1
|
Fan Y, Fu L, Su H, Tang L, Wu Q, Jia L. Membrane separation assisted colorimetric/fluorescent detection of β-galactosidase-positive bacteria in milk and milk powder based on the oxidase-like activity of CoOOH nanosheets. Food Chem 2024; 461:140946. [PMID: 39191035 DOI: 10.1016/j.foodchem.2024.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Species-specific enzymes provide a substantial boost to the precision and selectivity of identifying dairy products contaminated with foodborne pathogens, due to their specificity for target organisms. In this study, we developed cobalt oxyhydroxide nanosheets (CoOOH NSs) for a dual-mode biosensor capable of detecting β-galactosidase (β-Gal)-positive bacteria in milk and milk powder. The sensor exploits the oxidase-mimicking activity of CoOOH NSs, where β-Gal converts the substrate β-D-galactopyranoside to p-aminophenol, reducing CoOOH NSs to Co2+ and inhibiting the formation of the blue product from 3,3',5,5'-tetramethylben-zidine. Sensitivity was enhanced through membrane filtration and β-Gal induction by isopropyl β-D-thiogalactoside. The assay achieved a detection limit of 5 cfu mL-1 and demonstrated recoveries (90.7 % to 103 %) and relative standard deviations <5.7 % in milk and milk powder samples. These findings underscore the potential of the sensor for detecting β-Gal-positive bacteria in dairy products.
Collapse
Affiliation(s)
- Yi Fan
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huihui Su
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Tang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingxi Wu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Elancheziyan M, Prakasham K, Eswaran M, Duraisamy M, Ganesan S, Lee SL, Ponnusamy VK. Eco-friendly fabrication of nonenzymatic electrochemical sensor based on cobalt/polymelamine/nitrogen-doped graphitic-porous carbon nanohybrid material for glucose monitoring in human blood. ENVIRONMENTAL RESEARCH 2023; 223:115403. [PMID: 36754108 DOI: 10.1016/j.envres.2023.115403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The design and development of eco-friendly fabrication of cost-effective electrochemical nonenzymatic biosensors with enhanced sensitivity and selectivity are one of the emerging area in nanomaterial and analytical chemistry. In this aspect, we developed a facile fabrication of tertiary nanocomposite material based on cobalt and polymelamine/nitrogen-doped graphitic porous carbon nanohybrid composite (Co-PM-NDGPC/SPE) for the application as a nonenzymatic electrochemical sensor to quantify glucose in human blood samples. Co-PM-NDGPC/SPE nanocomposite electrode fabrication was achieved using a single-step electrodeposition method under cyclic voltammetry (CV) technique under 1 M NH4Cl solution at 20 constitutive CV cycles (sweep rate 20 mV/s). Notably, the fabricated nonenzymatic electroactive nanocomposite material exhibited excellent electrocatalytic sensing towards the quantification of glucose in 0.1 M NaOH over a wide concentration range from 0.03 to 1.071 mM with a sensitive limit of detection 7.8 μM. Moreover, the Co-PM-NDGPC nanocomposite electrode with low charge transfer resistance (Rct∼81 Ω) and high ionic diffusion indicates excellent stability, reproducibility, and high sensitivity. The fabricated nanocomposite materials exhibit a commendable sensing response toward glucose molecules present in the blood serum samples recommends its usage in real-time applications.
Collapse
Affiliation(s)
- Mari Elancheziyan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam-602105, India
| | - Karthikeyan Prakasham
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City-807, Taiwan
| | - Muthusankar Eswaran
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Murugesan Duraisamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; SSN Research Centre, SSN College of Engineering, Kalavakkam-603110, India
| | - Sivarasan Ganesan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan
| | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City-804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City-807, Taiwan.
| |
Collapse
|
3
|
Ren J, Yao Z, Wei Q, Wang R, Liu Y, Wang L, Zheng K, Wang S, Guo H, Niu Z, Wang J, Han J, Lü L, Zhen Y, Li J. Degradation of ferulic acid and caffeic acid by dielectric barrier discharge plasma combined with Mn/CoOOH/activated carbon fiber. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Luo L, Lin SQ, Wu ZY, Wang H, Chen ZJ, Deng H, Shen YD, Zhang WF, Lei HT, Xu ZL. Nanobody-based fluorescent immunoassay using carbon dots anchored cobalt oxyhydroxide composite for the sensitive detection of fenitrothion. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129701. [PMID: 36104918 DOI: 10.1016/j.jhazmat.2022.129701] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Fenitrothion (FN) residue in food is a serious threat to public health. Consequently, a sensitive, cost-effective, and convenient immunoassay for FN urgently needs to be fabricated to safeguard human health. Herein, a nanobody-alkaline phosphatase fusion protein (Nb-ALP)-based fluorescent ELISA using red emissive carbon dots (r-CDs) anchored cobalt oxyhydroxide nanosheet (CoOOH NS) composite was developed for detecting FN. Briefly, a Nb-ALP was obtained by autoinduction expression and employed as a recognition, signal transduction, and amplification element. As the fluorescence signal source, r-CDs were assembled with CoOOH NS to yield the r-CDs@CoOOH NS composite, leading to the fluorescence quenching of r-CDs via Förster resonance energy transfer (FRET). After competitive immunoreaction, the Nb-ALP bounded to the immobilized antigen can mediate the production of ascorbic acid, which can reduce the CoOOH NS to Co2+, breaking the FRET between r-CDs and CoOOH NS, accompanied by the fluorescence recovery of r-CDs. This fluorescent ELISA is highly sensitive to FN with a detection limit of 0.14 ng mL-1, which is 25-fold lower than that of conventional colorimetric ELISAs. The recovery test of food samples and the validation by GC-MS/MS further demonstrated the proposed assay was an ideal tool for detecting FN.
Collapse
Affiliation(s)
- Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shi-Qi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo-Yu Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province / Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 570100, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Feng Zhang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Priyanga N, Sasikumar K, Raja AS, Pannipara M, Al-Sehemi AG, Michael RJV, Kumar MP, Alphonsa AT, Kumar GG. 3D CoMoO 4 nanoflake arrays decorated disposable pencil graphite electrode for selective and sensitive enzyme-less electrochemical glucose sensors. Mikrochim Acta 2022; 189:200. [PMID: 35474402 DOI: 10.1007/s00604-022-05270-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) cobalt molybdate (CoMoO4) hierarchical nanoflake arrays on pencil graphite electrode (PGE) (CoMoO4/PGE) are actualized via one-pot hydrothermal technique. The morphological features comprehend that the CoMoO4 nanoflake arrays expose the 3D, open, porous, and interconnected network architectures on PGE. The formation and growth mechanisms of CoMoO4 nanostructures on PGE are supported with different structural and morphological characterizations. The constructed CoMoO4/PGE is operated as an electrocatalytic probe in enzyme-less electrochemical glucose sensor (ELEGS), confronting the impairments of cost- and time-obsessed conventional electrode polishing and catalyst amendment progressions and obliged the employment of a non-conducting binder. The wide-opened interior and exterior architectures of CoMoO4 nanoflake arrays escalate the glucose utilization efficacy, whilst the intertwined nanoflakes and graphitic carbon layers, respectively, of CoMoO4 and PGE articulate the continual electron mobility and catalytically active channels of CoMoO4/PGE. It jointly escalates the ELEGS concerts of CoMoO4/PGE including high sensitivity (1613 μA mM-1 cm-2), wide linear glucose range (0.0003-10 mM), and low detection limit (0.12 µM) at a working potential of 0.65 V (vs. Ag/AgCl) together with the good recovery in human serum. Thus, the fabricated CoMoO4/PGE extends exclusive virtues of modest electrode production, virtuous affinity, swift response, and excellent sensitivity and selectivity, exposing innovative prospects to reconnoitring the economically viable ELEGSs with binder-free, affordable cost, and expansible 3D electrocatalytic probes.
Collapse
Affiliation(s)
- N Priyanga
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.,Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - K Sasikumar
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - A Sahaya Raja
- PG and Research Department of Chemistry, G.T.N Arts College (Autonomous), Dindigul, 624005, Tamil Nadu, India.
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS) and Department of Chemistry, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - R Jude Vimal Michael
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, Tamil Nadu, India
| | - M Praveen Kumar
- Department of Materials Science and Engineering, University of Concepcion, Región del Bío Bío, Chile
| | - A Therasa Alphonsa
- PG and Research Department of Chemistry, Government Arts College, C.Mutlur, Chidambaram, 608102, Tamil Nadu, India
| | - G Gnana Kumar
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
6
|
Highly sensitive and selective non-enzymatic measurement of glucose using arraying of two separate sweat sensors at physiological pH. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Adeel M, Canzonieri V, Daniele S, Rizzolio F, Rahman MM. Organobase assisted synthesis of Co(OH)2 nanosheets enriched with oxygen vacancies for nonenzymatic glucose sensing at physiological pH. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Yan T, Chen Q, Wang Y, Long Y, Jiang Y, Fan G. An Ultrahigh Performance Enzyme‐Free Electrochemical H
2
O
2
Sensor Based on Carbon Nanopores Encapsulated Ultrasmall Cobalt Oxide Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tingting Yan
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Qian Chen
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yi Wang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yan Long
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| | - Yanshu Jiang
- Sichuan Institute of Food Inspection Chengdu 610097 China
| | - Guangyin Fan
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 China
| |
Collapse
|
9
|
Naikoo GA, Salim H, Hassan IU, Awan T, Arshad F, Pedram MZ, Ahmed W, Qurashi A. Recent Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management- A Review. Front Chem 2021; 9:748957. [PMID: 34631670 PMCID: PMC8493127 DOI: 10.3389/fchem.2021.748957] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
There is an undeniable growing number of diabetes cases worldwide that have received widespread global attention by many pharmaceutical and clinical industries to develop better functioning glucose sensing devices. This has called for an unprecedented demand to develop highly efficient, stable, selective, and sensitive non-enzymatic glucose sensors (NEGS). Interestingly, many novel materials have shown the promising potential of directly detecting glucose in the blood and fluids. This review exclusively encompasses the electrochemical detection of glucose and its mechanism based on various metal-based materials such as cobalt (Co), nickel (Ni), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), titanium (Ti), iridium (Ir), and rhodium (Rh). Multiple aspects of these metals and their oxides were explored vis-à-vis their performance in glucose detection. The direct glucose oxidation via metallic redox centres is explained by the chemisorption model and the incipient hydrous oxide/adatom mediator (IHOAM) model. The glucose electrooxidation reactions on the electrode surface were elucidated by equations. Furthermore, it was explored that an effective detection of glucose depends on the aspect ratio, surface morphology, active sites, structures, and catalytic activity of nanomaterials, which plays an indispensable role in designing efficient NEGS. The challenges and possible solutions for advancing NEGS have been summarized.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Hiba Salim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | | | - Tasbiha Awan
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Mona Z. Pedram
- Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, Tehran, Iran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Ren J, Zhen Y, Wang J, Li J. Catalytic degradation of caffeic acid by DBD plasma and Mn doped cobalt oxyhydroxide catalyst. CHEMOSPHERE 2021; 275:130101. [PMID: 33984910 DOI: 10.1016/j.chemosphere.2021.130101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, caffeic acid (CA) was degraded by electrical discharge plasma combined with Mn doped CoOOH catalyst. Doping of Mn significantly improve the catalytic activity of CoOOH. CA degradation efficiency was 75.6% with dielectric barrier discharge treatment for 10 min, and it reached 97% using CoOOH as the catalyst at the same treatment time. CA was 100% degraded with only 8 min using Mn/CoOOH as the catalyst. The introduction of Mn into the lattice of CoOOH induced the formation of oxygen vacancy, causing part of coordinate number of Co decreased from 6 to 5, and thus produces unsaturated Co to be the Lewis acid sites. Lewis acid sites (unsaturated Co) could coordinate with O3 and H2O2 and break their chemical bonds to form O and -OH. Assisting in the conversion of O3 to ·OH was the main role of H2O2 in the catalytic process. The degradation products and pathway of CA were studied by three-dimensional fluorescence, liquid chromatograph-mass spectrometer and density functional theory calculations.
Collapse
Affiliation(s)
- Jingyu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China.
| | - Yanzhong Zhen
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China
| | - Jian Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China
| | - Jie Li
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.
Collapse
|
12
|
Bahar J, Lghazi Y, Youbi B, Ait Himi M, Bimaghra I. Comparative study of nucleation and growth mechanism of cobalt electrodeposited on ITO substrate in nitrate and chloride electrolytes. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Dong M, Hu H, Ding S, Wang C, Li L. A facile synthesis of CoMn 2O 4 nanosheets on reduced graphene oxide for non-enzymatic glucose sensing. NANOTECHNOLOGY 2021; 32:055501. [PMID: 33053519 DOI: 10.1088/1361-6528/abc112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A non-enzymatic sensor nanomaterial which is composed of ultra-thin scaly CoMn2O4 nanosheets grown on the surface of reduced graphene oxide sheets (CoMn2O4 NSs/rGO) has been successfully synthesized by a simple method for glucose sensing. The morphology and elemental composition of CoMn2O4 NSs/rGO are researched by means of x-ray diffraction, field emission scanning electron microscope, and transmission electron microscope. Cyclic voltammetry and amperometry are used to analyse the glucose oxidation characteristics of the material. The test results show that the non-enzymatic glucose sensor based on CoMn2O4 NSs/rGO has excellent glucose sensing performance, exhibiting a wide linear range of 0.1-30 mM with high sensitivity of 6830.5 μA mM-1 cm-2, which is better than other glucose sensors. In addition, the CoMn2O4 NSs/rGO sensor has superior anti-interference and stability. More importantly, the sensor can be applied to the measurement of real sample, which makes it have the potential to become a reliable clinical glucose sensor.
Collapse
Affiliation(s)
- Min Dong
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hongli Hu
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Changcheng Wang
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Long Li
- School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
14
|
Ren J, Li J, Lv L, Wang J. Degradation of caffeic acid by dielectric barrier discharge plasma combined with Ce doped CoOOH catalyst. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123772. [PMID: 33254783 DOI: 10.1016/j.jhazmat.2020.123772] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
Herein, Ce doped CoOOH was used as the catalyst for caffeic acid (CA) degradation by dielectric barrier discharge (DBD) plasma. The treatment performance and catalytic mechanism were studied by a series of experiments and density functional theory (DFT) simulations. The results show that the doping amounts of Ce significantly influenced the catalytic performance of CoOOH in DBD plasma, and the catalytic effect reached maximum when the molar ratio of Ce to Co was 1:9. CA was 100 % degraded by Ce1/Co9OOH/DBD with 10 min treatment, while only 75.6 % of CA was degraded by 10 min DBD treatment. Transformation of O3 and H2O2 to ⋅OH was mainly responsible for the catalytic effect. The content of oxygen vacancies and unsaturated Co (Lewis acid sites) of CoOOH was increased by doping Ce according to the results of experiments and simulations, and the change was conducive to the catalytic reactions. DFT simulations also indicated that DBD generated O3 and H2O2 were decomposed to O atoms, OH groups and free OH by Ce/CoOOH. The presence of reductive species in DBD plasma was confirmed, and ⋅H was a kind of important reactive specie for CA degradation. CA degradation pathway was proposed based on the detected degradation products.
Collapse
Affiliation(s)
- Jingyu Ren
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China.
| | - Jie Li
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lei Lv
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China
| | - Jian Wang
- School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an, 716000, China; Yan'an Key Laboratory of Environmental Monitoring and Remediation, Yan'an, 716000, China
| |
Collapse
|
15
|
Chang HW, Su CW, Tian JH, Tsai YC. Non-Enzymatic Glucose Sensing Based on Incorporation of Carbon Nanotube into Zn-Co-S Ball-in-Ball Hollow Sphere. SENSORS 2020; 20:s20154340. [PMID: 32759678 PMCID: PMC7436182 DOI: 10.3390/s20154340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 μM with high sensitivity of 2734.4 μA mM-1 cm-2, excellent detection limit of 2.98 μM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Han-Wei Chang
- Department of Chemical Engineering, National United University, 2, Lienda, Miaoli 36063, Taiwan;
| | - Chia-Wei Su
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
| | - Jia-Hao Tian
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; (C.-W.S.); (J.-H.T.)
- Correspondence: ; Tel.: +886-4-2285-7257
| |
Collapse
|
16
|
Taşaltın N, Taşaltın C, Karakuş S, Kilislioğlu A. Cu core shell nanosphere based electrochemical non-enzymatic sensing of glucose. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Chandrasekaran NI, Matheswaran M. Electrochemical activity of 3D hairy hollow sphered Mn‐Cu‐Al layered hydroxide nanocomposites: A short survey on glucose analyte. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Manickam Matheswaran
- Department of Chemical Engineering National Institute of Technology Tiruchirappalli India
| |
Collapse
|
18
|
Liu G, Zhao J, Qin L, Liu S, Zhang Q, Li J. Synthesis of an ordered nanoporous Cu/Ni/Au film for sensitive non-enzymatic glucose sensing. RSC Adv 2020; 10:12883-12890. [PMID: 35492097 PMCID: PMC9051312 DOI: 10.1039/d0ra01224f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Ordered nanoporous Cu/Ni/Au film was prepared by electrochemical deposition and magnetron sputtering using an anodic aluminium oxide template. The fabricated porous film has a uniform hexagonal pore size structure, a long-range ordered arrangement, and a pore diameter of approximately 40 nm. Following the dissolution of the template, the independent Cu/Ni/Au film is devolved to an ITO substrate as an effective non-enzyme glucose detection sensor. The sensor has good electrocatalytic performance with two specific linear ranges of 0.5 μM to 3.0 mM and 3.0–7.0 mM and high sensitivities of 4135 and 2972 μA mM−1 cm−2, respectively. The lower detection limit was 0.1 μM with a signal-to-noise ratio of 3. Additionally, the sensor features excellent selectivity and stability. These satisfactory results indicate that Cu/Ni/Au film is a promising platform for the development of non-enzymatic glucose sensors. Ordered nanoporous Cu/Ni/Au film prepared by template method could be transferred and used as an effective glucose sensor.![]()
Collapse
Affiliation(s)
- Gang Liu
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| | - Jianwei Zhao
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| | - Lirong Qin
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| | - Song Liu
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| | - Qitao Zhang
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| | - Junxian Li
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
19
|
Chen Q, Ding R, Liu H, Zhou L, Wang Y, Zhang Y, Fan G. Flexible Active-Site Engineering of Monometallic Co-Layered Double Hydroxides for Achieving High-Performance Bifunctional Electrocatalyst toward Oxygen Evolution and H 2O 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12919-12929. [PMID: 32097560 DOI: 10.1021/acsami.0c01315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is highly desirable but challenging to develop a facile and scalable strategy to synthesize efficient bifunctional electrocatalysts for oxygen evolution and H2O2 reduction by engineering the active site of monometallic-layered double hydroxides (LDHs). Herein, we developed a convenient, efficient, and scalable method for the construction of monometallic Co-LDHs with tunable Con+ (n = 2, 3) concentration by a one-pot solvothermal reaction in a short time (e.g., 2 and 4 h) using only cobalt nitrate and hexamine as raw materials. The catalytic performance of Co-LDHs was mainly determined by the Con+ (n = 2, 3) concentration, which could be simply regulated by tuning the solvothermal time. Combining the joint merits of three-dimensional flowerlike architecture (abundant accessible active sites and a fast electron/mass transport), Co-LDHs-4 with abundant Co3+ species exhibited an excellent electrocatalytic activity for oxygen evolution reaction in terms of a low overpotential at 10 mA cm-2 (η10 = 241 mV) and long-term durability for 70 h at 100 mA cm-2, better than the state-of-the-art IrO2 and most of the reported analogues. Besides, Co-LDHs-2 enriched in Co2+ displayed a superior electrochemical activity for H2O2 detection with a broad linear range (0.002-20 mM), a low detection limit (0.002 mM), and a high response sensitivity (272.02 μA mM-1 cm-2). Therefore, this work opens a new horizon for the rational development of a highly active electrocatalyst with tunable concentrations of active components.
Collapse
Affiliation(s)
- Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Rong Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Huan Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lingxi Zhou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yun Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
20
|
Zhang D, Wang Z, Li J, Hu C, Zhang X, Jiang B, Cao Z, Zhang J, Zhang R. MOF-derived ZnCo2O4 porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Adv 2020; 10:9063-9069. [PMID: 35496530 PMCID: PMC9050121 DOI: 10.1039/c9ra08723k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
A porous ZnCo2O4 micro-rice like microstructure was synthesized via calcination of a Zn–Co MOF precursor at an appropriate temperature. The as-prepared ZnCo2O4 sample presented good electrocatalytic oxygen evolution reaction performance with a small overpotential (η10 = 389 mV) and high stability in basic electrolyte. Furthermore, in basic medium, the as-synthesized ZnCo2O4 micro-rice also showed good electrocatalytic activity for glucose oxidation. A ZnCo2O4 micro-rice modified glass carbon electrode may be used as a potential non-enzymatic glucose sensor. The excellent electrocatalytic OER and glucose oxidation performances of ZnCo2O4 might be attributed to the unique porous structure formed by the nanoparticles. The porous architecture of the micro-rice can provide a large number of electrocatalytically active sites and high electrochemical surface area (ECSA). The result may offer a new way to prepare low-cost and high performance oxygen evolution reaction and glucose oxidation electrocatalysts. A porous ZnCo2O4 micro-rice like microstructure was synthesized via calcination of a Zn–Co MOF precursor at an appropriate temperature.![]()
Collapse
Affiliation(s)
- Daojun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Zimo Wang
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Jiakai Li
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Chengming Hu
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Xiaobei Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Bei Jiang
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Zhi Cao
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Jingchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| | - Renchun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- China
| |
Collapse
|
21
|
Mary AJC, Shalini SS, Balamurugan R, Harikrishnan MP, Bose AC. Supercapacitor and non-enzymatic biosensor application of an Mn2O3/NiCo2O4 composite material. NEW J CHEM 2020. [DOI: 10.1039/d0nj01942a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy storage mechanism and catalytic performance of the Mn2O3/NiCo2O4 composite material.
Collapse
Affiliation(s)
- A. Juliet Christina Mary
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - S. Siva Shalini
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - R. Balamurugan
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - M. P. Harikrishnan
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - A. Chandra Bose
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli-620015
- India
| |
Collapse
|
22
|
Mai L, Tran T, Bui Q, Nhac-Vu HT. A novel nanohybrid of gold nanoparticles anchored copper sulfide nanosheets as sensitive sensor for nonenzymatic glucose detection. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Liu B, Li Z. Electrochemical treating of a smooth Cu-Ni-Zn surface into layered micro-chips of rice grain-like Cu/Ni(OH)2 nanocomposites as a highly sensitive enzyme-free glucose sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Altimari P, Schiavi PG, Rubino A, Pagnanelli F. Electrodeposition of cobalt nanoparticles: An analysis of the mechanisms behind the deviation from three-dimensional diffusion-control. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhang L, Liang H, Ma X, Ye C, Zhao G. A vertically aligned CuO nanosheet film prepared by electrochemical conversion on Cu-based metal-organic framework for non-enzymatic glucose sensors. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Wang Y, Yang X, Hou C, Zhao M, Li Z, Meng Q, Liang C. Fabrication of MnOx/Ni(OH)2 electro-deposited sulfonated polyimides/graphene nano-sheets membrane and used for electrochemical sensing of glucose. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Nguyen THV, Wu CH, Lin SY, Lin CY. CoOx nanoparticles modified CuBi2O4 submicron-sized square columns as a sensitive and selective sensing material for amperometric detection of glucose. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Zhang L, Ma X, Liang H, Lin H, Zhao G. A non-enzymatic glucose sensor with enhanced anti-interference ability based on a MIL-53(NiFe) metal–organic framework. J Mater Chem B 2019; 7:7006-7013. [DOI: 10.1039/c9tb01832h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The MIL-53(NiFe) MOF was used as a molecular sieve to improve the anti-interference ability in glucose detection.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Xiaoni Ma
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Hongbo Liang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Huihui Lin
- Hospital of Harbin Institute of Technology
- Harbin
- P. R. China
| | - Guangyu Zhao
- Interdisciplinary Science Research Center
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
29
|
Ma Y, Chu J, Li Z, Rakov D, Han X, Du Y, Song B, Xu P. Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803783. [PMID: 30468561 DOI: 10.1002/smll.201803783] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Developing facile routes for fabricating highly efficient oxygen evolution reaction (OER) electrocatalysts is in great demand but remains a great challenge. Herein, a novel molten salt decomposition method to prepare 3D metal nitrate hydroxide (MNH, M = Ni, Co, and Cu) nanoarrays homogenously grown on different conductive substrates, especially on nickel foam (NF) for OER applications, is reported. Compared with the as-prepared CoNH/NF and CuNH/NF, NiNH/NF presents a superior electrocatalytic OER activity and stability in an alkaline solution, with a very low overpotential of only 231 mV versus a reversible hydrogen electrode to deliver a geometrical catalytic current density of 50 mA cm-2 and a low Tafel slope of 81 mV dec-1 , outperforming most reported transition metal compound catalysts. Structural investigation after the OER process reveals the morphology integrity of the nanoarrays but the formation of metal oxyhydroxide (for NiNH and CoNH) or oxide (for CuNH) as the likely real active species. These metal nitrate hydroxide non-noble metal electrocatalysts can be prepared by an economical and simple method, with enhanced intrinsic activity and long-term stability and durability, which might be new candidates for energy conversion and storage applications.
Collapse
Affiliation(s)
- Yan Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiayu Chu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhennan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dmitrii Rakov
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Song
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
30
|
Nacef M, Chelaghmia ML, Affoune AM, Pontié M. Electrochemical Investigation of Glucose on a Highly Sensitive Nickel-Copper Modified Pencil Graphite Electrode. ELECTROANAL 2018. [DOI: 10.1002/elan.201800622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mouna Nacef
- Laboratoire d'Analyses Industrielles et Génie des Matériaux; Université 8 Mai 1945 Guelma BP 401; Guelma 24000 Algérie
| | - Mohamed Lyamine Chelaghmia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux; Université 8 Mai 1945 Guelma BP 401; Guelma 24000 Algérie
| | - Abed Mohamed Affoune
- Laboratoire d'Analyses Industrielles et Génie des Matériaux; Université 8 Mai 1945 Guelma BP 401; Guelma 24000 Algérie
| | - Maxime Pontié
- Université de Bretagne Loire, Univ. d'Angers; Laboratoire GEIHP EA 3142; Institut de Biologie en Santé, PBH-IRIS; CHU, Université d'Angers; 4 Rue Larrey, 49933 Angers Cedex 9 Angers France
| |
Collapse
|
31
|
Mirzaei H, Nasiri AA, Mohamadee R, Yaghoobi H, Khatami M, Azizi O, Zaimy MA, Azizi H. Direct growth of ternary copper nickel cobalt oxide nanowires as binder-free electrode on carbon cloth for nonenzymatic glucose sensing. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Deng W, Dai R, You C, Hu P, Sun X, Xiong X, Huang K, Huo F. In Situ Formation of a 3D Amorphous Cobalt- Borate Nanoarray: An Efficient Non-Noble Metal Catalytic Electrode for Non-Enzyme Glucose Detection. ChemistrySelect 2018. [DOI: 10.1002/slct.201800646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Deng
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
- School of Chemical Engineering; Neijiang Normal University, Neijiang; Sichuan 610068, Sichuan China
| | - Rui Dai
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Chao You
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Pingyue Hu
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Xuping Sun
- Institute of Fundamental and Frontier Science; University of Electronic Science and Technology of China; Chendu 610054, Sichuan China
| | - Xiaoli Xiong
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Ke Huang
- College of Chemistry and Materials Science; Sichuan Normal University; Chendu 610064, Sichuan China
| | - Feng Huo
- School of Chemical Engineering; Neijiang Normal University, Neijiang; Sichuan 610068, Sichuan China
| |
Collapse
|
33
|
Pourbeyram S, Abdollahpour J, Soltanpour M. Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:850-857. [PMID: 30423771 DOI: 10.1016/j.msec.2018.10.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 08/14/2018] [Accepted: 10/06/2018] [Indexed: 01/11/2023]
Abstract
A non-enzymatic glucose sensor based on pencil graphite electrode (PGE) modified by copper oxide nanoparticles decorated reduced graphene oxide (CuO(NP)/rGO-PGE) was prepared. XRD patterns showed partially electrochemically reduction of GO and monoclinic structure of CuO on the PGE. The prepared CuO(NP)/rGO exhibited a nanoporous structure by scanning electron microscopy (SEM). Transmittance electron microscopy (TEM) revealed copper oxide nanoparticles were well distributed on rGO and had semispherical shapes with diameter 3-5 nm. Cyclic voltammetry at CuO(NP)/rGO-PGE showed the immobilized CuO(NP)s were highly stable in alkaline solutions and had high electrocatalytic activity toward glucose oxidation. Using amperometry, the detection limit of [0.091 (±0.003) μM] and concentration sensitivity of [4760 (±3.2) μA mM-1 cm-2] for glucose was obtained at optimum conditions. The applicability of the sensor was evaluated to determine the glucose concentration in human blood serum samples and the experimental results were comparable with those measured by traditional spectrophotometric methods. The preparation of CuO(NP)/rGO-PGE was reproducible, very simple, fast and inexpensive for practical application.
Collapse
Affiliation(s)
- Sima Pourbeyram
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran.
| | - Jamal Abdollahpour
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Maryam Soltanpour
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| |
Collapse
|
34
|
Wang T, Xi L, Wang J. In situ fabrication of cobalt nanoflowers on sulfonated and fluorinated poly (arylene ether ketone-benzimidazole) template film for the electrocatalytic oxidation of glucose. Talanta 2018; 178:481-490. [DOI: 10.1016/j.talanta.2017.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
|
35
|
Zhang L, Ye C, Li X, Ding Y, Liang H, Zhao G, Wang Y. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor. NANO-MICRO LETTERS 2017; 10:28. [PMID: 30393677 PMCID: PMC6199074 DOI: 10.1007/s40820-017-0178-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/23/2017] [Indexed: 05/25/2023]
Abstract
Bimetal catalysts are good alternatives for non-enzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal-organic framework (MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of 17.12 mA mM-1 cm-2, a low detection limit of 66.67 nM, and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China
| | - Xu Li
- Department of Ophthalmology, Second Hospital, Jilin University, Changchun, 130022, Jilin, People's Republic of China
| | - Yaru Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China
| | - Hongbo Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China
| | - Guangyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, People's Republic of China.
| |
Collapse
|
36
|
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 2017; 185:49. [PMID: 29594566 DOI: 10.1007/s00604-017-2609-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Collapse
|
37
|
ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Yang M, Jeong JM, Lee KG, Kim DH, Lee SJ, Choi BG. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens Bioelectron 2017; 89:612-619. [DOI: 10.1016/j.bios.2016.01.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/01/2016] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
|
40
|
Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 2017; 89:152-166. [DOI: 10.1016/j.bios.2016.03.068] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
|
41
|
Kawde AN, Aziz MA, El-Zohri M, Baig N, Odewunmi N. Cathodized Gold Nanoparticle-Modified Graphite Pencil Electrode for Non-Enzymatic Sensitive Voltammetric Detection of Glucose. ELECTROANAL 2017. [DOI: 10.1002/elan.201600709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdel-Nasser Kawde
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran 31261 Kingdom of Saudi Arabia
| | - Md. Abdul Aziz
- Center of Excellence of Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Kingdom of Saudi Arabia
| | - Manal El-Zohri
- Botany & Microbiology Department; Faculty of Science, Assiut University; Assiut 71516 Egypt
- Biological Sciences Department, Faculty of Science; King Abdulaziz University; Jeddah 21589 Kingdom of Saudi Arabia
| | - Nadeem Baig
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran 31261 Kingdom of Saudi Arabia
| | - Nurudeen Odewunmi
- Chemistry Department; King Fahd University of Petroleum and Minerals; Dhahran 31261 Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Zhang L, Ding Y, Li R, Ye C, Zhao G, Wang Y. Ni-Based metal–organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J Mater Chem B 2017. [DOI: 10.1039/c7tb01363a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uniform and compact porous Ni@C nanosheet membranes on Ni foam showing remarkable electrocatalytic activity for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yaru Ding
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Ranran Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Chen Ye
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Guangyu Zhao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yan Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
43
|
Kannan P, Maiyalagan T, Marsili E, Ghosh S, Guo L, Huang Y, Rather JA, Thiruppathi D, Niedziolka-Jönsson J, Jönsson-Niedziolka M. Highly active 3-dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing. Analyst 2017; 142:4299-4307. [DOI: 10.1039/c7an01084b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing.
Collapse
Affiliation(s)
- Palanisamy Kannan
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE)
| | | | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Srabanti Ghosh
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata-700098
- India
| | - Longhua Guo
- Institute of Nanomedicine and Nanobiosensing
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education)
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Youju Huang
- Division of Polymer and Composite Materials
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | | | | | | | | |
Collapse
|
44
|
Meng A, Sheng L, Zhao K, Li Z. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide–poly(3,4-ethylenedioxythiophene) composite through electrodeposition for non-enzyme glucose sensing. J Mater Chem B 2017; 5:8934-8943. [DOI: 10.1039/c7tb02482g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A facile, controllable two-step electrodeposition route was developed, whereby a honeycomb-like amorphous CoxSy architecture was obtained via direct growth on rGO–PEDOT/GCE as an electrode for glucose detection.
Collapse
Affiliation(s)
- Alan Meng
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Liying Sheng
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| | - Kun Zhao
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Zhenjiang Li
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial
- College of Electromechanical Engineering
- College of Sino-German Science and Technology
- Qingdao University of Science and Technology
- Qingdao 266061
| |
Collapse
|
45
|
Benjamin M, Manoj D, Thenmozhi K, Bhagat PR, Saravanakumar D, Senthilkumar S. A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosens Bioelectron 2016; 91:380-387. [PMID: 28061420 DOI: 10.1016/j.bios.2016.12.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/04/2023]
Abstract
The development of efficient and cost effective nonenzymatic biosensors with remarkable sensitivity, selectivity and stability for the detection of biomolecules, especially glucose is one of the major challenges in materials- and electrochemistry. Herein, we report the design and preparation of nonenzymatic biosensor based on an ionic liquid tagged cobalt-salophen metal complex (Co-salophen-IL) immobilized on electrochemically reduced graphene oxide (ERGO) for the detection of glucose via an electrochemical oxidation. The bioinspired Co-salophen-IL complex has been synthesized and immobilized on ERGO, which was previously deposited on a screen printed carbon electrode (SPE) to form the Co-salophen-IL/ERGO/SPE nonenzymatic biosensor. The electrochemical behaviour of this modified electrode was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Notably, the Co-salophen-IL/ERGO/SPE biosensor exhibited excellent electrocatalytic activity towards glucose oxidation in 0.1M NaOH, based on which an amperometric sensor has been developed. The modified electrode has shown prominent performance towards glucose detection over a wide linear range from 0.2µM to 1.8mM with a detection limit and sensitivity of 0.79µM and 62µAmM-1 respectively. The detection was carried out at 0.40V and such a less working potential excludes the interference from the coexisting oxidizable analytes. The role of Co-salophen, IL and ERGO in the electrocatalytic activity has been systematically investigated. Furthermore, the biosensor demonstrated high stability with good reproducibility.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Pundlik Rambhau Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| |
Collapse
|
46
|
Morphology-controlled synthesis of cobalt nanostructures by facile electrodeposition: transition from hexagonal nanoplatelets to nanoflakes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Anneal-shrinked Cu2O dendrites grown on porous Cu foam as a robust interface for high-performance nonenzymatic glucose sensing. Talanta 2016; 161:615-622. [DOI: 10.1016/j.talanta.2016.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022]
|
48
|
Zeng G, Li W, Ci S, Jia J, Wen Z. Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell. Sci Rep 2016; 6:36454. [PMID: 27805039 PMCID: PMC5090366 DOI: 10.1038/srep36454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/17/2016] [Indexed: 11/23/2022] Open
Abstract
Nickel oxide-decorated graphene nanosheet (NiO/GNS), as a novel non-enzymatic electrocatalyst for glucose oxidation reaction (GOR), was synthesized through a facile hydrothermal route followed by the heat treatment. The successful synthesis of NiO/GNS was characterized by a series of techniques including XRD, BET, SEM and TEM. Significantly, the NiO/GNS catalyst show excellent catalytic activity toward GOR, and was employed to develop a sensitive non-enzymatic glucose sensor. The developed glucose sensor could response to glucose in a wide range from 5 μM-4.2 mM with a low detection limit (LOD) of 5.0 μM (S/N = 3). Importantly, compared with bare NiO, the catalytic activity of NiO/GNS was much higher. The reason might be that the 2D structure of graphene could prevent the aggregation of NiO and facilitate the electron transfer at electrode interface. Moreover, the outstanding catalytic activity of NiO/GNS was further demonstrated by applying it to construct a biofuel cell using glucose as fuel, which exhibited high stability and current density.
Collapse
Affiliation(s)
- Guisheng Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Weiping Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Suqin Ci
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jingchun Jia
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zhenhai Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
49
|
Xu C, Cao Y, Chen Y, Huang W, Chen D, Huang Q, Tu J. Fast Synthesis of Hierarchical Co(OH)2 Nanosheet Hollow Spheres with Enhanced Glucose Sensing. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chufeng Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Yang Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Yong Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Wei Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Delun Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Qingyou Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| | - Jinchun Tu
- Key Laboratory of Tropical Biological Resources of Ministry of Education; College of Materials and Chemical Engineering; Hainan University; China
| |
Collapse
|
50
|
Zhang W, Li R, Xing L, Wang X, Gou X. Carnation-like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing. ELECTROANAL 2016. [DOI: 10.1002/elan.201600132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenli Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Rong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Lu Xing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Xing Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| | - Xinglong Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering; China West Normal University; Nanchong 637000 People's Republic of China
| |
Collapse
|