose could be performed during six hours without loss of sensitivity.
Collapse
|
4
|
Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes. Catalysts 2020. [DOI: 10.3390/catal10121447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interfacial electron transfer between redox enzymes and electrodes is a key step for enzymatic bioelectrocatalysis in various bioelectrochemical devices. Although the use of carbon nanomaterials enables an increasing number of redox enzymes to carry out bioelectrocatalysis involving direct electron transfer (DET), the role of carbon nanomaterials in interfacial electron transfer remains unclear. Based on the recent progress reported in the literature, in this mini review, the significance of carbon nanomaterials on DET-type bioelectrocatalysis is discussed. Strategies for the oriented immobilization of redox enzymes in rationally modified carbon nanomaterials are also summarized and discussed. Furthermore, techniques to probe redox enzymes in carbon nanomaterials are introduced.
Collapse
|
5
|
WANIBUCHI M, TAKAHASHI Y, KITAZUMI Y, SHIRAI O, KANO K. Significance of Nano-Structures of Carbon Materials for Direct-Electron-Transfer-type Bioelectrocatalysis of Bilirubin Oxidase. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-64063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mizue WANIBUCHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yui TAKAHASHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
6
|
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, which couples the electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects that has been studied over the past few decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by the protein engineering approach for the DET-type reaction. This review summarizes the recent progresses in this field of the research while considering the importance of nanostructure of electrodes as well as redox enzymes. This review also describes the basic concepts and theoretical aspects of DET-type bioelectrocatalysis, the significance of nanostructures as scaffolds for DET-type reactions, protein engineering approaches for DET-type reactions, and concepts and facts of bidirectional DET-type reactions from a cross-disciplinary viewpoint.
Collapse
|
7
|
Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Bioelectrochemistry 2020; 133:107457. [PMID: 31978858 DOI: 10.1016/j.bioelechem.2020.107457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
Abstract
The direct electron transfer (DET)-type bioelectrocatalysis of flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) from Aspergillus terreus (AtGDH) was carried out using porous gold (Au) electrodes and enzymatically implanted platinum nanoclusters (PtNCs). The porous Au electrodes were prepared by anodization of planar Au electrodes in a phosphate buffer containing glucose as a reductant. Moreover, PtNCs were generated into AtGDH by an enzymatic reduction of hexachloroplatinate (IV) ion. The modification was confirmed by native polyacrylamide gel electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses. The AtGDH-adsorbed porous Au electrode showed a DET-type bioelectrocatalytic wave both in the presence and absence of PtNCs; however, the current density with PtNCs (~1 mA cm-2 at 0 V vs. Ag|AgCl|sat. KCl) was considerably higher than that without PtNCs. The kinetic and thermodynamic analysis of the steady-state catalytic wave indicated that inner PtNCs shortened the distance between the catalytic center of AtGDH (=FAD) and the conductive material, and improved the heterogeneous electron transfer kinetics between them.
Collapse
|
8
|
Affiliation(s)
- Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
9
|
Cai B, Eychmüller A. Promoting Electrocatalysis upon Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804881. [PMID: 30536681 DOI: 10.1002/adma.201804881] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/20/2018] [Indexed: 05/27/2023]
Abstract
Electrocatalysis plays a prominent role in renewable energy conversion and storage, enabling a number of sustainable processes for future technologies. There are generally three strategies to improve the efficiency (or activity) of the electrocatalysts: i) increasing the intrinsic activity of the catalyst itself, ii) improving the exposure of active sites, and iii) accelerating mass transfer during catalysis (both reactants and products). These strategies are not mutually exclusive and can ideally be addressed simultaneously, leading to the largest improvements in activity. Aerogels, as featured by large surface area, high porosity, and self-supportability, provide a platform that matches all the aforementioned criteria for the design of efficient electrocatalysts. The field of aerogel synthesis has seen much progress in recent years, mainly thanks to the rapid development of nanotechnology. Employing precursors with different properties enables the resulting aerogel with targeted catalytic properties and improved performances. Here, the design strategies of aerogel catalysts are demonstrated, and their performance for several electrochemical reactions is reviewed. The common principles that govern electrocatalysis are further discussed for each category of reactions, thus serving as a guide to the development of future aerogel electrocatalysts.
Collapse
Affiliation(s)
- Bin Cai
- Physikalische Chemie, Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Alexander Eychmüller
- Physikalische Chemie, Technische Universität Dresden, Bergstraße 66b, 01062, Dresden, Germany
| |
Collapse
|
10
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Anal Chem 2018; 90:12131-12136. [PMID: 30148350 DOI: 10.1021/acs.analchem.8b03093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this paper we present a new method to electrodeposit highly porous gold (h-PG) onto a polycrystalline solid gold electrode without any template. The electrodeposition is carried out by first cycling the electrode potential between +0.8 and 0 V in 10 mM HAuCl4 with 2.5 M NH4Cl and then applying a negative potential for the production of hydrogen bubbles at the electrode surface. After that the modified electrode was characterized in sulfuric acid to estimate the real surface area ( Areal) to be close to 24 cm2, which is roughly 300 times higher compared to the bare gold electrodes (0.08 cm2). The electrode was further incubated overnight with three different thiols (4-mercaptobenzoic acid (4-MBA), 4-mercaptophenol (4-MPh), and 4-aminothiophenol (4-APh)) in order to produce differently charged self-assembled monolayers (SAMs) on the electrode surface. Finally a fructose dehydrogenase (FDH) solution was drop-cast onto the electrodes. All the modified electrodes were investigated by cyclic voltammetry both under nonturnover and turnover conditions. The FDH/4-MPh/h-PG exhibited two couples of redox peaks for the heme c1 and heme c2 of the cytochrome domain of FDH and as well as a well pronounced catalytic current density (about 1000 μA cm-2 in the presence of 10 mM fructose) due to the presence of -OH groups on the electrode surface, which stabilize and orientate the enzyme layer on the electrode surface. The FDH/4-MPh/h-PG based electrode showed the best analytical performance with an excellent stability (90% retained activity over 90 days), a detection limit of 0.3 μM fructose, a linear range between 0.05 and 5 mM, and a sensitivity of 175 ± 15 μA cm-2 mM-1. These properties were favorably compared with other fructose biosensors reported in the literature. The biosensor was successively tested to quantify the fructose content in food and beverage samples. No significant interference present in the sample matrixes was observed.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies , Sapienza University of Rome Piazzale Aldo Moro 5 , 00185 , Rome , Italy
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo , Kyoto 606-8502 , Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry , Lund University , P.O. Box 124, 221 00 , Lund , Sweden
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies , Sapienza University of Rome Piazzale Aldo Moro 5 , 00185 , Rome , Italy
| |
Collapse
|
11
|
Sakai K, Kitazumi Y, Shirai O, Kano K. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis. ANAL SCI 2018; 34:1317-1322. [PMID: 30101833 DOI: 10.2116/analsci.18p302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, nanostructured porous gold electrodes were prepared by the anodization of gold in the presence of oxalic acid or glucose as a reductant, and applied as scaffolds for direct electron transfer (DET)-type bioelectrocatalysis. Gold cations generated in the anodization seem to be reduced by the reductant to construct a porous gold structure. The DET-type performance of the electrode was examined using two DET-type model enzymes, bilirubin oxidase (BOD) and peroxidase (POD), for the four-electron reduction of dioxygen and the two-electron reduction of peroxide, respectively. BOD and POD on the anodized porous gold electrodes exhibited well-defined sigmoidal steady-state waves corresponding to DET-type bioelectrocatalysis. Scanning electron microscopy images revealed sponge-like pores on the electrodes. The anodized porous gold electrodes demonstrate promise as scaffolds for DET-type bioelectrocatalysis.
Collapse
Affiliation(s)
- Kento Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
12
|
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Anal Bioanal Chem 2018; 410:3253-3264. [PMID: 29564502 PMCID: PMC5937911 DOI: 10.1007/s00216-018-0991-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]
Abstract
We report on the influence of pH and monovalent/divalent cations on the catalytic current response, internal electron transfer (IET), and structure of fructose dehydrogenase (FDH) by using amperometry, spectrophotometry, and circular dichroism (CD). Amperometric measurements were performed on graphite electrodes, onto which FDH was adsorbed and the effect on the response current to fructose was investigated when varying the pH and the concentrations of divalent/monovalent cations in the contacting buffer. In the presence of 10 mM CaCl2, a current increase of up to ≈ 240% was observed, probably due to an intra-complexation reaction between Ca2+ and the aspartate/glutamate residues found at the interface between the dehydrogenase domain and the cytochrome domain of FDH. Contrary to CaCl2, addition of MgCl2 did not show any particular influence, whereas addition of monovalent cations (Na+ or K+) led to a slight linear increase in the maximum response current. To complement the amperometric investigations, spectrophotometric assays were carried out under homogeneous conditions in the presence of a 1-electron non-proton-acceptor, cytochrome c, or a 2-electron-proton acceptor, 2,6-dichloroindophenol (DCIP), respectively. In the case of cytochrome c, it was possible to observe a remarkable increase in the absorbance up to 200% when 10 mM CaCl2 was added. However, by further increasing the concentration of CaCl2 up to 50 mM and 100 mM, a decrease in the absorbance with a slight inhibition effect was observed for the highest CaCl2 concentration. Addition of MgCl2 or of the monovalent cations shows, surprisingly, no effect on the electron transfer to the electron acceptor. Contrary to the case of cytochrome c, with DCIP none of the cations tested seem to affect the rate of catalysis. In order to correlate the results obtained by amperometric and spectrophotometric measurements, CD experiments have been performed showing a great structural change of FDH when increasing the concentration CaCl2 up to 50 mM, at which the enzyme molecules start to agglomerate, hindering the substrate access to the active site probably due to a chelation reaction occurring at the enzyme surface with the glutamate/aspartate residues. Fructose dehydrogenase (FDH) consists of three subunits, but only two are involved in the electron transfer process: (I) 2e−/2H+ fructose oxidation, (II) internal electron transfer (IET), (III) direct electron transfer (DET) through 2 heme c; FDH activity either in solution or when immobilized onto an electrode surface is enhanced about 2.5-fold by adding 10 mM CaCl2 to the buffer solution, whereas MgCl2 had an “inhibition” effect. Moreover, the additions of KCl or NaCl led to a slight current increase ![]()
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
14
|
Mazurenko I, Clément R, Byrne-Kodjabachian D, de Poulpiquet A, Tsujimura S, Lojou E. Pore size effect of MgO-templated carbon on enzymatic H2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Kizling M, Bilewicz R. Fructose Dehydrogenase Electron Transfer Pathway in Bioelectrocatalytic Reactions. ChemElectroChem 2017. [DOI: 10.1002/celc.201700861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michal Kizling
- College of Inter Faculty Individual Studies in Mathematic and Natural Sciences (MISMaP); University of Warsaw; Stefana Banacha 2C 02-097 Warsaw Poland
| | - Renata Bilewicz
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-094 Warsaw Poland
| |
Collapse
|
16
|
Funabashi H, Takeuchi S, Tsujimura S. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 2017; 7:45147. [PMID: 28332583 PMCID: PMC5362814 DOI: 10.1038/srep45147] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/16/2017] [Indexed: 12/19/2022] Open
Abstract
We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.
Collapse
Affiliation(s)
- Hiroto Funabashi
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Satoshi Takeuchi
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
17
|
Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD+/NADH redox couples with tungsten-containing formate dehydrogenase. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
|
19
|
SUGIMOTO Y, KITAZUMI Y, SHIRAI O, KANO K. Effects of Mesoporous Structures on Direct Electron Transfer-Type Bioelectrocatalysis: Facts and Simulation on a Three-Dimensional Model of Random Orientation of Enzymes. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.82] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yu SUGIMOTO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
20
|
Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Köse K, Erol K, Ali Köse D, Evcı E, Uzun L. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:574-583. [DOI: 10.3109/21691401.2016.1161642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazım Köse
- Scientific Technical Research and Application Center, Hitit University, Çorum, Turkey
| | - Kadir Erol
- Department of Chemistry, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Dursun Ali Köse
- Department of Chemistry, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Emre Evcı
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, Faculty of Science, Ankara, Turkey
| |
Collapse
|
22
|
Sugimoto Y, Kawai S, Kitazumi Y, Shirai O, Kano K. Function of C-terminal hydrophobic region in fructose dehydrogenase. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M. Stretchable biofuel cell with enzyme-modified conductive textiles. Biosens Bioelectron 2015; 74:947-52. [PMID: 26257187 DOI: 10.1016/j.bios.2015.07.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
A sheet-type, stretchable biofuel cell was developed by laminating three components: a bioanode textile for fructose oxidation, a hydrogel sheet containing fructose as fuel, and a gas-diffusion biocathode textile for oxygen reduction. The anode and cathode textiles were prepared by modifying carbon nanotube (CNT)-decorated stretchable textiles with fructose dehydrogenase (FDH) and bilirubin oxidase (BOD), respectively. Enzymatic reaction currents of anode and cathode textiles were stable for 30 cycles of 50% stretching, with initial loss of 20-30% in the first few cycles due to the partial breaking of the CNT network at the junction of textile fibers. The assembled laminate biofuel cell showed power of ~0.2 mW/cm(2) with 1.2 kΩ load, which was stable even at stretched, twisted, and wrapped forms.
Collapse
Affiliation(s)
- Yudai Ogawa
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuki Takai
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuto Kato
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroyuki Kai
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takeo Miyake
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
24
|
Sugimoto Y, Kitazumi Y, Shirai O, Yamamoto M, Kano K. Role of 2-mercaptoethanol in direct electron transfer-type bioelectrocatalysis of fructose dehydrogenase at Au electrodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Sun W, Vallooran JJ, Mezzenga R. Enzyme Kinetics in Liquid Crystalline Mesophases: Size Matters, But Also Topology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4558-4565. [PMID: 25806598 DOI: 10.1021/acs.langmuir.5b00579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lyotropic liquid crystalline systems (LLCs) are excellent immobilizing carriers for enzymes, due to their biocompatibility and well-defined pore nanostructure. Here we show that the liquid crystalline mesophase topology can greatly influence the enzymatic activity in a typical peroxidase (Horseradish peroxidase, HRP) enzymatic reaction. Enzyme kinetics was investigated in different LLC mesophases based on monolinolein, with varying symmetries and dimensions such as the 1D cylindrical inverse hexagonal phase (HII), the 2D planar lamellar phase (Lα), and two 3D bicontinuous cubic phases of double diamond (Pn3m) and gyroid (Ia3d) space groups. As expected, the mesophase with largest water channel size shows highest activity, regardless of the topology. Interestingly, however, when mesophases with different topologies have the same water channel size, then the topology plays the dominant role, and the enzyme showed the highest activity in the 3D tetra-fold connected Pn3m, followed by the Ia3d with trifold connectivity, and finally the 1D HII phase. This study demonstrates that the enzymatic activity in LLC mesophases depends on both the water channel size and the topology of the mesophase.
Collapse
Affiliation(s)
- Wenjie Sun
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Jijo J Vallooran
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| |
Collapse
|
26
|
Ogawa Y, Kato K, Miyake T, Nagamine K, Ofuji T, Yoshino S, Nishizawa M. Organic transdermal iontophoresis patch with built-in biofuel cell. Adv Healthc Mater 2015; 4:506-10. [PMID: 25402232 DOI: 10.1002/adhm.201400457] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Indexed: 01/11/2023]
Abstract
A completely organic iontophoresis patch is reported. A built-in biofuel cell is mounted on the patch that generates transdermal iontophoretic administration of compounds into the skin. The amplitude of transdermal current is tuned by integrating a conducting polymer-based stretchable resistor of predetermined resistance.
Collapse
Affiliation(s)
- Yudai Ogawa
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Koichiro Kato
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Takeo Miyake
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Kuniaki Nagamine
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Takuya Ofuji
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Syuhei Yoshino
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics; Tohoku University; 6-6-1 Aramaki Aoba Sendai 980-8579 Japan
| |
Collapse
|
27
|
Samanman S, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode. Anal Chim Acta 2015; 853:521-532. [DOI: 10.1016/j.aca.2014.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 10/06/2014] [Indexed: 01/05/2023]
|
28
|
SHITANDA I, TSUJIMURA S, YANAI H, HOSHI Y, ITAGAKI M. Electrochemical Impedance Simulation of Branch Structure Porous Carbon Electrode Using Transmission Line Model. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Isao SHITANDA
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Seiya TSUJIMURA
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba
| | - Hiroki YANAI
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Yoshinao HOSHI
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masayuki ITAGAKI
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
29
|
SHIBA S, INOUE J, KATO D, YOSHIOKA K, NIWA O. Graphene Modified Electrode for the Direct Electron Transfer of Bilirubin Oxidase. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shunsuke SHIBA
- National Institute of Advanced Industrial Science and Technology (AIST)
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Junji INOUE
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Dai KATO
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kyoko YOSHIOKA
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Osamu NIWA
- National Institute of Advanced Industrial Science and Technology (AIST)
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
30
|
FUNABASHI H, MURATA K, TSUJIMURA S. Effect of Pore Size of MgO-templated Carbon on the Direct Electrochemistry of D-fructose Dehydrogenase. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.372] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Kazuki MURATA
- Faculty of Pure and Applied Sciences, University of Tsukuba
| | | |
Collapse
|
31
|
SHITANDA I, NAKAFUJI H, TSUJIMURA S, HOSHI Y, ITAGAKI M. Electrochemical Impedance Study of Screen-printed Branch Structure Porous Carbon Electrode using MgO-templated Carbon and MgO Particle and its Application for Bilirubin Oxidase-immobilized Biocathode. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Isao SHITANDA
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Hiroki NAKAFUJI
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Seiya TSUJIMURA
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba
| | - Yoshinao HOSHI
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Masayuki ITAGAKI
- Research Institute for Science and Technology, Tokyo University of Science
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
32
|
Tsujimura S, Murata K, Akatsuka W. Exceptionally high glucose current on a hierarchically structured porous carbon electrode with "wired" flavin adenine dinucleotide-dependent glucose dehydrogenase. J Am Chem Soc 2014; 136:14432-7. [PMID: 25244161 DOI: 10.1021/ja5053736] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article introduces a carbon electrode designed to achieve efficient enzymatic electrolysis by exploiting a hierarchical pore structure based on macropores for efficient mass transfer and mesopores for high enzyme loading. Magnesium oxide-templated mesoporous carbon (MgOC, mean pore diameter 38 nm) was used to increase the effective specific surface area for enzyme immobilization. MgOC particles were deposited on a current collector by an electrophoretic deposition method to generate micrometer-scale macropores to improve the mass transfer of glucose and electrolyte (buffer) ions. To create a glucose bioanode, the porous-carbon-modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, deglycosylated flavin adenine dinucleotide-dependent glucose dehydrogenase (d-FAD-GDH), and a cross-linker. Carbohydrate chains on the peripheral surfaces of the FAD-GDH molecules were removed by periodate oxidation before cross-linking. The current density for the oxidation of glucose was 100 mA cm(-2) at 25 °C and pH 7, with a hydrogel loading of 1.0 mg cm(-2). For the same hydrogel composition and loading, the current density on the MgOC-modified electrode was more than 30 times higher than that on a flat carbon electrode. On increasing the solution temperature to 45 °C, the catalytic current increased to 300 mA cm(-2), with a hydrogel loading of 1.6 mg cm(-2). Furthermore, the stability of the hydrogel electrode was improved by using the mesoporous carbon materials; more than 95% of the initial catalytic current remained after a 220-day storage test in 4 °C phosphate buffer, and 80% was observed after 7 days of continuous operation at 25 °C.
Collapse
Affiliation(s)
- Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | | | | |
Collapse
|
33
|
Murata K, Akatsuka W, Tsujimura S. Bioelectrocatalytic Oxidation of Glucose on MgO-templated Mesoporous Carbon-modified Electrode. CHEM LETT 2014. [DOI: 10.1246/cl.140189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuki Murata
- Faculty of Pure and Applied Sciences, University of Tsukuba
| | | | | |
Collapse
|
34
|
Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P. A Conductive Porous Structured Chitosan-grafted Polyaniline Cryogel for use as a Sialic Acid Biosensor. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wen D, Herrmann AK, Borchardt L, Simon F, Liu W, Kaskel S, Eychmüller A. Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J Am Chem Soc 2014; 136:2727-30. [PMID: 24475875 DOI: 10.1021/ja412062e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the controllable synthesis of Pd aerogels with high surface area and porosity by destabilizing colloidal solutions of Pd nanoparticles with variable concentrations of calcium ions. Enzyme electrodes based on Pd aerogels co-immobilized with glucose oxidase show high activity toward glucose oxidation and are promising materials for applications in bioelectronics.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden , Bergstrasse 66b, 01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys Chem Chem Phys 2014; 16:4823-9. [DOI: 10.1039/c3cp54888k] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Tsujimura S, Suraniti E, Durand F, Mano N. Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Flexible, layered biofuel cells. Biosens Bioelectron 2013; 40:45-9. [DOI: 10.1016/j.bios.2012.05.041] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/11/2023]
|
39
|
Flexer V, Brun N, Destribats M, Backov R, Mano N. A novel three-dimensional macrocellular carbonaceous biofuel cell. Phys Chem Chem Phys 2013; 15:6437-45. [DOI: 10.1039/c3cp50807b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Hamano Y, Tsujimura S, Shirai O, Kano K. Micro-cubic monolithic carbon cryogel electrode for direct electron transfer reaction of fructose dehydrogenase. Bioelectrochemistry 2012; 88:114-7. [DOI: 10.1016/j.bioelechem.2012.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/03/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
41
|
Haneda K, Yoshino S, Ofuji T, Miyake T, Nishizawa M. Sheet-shaped biofuel cell constructed from enzyme-modified nanoengineered carbon fabric. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.01.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
|
43
|
|
44
|
Shitanda I, Ohta N, Konya M, Hoshino K, Nakanishi J, Itagaki M. Faradaic impedance simulation of mediator-type enzyme-functional electrode. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Talanta 2011; 87:67-73. [DOI: 10.1016/j.talanta.2011.09.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022]
|
46
|
Flexer V, Durand F, Tsujimura S, Mano N. Efficient direct electron transfer of PQQ-glucose dehydrogenase on carbon cryogel electrodes at neutral pH. Anal Chem 2011; 83:5721-7. [PMID: 21662989 DOI: 10.1021/ac200981r] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a comprehensive study of the direct electron transfer reaction of soluble PQQ-GDH from Acinetobacter calcoaceticus. Wild-type PQQ-sGDH nonspecifically adsorbed on carbon cryogel electrodes retained its enzymatic activity for glucose and maltose oxidation at pH 7.2 and 37 °C. The cyclic voltammograms in the absence of enzymatic substrate showed 2 redox peaks that suggest a two-step, one-electron oxidation/reduction of PQQ. Calibration curves showed a linear amperometric response for a wide glucose concentration range, including the values normally found in blood. At saturation, the catalytic current reached 0.93 mA cm(-2). Altogether the experimental results suggest that the amperometric output of the electrodes and the shape of the calibration curves represent a combination of the intrinsic enzyme kinetics, the maximum rate of heterogeneous electron transfer and the substrate accessibility to the enzyme's active center caused by the confinement of the enzyme into the mesoporous structure. A new mutant enzyme, N428C, developed in our group that shows almost twice the maximum catalytic activity in homogeneous experiments in solution, also showed a DET signal on carbon cryogel electrodes for glucose electro-oxidation. The higher activity for the mutant enzyme was also verified on the electrode surface.
Collapse
Affiliation(s)
- Victoria Flexer
- Université de Bordeaux, Centre de Recherche Paul Pascal, CRPP-UPR 8641-CNRS, Pessac, France
| | | | | | | |
Collapse
|
47
|
Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M. Self-Regulating Enzyme−Nanotube Ensemble Films and Their Application as Flexible Electrodes for Biofuel Cells. J Am Chem Soc 2011; 133:5129-34. [DOI: 10.1021/ja111517e] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Takeo Miyake
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Syuhei Yoshino
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takeo Yamada
- Nanotube Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 308-8565, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Kenji Hata
- Nanotube Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 308-8565, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| |
Collapse
|
48
|
NODA T, UKAI T, YAO T. Nano-Molar Level Hydrogen Peroxide Detection by Horseradish Peroxidase Adsorbed Cup-Stacked Carbon Nanotube Electrodes and Applications to L-Glutamate Detection. ANAL SCI 2010; 26:675-9. [DOI: 10.2116/analsci.26.675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tatsuo NODA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | | | - Toshio YAO
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| |
Collapse
|