1
|
Saska V, Contaldo U, Mazurenko I, de Poulpiquet A, Lojou E. High electrolyte concentration effect on enzymatic oxygen reduction. Bioelectrochemistry 2023; 153:108503. [PMID: 37429114 DOI: 10.1016/j.bioelechem.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The nature, the composition and the concentration of electrolytes is essential for electrocatalysis involving redox enzymes. Here, we discuss the effect of various electrolyte compositions with increasing ionic strengths on the stability and activity towards O2 reduction of the bilirubin oxidase from Myrothecium verrucaria (Mv BOD). Different salts, Na2SO4, (NH4)2SO4, NaCl, NaClO4, added to a phosphate buffer (PB) were evaluated with concentrations ranging from 100 mM up to 1.7 M. On functionalized carbon nanotube-modified electrodes, it was shown that the catalytic current progressively decreased with increasing salt concentrations. The process was reversible suggesting it was not related to enzyme leakage. The enzyme was then immobilized on gold electrodes modified by self-assembling of thiols. When the enzyme was simply adsorbed, the catalytic current decreased in a reversible way, thus behaving similarly as on carbon nanotubes. Enzyme mobility at the interface induced by a modification in the interactions between the protein and the electrode upon salt addition may account for this behavior. When the enzyme was covalently attached, the catalytic current increased. Enzyme compaction is proposed to be at the origin of such catalytic current increase because of shorter distances between the first copper site electron acceptor and the electrode.
Collapse
Affiliation(s)
- V Saska
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - U Contaldo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - I Mazurenko
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - A de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - E Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
2
|
Lu X, Liu Z, Zhang JR, Zhou Y, Wang L, Zhu JJ. General Synergistic Hybrid Catalyst Synthesis Method Using a Natural Enzyme Scaffold-Confined Metal Nanocluster. ACS APPLIED MATERIALS & INTERFACES 2023; 15:761-771. [PMID: 36580579 DOI: 10.1021/acsami.2c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to differences in the chemical properties or optimal reaction conditions of the catalysts, the challenge in the design of bio-chemical hybrid catalysts is that the bio-catalysts or chemical catalysts usually cannot maintain the initial catalytic performance. Herein, we report a general bio-chemical hybrid catalyst synthesis method using a natural enzyme scaffold-confined metal nanocluster. A redox-active enzyme is a nanoreactor that allows access to and reduces metal ions into metal nanoclusters in situ, resulting in the enzyme-confined metal nanocluster hybrid catalyst with a synergistic effect to boost catalytic performance. Specifically, bilirubin oxidase-Ir nanoclusters (BOD-Ir NCs) with catalytic properties for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are designed. The BOD-Ir NCs exhibit an approximately 2-fold ORR activity compared with pure BOD and a 4-fold OER activity compared with pure Ir NCs. BOD-Ir NCs exhibit stability for over 50,000 s, exceeding that of pure Ir NCs (22,000 s). The synergistic catalytic performance is attributed to the following: the mild preparation condition and matched sizes of BOD and the Ir NCs maintain the natural activity of BOD; the highly conductive Ir NCs improve the ORR activity of BOD; and the confining effect of BOD, which improves the stability and activity of the Ir NCs during the OER. In particular, BOD-Ir NCs exhibit a high half-wave potential of 0.97 V for the ORR and a low overpotential of 319 mV at 10 mA cm-2 for the OER, surpassing most of reported catalysts under neutral conditions. Furthermore, laccase-Ir NCs and glucose oxidase-Pd NCs with synergistic catalytic performances are fabricated, proving the universality of this synthetic method. This facile strategy for designing synergistic hybrid catalysts is expected to be applied to more complex chemical transformations.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhuo Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yang Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing210023, China
| | - Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
3
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
4
|
Investigation on electrochemical behavior and its catalytic effect on oxygen reduction reaction of 3-Ferrocenyl dihydropyrazole derivative as electron relay. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe. J Biol Inorg Chem 2017; 22:1179-1186. [DOI: 10.1007/s00775-017-1494-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
6
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
7
|
Wu F, Su L, Yu P, Mao L. Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. J Am Chem Soc 2017; 139:1565-1574. [DOI: 10.1021/jacs.6b11469] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins. J Biotechnol 2016; 230:19-25. [PMID: 27165502 DOI: 10.1016/j.jbiotec.2016.04.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 02/02/2023]
Abstract
Aggregation of recombinant proteins into inclusion bodies (IBs) is the main problem of the expression of multicopper oxidase in Escherichia coli. It is usually attributed to inefficient folding of proteins due to the lack of copper and/or unavailability of chaperone proteins. The general strategies reported to overcome this issue have been focused on increasing the intracellular copper concentration. Here we report a complementary method to optimize the expression in E. coli of a promising Bilirubin oxidase (BOD) isolated from Bacillus pumilus. First, as this BOD has a disulfide bridge, we switched E.coli strain from BL21 (DE3) to Origami B (DE3), known to promote the formation of disulfide bridges in the bacterial cytoplasm. In a second step, we investigate the effect of co-expression of chaperone proteins on the protein production and specific activity. Our strategy allowed increasing the final amount of enzyme by 858% and its catalytic rate constant by 83%.
Collapse
|
9
|
Lee YY, Parker SG, Barfidokht A, Alam MT, Walker DB, Messerle BA, Gooding JJ. A Ruthenium Based Organometallic Complex for Biosensing that is both a Stable Redox Label and a Homobifunctional Linker. ELECTROANAL 2015. [DOI: 10.1002/elan.201400642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Shao M, Guschin DA, Kawah Z, Beyl Y, Stoica L, Ludwig R, Schuhmann W, Chen X. Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
|
12
|
Liu XW, Li WW, Yu HQ. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev 2014; 43:7718-45. [DOI: 10.1039/c3cs60130g] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Korani A, Salimi A. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Biosens Bioelectron 2013; 50:186-93. [PMID: 23850787 DOI: 10.1016/j.bios.2013.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
In this study, the preparation of an integrated modified electrode based on the covalent attachment of glucose dehydrogenase (GDH) enzyme and safranin O to amine-derivative multiwalled carbon nanotubes (MWCNTs-NH2) modified glassy carbon (GC) electrode using G2.5-carboxylated PAMAM dendrimer (Den) as linking agent is reported. The obtained results indicated that the proposed system has effective bioelectrocatalytic activity toward glucose oxidation at 100 mV with onset potential of -130 mV (vs. Ag/AgCl). The performance of the prepared hybrid system of GC/MWCNTs-NH2/Den/GDH/Safranin as anode in a membraneless enzyme-based glucose/O2 biofuel cell is further evaluated. The biocathode in this system was composed of bilirubin oxidase (BOX) enzyme immobilized onto a bilirubin modified carbon nanotube GC electrode. Immobilized BOX onto CNTs/bilirubin not only show direct electron transfer but also it has excellent electrocatalytic activity toward oxygen reduction at a positive potential of 610 mV. The open circuit voltage of the cell was 590 mV. The maximum current density was 0.5 mA cm(-2), while maximum power density of 108 μW cm(-2) was achieved at voltage of 330 mV. The immobilized enzymes in anode and cathode are very stable and output power of the BFC is approximately constant after 12 h continues operation.
Collapse
Affiliation(s)
- Aazam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | | |
Collapse
|
14
|
Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes. Bioelectrochemistry 2013; 91:15-20. [DOI: 10.1016/j.bioelechem.2012.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022]
|
15
|
Shao M, Nadeem Zafar M, Sygmund C, Guschin DA, Ludwig R, Peterbauer CK, Schuhmann W, Gorton L. Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints. Biosens Bioelectron 2013; 40:308-14. [DOI: 10.1016/j.bios.2012.07.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022]
|
16
|
Durand F, Gounel S, Mano N. Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Protein Expr Purif 2012; 88:61-6. [PMID: 23220637 DOI: 10.1016/j.pep.2012.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
A new laccase from the filamentous fungus Podospora anserina has been isolated and identified. The 73 kDa protein containing 4 coppers, truncated from its first 31 amino acids, was successfully overexpressed in Pichia pastoris and purified in one step with a yield of 48% and a specific activity of 644Umg(-1). The kinetic parameters, k(cat) and K(M), determined at 37 °C and optimal pH are 1372 s(-1) and 307 μM for ABTS and, 1.29 s(-1) and 10.9 μM, for syringaldazine (SGZ). Unlike other laccases, the new protein displays a better thermostability, with a half life>400 min at 37 °C, is less sensitive to chloride and more stable at pH 7. Even though, the new 566 amino-acid enzyme displays a large homology with Bilirubin oxidase (BOD) from Myrothecium verrucaria (58%) and exhibits the four histidine rich domains consensus sequences of BODs, the new enzyme is not able to oxidize neither conjugated nor unconjugated bilirubin.
Collapse
|
17
|
|
18
|
Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases. Bioelectrochemistry 2012; 88:65-9. [DOI: 10.1016/j.bioelechem.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
|
19
|
Haddad R, Xia W, Guschin DA, Pöller S, Shao M, Vivekananthan J, Muhler M, Schuhmann W. Carbon Cloth/Carbon Nanotube Electrodes for Biofuel Cells Development. ELECTROANAL 2012. [DOI: 10.1002/elan.201200444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C, Shleev S, De Lacey AL. Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes. J Am Chem Soc 2012; 134:17212-20. [DOI: 10.1021/ja307308j] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Marcos Pita
- Instituto de Catalisis y Petroleoquimica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Cristina Vaz-Domínguez
- Instituto de Catalisis y Petroleoquimica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Sergey Shleev
- Biomedical Laboratory Science
and Technology, Faculty of Health and Society, Malmo University, SE-205 06 Malmo, Sweden
| | - Antonio L. De Lacey
- Instituto de Catalisis y Petroleoquimica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| |
Collapse
|
21
|
Pöller S, Beyl Y, Vivekananthan J, Guschin DA, Schuhmann W. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications. Bioelectrochemistry 2012; 87:178-84. [DOI: 10.1016/j.bioelechem.2011.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/22/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022]
|
22
|
Durand F, Kjaergaard CH, Suraniti E, Gounel S, Hadt RG, Solomon EI, Mano N. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens Bioelectron 2012; 35:140-146. [PMID: 22410485 PMCID: PMC3724473 DOI: 10.1016/j.bios.2012.02.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022]
Abstract
A CotA multicopper oxidase (MCO) from Bacillus pumilus, previously identified as a laccase, has been studied and characterized as a new bacterial bilirubin oxidase (BOD). The 59 kDa protein containing four coppers, was successfully over-expressed in Escherichia coli and purified to homogeneity in one step. This 509 amino-acid enzyme, having 67% and 26% sequence identity with CotA from Bacillus subtilis and BOD from Myrothecium verrucaria, respectively, shows higher turnover activity towards bilirubin compared to other bacterial MCOs. The current density for O(2) reduction, when immobilized in a redox hydrogel, is only 12% smaller than the current obtained with Trachyderma tsunodae BOD. Under continuous electrocatalysis, an electrode modified with the new BOD is more stable, and has a higher tolerance towards NaCl, than a T. tsunodae BOD modified electrode. This makes BOD from B. pumilus an attractive new candidate for application in biofuel cells (BFCs) and biosensors.
Collapse
Affiliation(s)
- Fabien Durand
- CRPP-UPR 8641, Univ. Bordeaux, F-33600, Pessac, France
| | | | | | | | - Ryan G Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Nicolas Mano
- CRPP-UPR 8641, Univ. Bordeaux, F-33600, Pessac, France.
| |
Collapse
|
23
|
Meredith MT, Minteer SD. Biofuel cells: enhanced enzymatic bioelectrocatalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:157-179. [PMID: 22524222 DOI: 10.1146/annurev-anchem-062011-143049] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Enzymatic biofuel cells represent an emerging technology that can create electrical energy from biologically renewable catalysts and fuels. A wide variety of redox enzymes have been employed to create unique biofuel cells that can be used in applications such as implantable power sources, energy sources for small electronic devices, self-powered sensors, and bioelectrocatalytic logic gates. This review addresses the fundamental concepts necessary to understand the operating principles of biofuel cells, as well as recent advances in mediated electron transfer- and direct electron transfer-based biofuel cells, which have been developed to create bioelectrical devices that can produce significant power and remain stable for long periods.
Collapse
Affiliation(s)
- Matthew T Meredith
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
24
|
Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 2011; 157:304-14. [PMID: 22178779 DOI: 10.1016/j.jbiotec.2011.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/25/2011] [Accepted: 11/30/2011] [Indexed: 01/26/2023]
Abstract
Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research.
Collapse
Affiliation(s)
- Roman Kittl
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|