1
|
Singh NK, Mathuriya AS, Mehrotra S, Pandit S, Singh A, Jadhav D. Advances in bioelectrochemical systems for bio-products recovery. ENVIRONMENTAL TECHNOLOGY 2024; 45:3853-3876. [PMID: 37491760 DOI: 10.1080/09593330.2023.2234676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Bioelectrochemical systems (BES) have emerged as a sustainable and highly promising technology that has garnered significant attention from researchers worldwide. These systems provide an efficient platform for the removal and recovery of valuable products from wastewater, with minimal or no net energy loss. Among the various types of BES, microbial fuel cells (MFCs) are a notable example, utilizing microbial biocatalytic activities to generate electrical energy through the degradation of organic matter. Other BES variants include microbial desalination cells (MDCs), microbial electrolysis cells (MECs), microbial electrosynthesis cells (MXCs), microbial solar cells (MSCs), and more. BESs have demonstrated remarkable potential in the recovery of diverse products such as hydrogen, methane, volatile fatty acids, precious nutrients, and metals. Recent advancements in scaling up BESs have facilitated a more realistic assessment of their net energy recovery and resource yield in real-world applications. This comprehensive review focuses on the practical applications of BESs, from laboratory-scale developments to their potential for industrial commercialization. Specifically, it highlights successful examples of value-added product recovery achieved through various BES configurations. Additionally, this review critically evaluates the limitations of BESs and provides suggestions to enhance their performance at a larger scale, enabling effective implementation in real-world scenarios. By providing a thorough analysis of the current state of BES technology, this review aims to emphasize the tremendous potential of these systems for sustainable wastewater treatment and resource recovery. It underscores the significance of bridging the gap between laboratory-scale achievements and industrial implementation, paving the way for a more sustainable and resource-efficient future.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Ministry of Environment, Forest and Climate Change, New Delhi, India
| | - Smriti Mehrotra
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Soumya Pandit
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Government of India, New Delhi, India
| | - Deepak Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India
| |
Collapse
|
2
|
Ramírez‐Moreno M, Berenguer R, Ortiz JM, Esteve‐Núñez A. Study of the influence of nanoscale porosity on the microbial electroactivity between expanded graphite electrodes and Geobacter sulfurreducens biofilms. Microb Biotechnol 2024; 17:e14357. [PMID: 38151853 PMCID: PMC10832559 DOI: 10.1111/1751-7915.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 12/29/2023] Open
Abstract
Expanded graphite (EG) electrodes gather several advantages for their utilization in microbial electrochemical technologies (MET). Unfortunately, the low microbial electroactivity makes them non-practical for implementing them as electrodes. The objective of this work is to explore the enhancement of microbial electroactivity of expanded graphite (commercial PV15) through the generation of nanopores by CO2 treatment. The changes in properties were thoroughly analysed by TG, XRD, Raman, XPS, gas adsorption, SEM and AFM, as well as microbial electroactivity in the presence of Geobacter sulfurreducens. Nanopores remarkably enhance the microbially derived electrical current (60-fold increase). Given the inaccessibility of micron-sized bacteria to these nanopores, it is suggested that the electric charge exchanged by electroactive microorganisms might be greatly affected by the capability of the electrode to compensate these charges through ion adsorption. The increased microbial current density produced on activated PV15 opens the possibility of using such materials as promising electrodes in MET.
Collapse
Affiliation(s)
- M. Ramírez‐Moreno
- Bioe Group, Instituto Madrileño de Estudios Avanzados IMDEA‐AguaParque Tecnológico de la Universidad de AlcaláAlcalá de HenaresSpain
- Departamento de Química Analítica, Química Física e Ingeniería QuímicaUniversidad de AlcaláAlcalá de HenaresSpain
| | - R. Berenguer
- Departamento de Química Física, Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain
| | - J. M. Ortiz
- Bioe Group, Instituto Madrileño de Estudios Avanzados IMDEA‐AguaParque Tecnológico de la Universidad de AlcaláAlcalá de HenaresSpain
| | - A. Esteve‐Núñez
- Bioe Group, Instituto Madrileño de Estudios Avanzados IMDEA‐AguaParque Tecnológico de la Universidad de AlcaláAlcalá de HenaresSpain
- Departamento de Química Analítica, Química Física e Ingeniería QuímicaUniversidad de AlcaláAlcalá de HenaresSpain
| |
Collapse
|
3
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
5
|
Hoareau M, Erable B, Chapleur O, Midoux C, Bureau C, Goubet A, Bergel A. Oxygen-reducing bidirectional microbial electrodes designed in real domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124663. [PMID: 33529981 DOI: 10.1016/j.biortech.2021.124663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microbial electrodes were designed in domestic wastewaters to catalyse the oxidation of organic matter (anode) and the reduction of oxygen (cathode) alternately. The successive aeration phases (cathode) enhanced the anodic efficiency, resulting in current densities of up to 6.4 Am-2 without the addition of any substrate. Using nitrogen during the anodic phases affected the microbial populations and the electrodes showed a lower ability to subsequently turn to O2 reduction than the microbial anodes formed in open-to-air conditions did. No strong difference was observed between internal and external biofilm, both of which showed a very large variety of taxa in terms of abundance as well as variance. They comprised a mix of aerobic and anaerobic species, many of which have already been identified separately in bioelectrochemical systems. Such a large diversity, which had not been observed in aerobic bidirectional bioelectrodes so far, can explain the efficiency and robustness observed here.
Collapse
Affiliation(s)
- Morgane Hoareau
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Chrystelle Bureau
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Anne Goubet
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761 Antony, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
6
|
Roubaud E, Lacroix R, Da Silva S, Esvan J, Etcheverry L, Bergel A, Basséguy R, Erable B. Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. iScience 2021; 24:102162. [PMID: 33665578 PMCID: PMC7907815 DOI: 10.1016/j.isci.2021.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Acid and electrochemical surface treatments of graphite electrode, used individually or in combination, significantly improved the microbial anode current production, by +17% to +56%, in well-regulated and duplicated electroanalytical experimental systems. Of all the consequences induced by surface treatments, the modifications of the surface nano-topography preferentially justify an improvement in the fixation of bacteria, and an increase of the specific surface area and the electrochemically accessible surface of graphite electrodes, which are at the origin of the higher performances of the bioanodes supplied with domestic wastewater. The evolution of the chemical composition and the appearance of C-O, C=O, and O=C-O groups on the graphite surface created by combining acid and electrochemical treatments was prejudicial to the formation of efficient domestic-wastewater-oxidizing bioanodes. The comparative discussion, focused on the positioning of the performances, shows the industrial interest of applying the surface treatment method to the world of bioelectrochemical systems.
Collapse
Affiliation(s)
- Emma Roubaud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Rémy Lacroix
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Serge Da Silva
- 6T-MIC Ingénieries, 9 rue du développement – ZI de Vic, 31320 Castanet-Tolosan, France
| | - Jérôme Esvan
- Cirimat, Université de Toulouse, CNRS-INP-UPS, 4 allée Emile MONSO, BP 44362, 31030 Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Régine Basséguy
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
7
|
Sanchez JL, Pinto D, Laberty-Robert C. Electrospun carbon fibers for microbial fuel cells: A novel bioanode design applied to wastewater treatment. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Askri R, Erable B, Etcheverry L, Saadaoui S, Neifar M, Cherif A, Chouchane H. Allochthonous and Autochthonous Halothermotolerant Bioanodes From Hypersaline Sediment and Textile Wastewater: A Promising Microbial Electrochemical Process for Energy Recovery Coupled With Real Textile Wastewater Treatment. Front Bioeng Biotechnol 2020; 8:609446. [PMID: 33392172 PMCID: PMC7773924 DOI: 10.3389/fbioe.2020.609446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
The textile and clothing industry is the first manufacture sector in Tunisia in terms of employment and number of enterprises. It generates large volumes of textile dyeing wastewater (TDWW) containing high concentrations of saline, alkaline, and recalcitrant pollutants that could fuel tenacious and resilient electrochemically active microorganisms in bioanodes of bioelectrochemical systems. In this study, a designed hybrid bacterial halothermotolerant bioanode incorporating indigenous and exogenous bacteria from both hypersaline sediment of Chott El Djerid (HSCE) and TDWW is proposed for simultaneous treatment of real TDWW and anodic current generation under high salinity. For the proposed halothermotolerant bioanodes, electrical current production, chemical oxygen demand (COD) removal efficiency, and bacterial community dynamics were monitored. All the experiments of halothermotolerant bioanode formation have been conducted on 6 cm2 carbon felt electrodes polarized at -0.1 V/SCE and inoculated with 80% of TDWW and 20% of HSCE for 17 days at 45°C. A reproducible current production of about 12.5 ± 0.2 A/m2 and a total of 91 ± 3% of COD removal efficiency were experimentally validated. Metagenomic analysis demonstrated significant differences in bacterial diversity mainly at species level between anodic biofilms incorporating allochthonous and autochthonous bacteria and anodic biofilm containing only autochthonous bacteria as a control. Therefore, we concluded that these results provide for the first time a new noteworthy alternative for achieving treatment and recover energy, in the form of a high electric current, from real saline TDWW.
Collapse
Affiliation(s)
- Refka Askri
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Sirine Saadaoui
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
9
|
Characterization of Anaerobic Biofilms Growing on Carbon Felt Bioanodes Exposed to Air. Catalysts 2020. [DOI: 10.3390/catal10111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of oxygen in anodic biofilms is still a matter of debate. In this study, we tried to elucidate the structure and performance of an electrogenic biofilm that develops on air-exposed, carbon felt electrodes, commonly used in bioelectrochemical systems. By simultaneously recording the current density produced by the bioanode and dissolved oxygen concentration, both inside and in the vicinity of the biofilm, it was possible to demonstrate the influence of a protective aerobic layer present in the biofilm (mainly formed by Pseudomonas genus bacteria) that prevents electrogenic bacteria (such as Geobacter sp.) from hazardous exposure to oxygen during its normal operation. Once this protective barrier was deactivated for a long period of time, the catalytic capacity of the biofilm was severely affected. In addition, our results highlighted the importance of the material’s porous structure for oxygen penetration in the electrode.
Collapse
|
10
|
Moß C, Jarmatz N, Hartig D, Schnöing L, Scholl S, Schröder U. Studying the Impact of Wall Shear Stress on the Development and Performance of Electrochemically Active Biofilms. Chempluschem 2020; 85:2298-2307. [PMID: 32975878 DOI: 10.1002/cplu.202000544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Indexed: 11/06/2022]
Abstract
A laminar flow reactor was designed that provides constant and reproducible growth conditions for the bioelectrochemical observation of electroactive bacteria (EAB). Experiments were performed using four reactors in parallel to enable the comparison of EAB growth behavior and bioelectrochemical performance under different hydrodynamic conditions while simultaneously keeping biological conditions identical. With regard to the moderate flow conditions found in wastewater treatment applications, the wall shear stress was adjusted to a range between 0.4 mPa to 2.9 mPa. Chronoamperometric data indicate that early stage current densities are improved by a moderate increase of the wall shear stress. In the same way, current onset times were increasing slightly towards higher values of the applied wall shear stress. Long-term observations of EAB performance showed a decrease in current density and a leveling of the trend observed for the early stages of biofilm growth.
Collapse
Affiliation(s)
- Christopher Moß
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Niklas Jarmatz
- Institute for Chemical and Thermal Process Engineering, Technische Universität Braunschweig, Langer Kamp 7, 38106, Braunschweig, Germany
| | - Dave Hartig
- Institute for Chemical and Thermal Process Engineering, Technische Universität Braunschweig, Langer Kamp 7, 38106, Braunschweig, Germany
| | - Lukas Schnöing
- Institute for Chemical and Thermal Process Engineering, Technische Universität Braunschweig, Langer Kamp 7, 38106, Braunschweig, Germany
| | - Stephan Scholl
- Institute for Chemical and Thermal Process Engineering, Technische Universität Braunschweig, Langer Kamp 7, 38106, Braunschweig, Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
11
|
Moß C, Jarmatz N, Heinze J, Scholl S, Schröder U. Optimal Geometric Parameters for 3D Electrodes in Bioelectrochemical Systems: A Systematic Approach. CHEMSUSCHEM 2020; 13:5119-5129. [PMID: 32659033 PMCID: PMC7540030 DOI: 10.1002/cssc.202001232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the performance of electroactive bacteria (EAB), cultivated inside tubular electrode ducts, is systematically investigated to derive predictions on the behavior of EAB under conditions limited by electrochemical losses. A modeling approach is applied to assess the influence of the electrochemical losses on the electrochemical performance and scaling characteristics of complex 3D structures, such as sponges and foams. A modular flow reactor is designed that provides laminar and reproducible flow conditions as a platform for the systematic electrochemical and bioelectrochemical characterization of 3D electrodes in bioelectrochemical systems (BES). The bioelectrochemical experiments are carried out in a set of reactors incorporating cylindrical electrodes exhibiting ducts of 1 cm length and different diameters ranging from 0.1 cm up to 1 cm. Single duct calculations are extrapolated to three dimensions through geometrical considerations; trends in 3D bioanode performance are demonstrated using the resulting simplified 3D structure. The combined experimental and modeling approach constitutes a framework for future studies on systematic electrode design.
Collapse
Affiliation(s)
- Christopher Moß
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Niklas Jarmatz
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Janina Heinze
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Stephan Scholl
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
12
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochim Acta 2020; 353:136530. [PMID: 32884155 PMCID: PMC7430050 DOI: 10.1016/j.electacta.2020.136530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double cathode was added leading to a decrease in the equivalent series resistance (ESR); ii) the apparent capacitance was boosted up by adding capacitive features on the anode electrode. Galvanostatic (GLV) discharges were performed at different discharge currents. The results showed that both strategies were successful obtaining a maximum power output of 1.59 ± 0.01 mW (1.06 ± 0.01 mW mL−1) at pulse time of 0.01 s and 0.57 ± 0.01 mW (0.38 ± 0.01 mW mL−1) at pulse time of 2 s. The highest energy delivered at ipulse equal to 2 mA was 3.3 ± 0.1 mJ. The best performing SC-MFCs were then connected in series and parallel and tested through GLV discharges. As the power output was similar, the connection in parallel allowed to roughly doubling the current produced. Durability tests over ≈5.6 days showed certain stability despite a light overall decrease. Air-breathing microbial fuel cell was tested in supercapacitive mode. A double cathode addition lead to a decrease in ohmic resistance. Apparent capacitance was boosted up by adding capacitive features. Maximum power output of 1.59 mW (1.06 mW mL−1) was reached at tpulse 0.01s. Series and parallel connections improved the galvanostatic discharges.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università̀; di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
13
|
Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation. ENERGIES 2020. [DOI: 10.3390/en13143521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The electrogenic biofilm and the bio-electrode interface are the key biocatalytic components in bioelectrochemical systems (BES) and can have a large impact on cell performance. This study used four different anodic carbons to investigate electrogenic biofilm development to determine the influence of charge accumulation and biofilm growth on system performance and how biofilm structure may mitigate against pH perturbations. Power production was highest (1.40 W/m3) using carbon felt, but significant power was also produced when felt carbon was open-circuit acclimated in a control reactor (0.95 W/m3). The influence of carbon material on electrogenic biofilm development was determined by measuring the level of biofilm growth, using sequencing to identify the microbial populations and confocal microscopy to understand the spatial locations of key microbial groups. Geobacter spp. were found to be enriched in closed-circuit operation and these were in close association with the carbon anode, but these were not observed in the open-circuit controls. Electrochemical analysis also demonstrated that the highest mid-point anode potentials were close to values reported for cytochromes from Geobacter sulfurreductans. Biofilm development was greatest in felt anodes (closed-circuit acclimated 1209 ng/μL DNA), and this facilitated the highest pseudo-capacitive values due to the presence of redox-active species, and this was associated with higher levels of power production and also served to mitigate against the effects of low-pH operation. Supporting carbon anode structures are key to electrogenic biofilm development and associated system performance and are also capable of protecting electrochemically active bacteria from the effects of environmental perturbations.
Collapse
|
14
|
Wang Y, Zheng H, Lin C, Zheng J, Chen Y, Wen Q, Wang S, Xu H, Qi L. Development of a 3D porous sponge as a bioanode coated with polyaniline/sodium alginate/nitrogen-doped carbon nanotube composites for high-performance microbial fuel cells. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01410-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Moß C, Behrens A, Schröder U. The Limits of Three-Dimensionality: Systematic Assessment of Effective Anode Macrostructure Dimensions for Mixed-Culture Electroactive Biofilms. CHEMSUSCHEM 2020; 13:582-589. [PMID: 31743607 PMCID: PMC7027515 DOI: 10.1002/cssc.201902923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 05/11/2023]
Abstract
This study analyzes the biofilm growth and long-term current production of mixed-culture, electrochemically active biofilms (EABs) on macrostructured electrodes under low-shear-force conditions. The channel dimensions were altered systematically in the range 400 μm to 2 mm, and the channel heights were varied between 1 and 4 mm to simulate macrostructures of different scales. Electrodes with finer-structured surfaces produced higher current densities in the short term owing to their large surface area but were outperformed in the long term because the accumulation of biomass led to limitations of mass transfer into the structures. The best long-term performance was observed for electrodes with channel dimensions of 1×4 mm, which showed no significant decrease in performance in the long term. Channels with a diameter of 400 μm were overgrown by the biofilm, which led to a transition from 3 D to 2 D behavior, indicating that structures of this scale might not be suitable for long-term operation under low-shear-stress conditions.
Collapse
Affiliation(s)
- Christopher Moß
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Andreas Behrens
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
16
|
Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnol Adv 2019; 39:107456. [PMID: 31618667 PMCID: PMC7068652 DOI: 10.1016/j.biotechadv.2019.107456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Bioelectrochemical systems combine electrodes and reactions driven by microorganisms for many different applications. The conversion of organic material in wastewater into electricity occurs in microbial fuel cells (MFCs). The power densities produced by MFCs are still too low for application. One way of increasing their performance is to combine them with electrochemical capacitors, widely used for charge storage purposes. Capacitive MFCs, i.e. the combination of capacitors and MFCs, allow for energy harvesting and storage and have shown to result in improved power densities, which facilitates the up scaling and application of the technology. This manuscript summarizes the state-of-the-art of combining capacitors with MFCs, starting with the theory and working principle of electrochemical capacitors. We address how different electrochemical measurements can be used to determine (bio)electrochemical capacitance and show how the measurement data can be interpreted. In addition, we present examples of the combination of electrochemical capacitors, both internal and external, that have been used to enhance MFC performance. Finally, we discuss the most promising applications and the main existing challenges for capacitive MFCs.
Collapse
|
17
|
Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121641. [PMID: 31300306 DOI: 10.1016/j.biortech.2019.121641] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
Collapse
Affiliation(s)
- Poehere Chong
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
18
|
Champigneux P, Renault-Sentenac C, Bourrier D, Rossi C, Delia ML, Bergel A. Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes. Bioelectrochemistry 2019; 128:17-29. [DOI: 10.1016/j.bioelechem.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
19
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochim Acta 2019; 307:241-252. [PMID: 31217626 PMCID: PMC6559283 DOI: 10.1016/j.electacta.2019.03.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two zones within the cell volume. The oxidation reaction occurred on the bottom electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were discharged galvanostatically at different currents and the two electrodes were able to recover their initial voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after introducing high surface area activated carbon embedded within the electrodes. Peak power produced was 1.20 ± 0.04 mW (2.19 ± 0.06 mW ml-1) for a pulse time of 0.01 s that decreased to 0.65 ± 0.02 mW (1.18 ± 0.04 mW ml-1) for longer pulse periods (5 s). Durability tests were conducted over 44 h with ≈2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance increased only by 10% and the apparent capacitance decreased by 18%.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
20
|
Low-Cost Electrode Modification to Upgrade the Bioelectrocatalytic Oxidation of Tannery Wastewater Using Acclimated Activated Sludge. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective and eco-friendly technologies are required for the treatment of tannery wastewater as its biological toxicity and large volume leads toground water pollution. Hydrophobic (unmodified carbon felt) and hydrophilic modified carbon felt with Linde Type A zeolite (LTA zeolite) and bentonite were examined for their effects on bacterial attachment, current generation, and tannery wastewater treatment efficiency. Chronoamperometry and cyclic voltammetry confirmed the higher electron transfer obtained with modified anodes. Maximum current densities of 24.5 and 27.9 A/m² were provided with LTA zeolite and bentonite-modified anodes, respectively, while the unmodified carbon felt gave a maximum current density of 16.9 A/m². Compared with hydrophobic unmodified carbon felt, hydrophilic modified electrodes increased the exploitation of the internal surface area of the 3D structure of the carbon felt by the electroactive biofilm. The study revealed 93.8 ± 1.7% and 96.3 ± 2.1% of chemical oxygen demand (COD) reduction for LTA zeolite and bentonite, respectively. Simultaneous chromium removal was achieved with values of 94.6 ± 3.6 and 97.5 ± 2.2 for LTA zeolite and bentonite, respectively. This study shows the potential approach of carbon felt clay modification for the efficient tannery wastewater treatment using bioelectrochemicals systems (BESs) accompanied with high current recovery.
Collapse
|
21
|
Jarosz M, Grudzień J, Kamiński K, Gawlak K, Wolski K, Nowakowska M, Sulka GD. Novel bioelectrodes based on polysaccharide modified gold surfaces and electrochemically active Lactobacillus rhamnosus GG biofilms. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Champigneux P, Renault-Sentenac C, Bourrier D, Rossi C, Delia ML, Bergel A. Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: Experimental and theoretical approaches. Bioelectrochemistry 2018; 121:191-200. [DOI: 10.1016/j.bioelechem.2018.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
|
23
|
Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis /graphite felt microbial fuel cells. Bioelectrochemistry 2018; 120:1-9. [DOI: 10.1016/j.bioelechem.2017.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
|
24
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
25
|
Baudler A, Langner M, Rohr C, Greiner A, Schröder U. Metal-Polymer Hybrid Architectures as Novel Anode Platform for Microbial Electrochemical Technologies. CHEMSUSCHEM 2017; 10:253-257. [PMID: 27545981 DOI: 10.1002/cssc.201600814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 06/06/2023]
Abstract
In this publication, we propose metal-polymer hybrid materials as a novel platform for the development of 3 D anode materials for bioelectrochemical systems, such as microbial fuel cells. Extremely low gravimetric density, high porosity, high electric conductivity, and distinct elastic properties are characteristics that are superior for bioelectrochemical applications. As a proof of concept, we investigated copper-melamine foams (Cu-MF) based on a commercially available, open cell melamine foam. With a low amount of copper (16.3 mg cm-3 for Cu-MF206 ) used for metallization, such electrode material can be manufactured at low price. The Cu-MF sponges are readily colonized by electrochemically active bacteria and are electrochemically stable over an experimental period of more than 75 days. The Cu-MF-biofilm electrodes exhibit volumetric current densities of up to 15.5 mA cm-3 . During long-term operation, overgrowth of the Cu-MF pore structures by the Geobacter-dominated biofilms occurs, from which demands for future electrode developments are derived.
Collapse
Affiliation(s)
- André Baudler
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Markus Langner
- Chair of Macromolecular Chemistry II, Universität Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Camilla Rohr
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Andreas Greiner
- Chair of Macromolecular Chemistry II, Universität Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
26
|
Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases 2016; 11:031013. [PMID: 27609094 DOI: 10.1116/1.4962264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure and activity of electrochemically active biofilms (EABs) are usually investigated on flat electrodes. However, real world applications such as wastewater treatment and bioelectrosynthesis require tridimensional electrodes to increase surface area and facilitate EAB attachment. The structure and activity of thick EABs grown on high surface area electrodes are difficult to characterize with electrochemical and microscopy methods. Here, the authors adopt a stacked electrode configuration to simulate the high surface and the tridimensional structure of an electrode for large-scale EAB applications. Each layer of the stacked electrode is independently characterized using confocal laser scanning microscopy (CLSM) and digital image processing. Shewanella oneidensis MR-1 biofilm on stacked carbon veil electrodes is grown under constant oxidative potentials (0, +200, and +400 mV versus Ag/AgCl) until a stable current output is obtained. The textural, aerial, and volumetric parameters extracted from CLSM images allow tracking of the evolution of morphological properties within the stacked electrodes. The electrode layers facing the bulk liquid show higher biovolumes compared with the inner layer of the stack. The electrochemical performance of S. oneidensis MR-1 is directly linked to the overall biofilm volume as well as connectivity between cell clusters.
Collapse
|