1
|
Cechanaviciute IA, Schuhmann W. Electrocatalytic Ammonia Oxidation Reaction: Selective Formation of Nitrite and Nitrate as Value-Added Products. CHEMSUSCHEM 2025; 18:e202402516. [PMID: 40099745 DOI: 10.1002/cssc.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Ammonia (NH3) plays a pivotal role as a hydrogen carrier, offering a carbon-free energy alternative for sustainable energy systems. The ammonia electrooxidation reaction (AmOR) emerges as a promising avenue to leverage NH₃ in energy conversion and environmental applications. This review explores the multifaceted importance of NH3 oxidation through three primary strategies: its integration into fuel cell technology for clean energy generation, its use in wastewater treatment for ammonia removal, and its application in electrolyzer setups for producing value-added products. Special emphasis is placed on oxidizing NH3 to nitrite (NO2 -) and nitrate (NO3 -) in electrolyzers as a potential alternative to the energy-intensive Ostwald process. The review highlights recent advances in catalyst development for efficient NO2 -/NO3 - synthesis, the influence of the pH on reaction selectivity, and various reported experimental AmOR solutions. By addressing these critical aspects, this work aims to underscore the potential of NH3 oxidation in electrolyzers for sustainable energy solutions. Potential future research directions and challenges are also discussed.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
2
|
Offen-Polak I, Ayali Aviram H, Hijaze A, Slot TK, Eisenberg D. Ammonia electro-oxidation on nickel hydroxide: phases, pH and poisoning. Phys Chem Chem Phys 2024. [PMID: 39639841 DOI: 10.1039/d4cp02950j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nickel hydroxide is a leading alternative to platinum group metals for electrocatalysis of the ammonia oxidation reaction (AOR), an important process for energy conversion and environmental remediation. Nevertheless, the dependence of AOR electrocatalysis on the different crystalline phases at the electrode surface (α-Ni(OH)2/γ-NiOOH vs. β-Ni(OH)2/β-NiOOH) has never been investigated. Herein, the crystalline β-Ni(OH)2 and the disordered α-Ni(OH)2 were synthesized and characterized by XRD, HRSEM, and Raman and FTIR spectroscopies. The respective electrocatalytic activity of the two phases was analysed at a broad range of ammonia concentrations (0.01-2 M) and pH values (11-13). Both phases electrocatalyze the oxidation of NH3 to N2, as proven by online mass spectrometry, but the α-Ni(OH)2/γ-NiOOH couple is more active. At high ammonia concentrations (>1 M), surface poisoning by adsorbed NH3 prevents access to OH-, leading to less NiOOH formation, lower AOR currents, and suppression of the OER side reaction. The poisoning is strong and irreversible on α-Ni(OH)2, as confirmed by soaking experiments. The difference in ammonia adsorption and electrocatalytic activity between the α-Ni(OH)2 and β-Ni(OH)2 emphasizes the importance of understanding the phase space of nickel hydroxide electrodes when designing low-cost electrocatalysts for the nitrogen cycle.
Collapse
Affiliation(s)
- Inbal Offen-Polak
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Hilla Ayali Aviram
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Adan Hijaze
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Thierry K Slot
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - David Eisenberg
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
3
|
Cechanaviciute IA, Kumari B, Alfes LM, Andronescu C, Schuhmann W. Gas Diffusion Electrodes for Electrocatalytic Oxidation of Gaseous Ammonia: Stepping Over the Nitrogen Energy Canyon. Angew Chem Int Ed Engl 2024; 63:e202404348. [PMID: 38923429 DOI: 10.1002/anie.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
As ammonia continues to gain more and more interest as a promising hydrogen carrier compound, so does the electrochemical ammonia oxidation reaction (AmOR). To avoid the liberation of H2 in a reverse Haber-Bosch reaction under release of the energetically more favorable N2, we propose the oxidation of ammonia to value-added nitrite (NO2 -), which is usually obtained during the Ostwald process. We investigated the anodic oxidation of gaseous ammonia directly supplied to a gas diffusion electrode (GDE) using a variety of compositionally different multi-metal catalysts coated on Ni foam under the simultaneous formation of H2 at the cathode. This will double the amount of H2 per ammonia molecule while applying a lower overpotential than that required for water electrolysis (1.4-1.8 V vs. RHE at 50 mA ⋅ cm-2). A selectivity study demonstrated that some of the catalyst compositions were able to produce significant amounts of NO2 -, and further investigations using the most promising catalyst composition Nif_AlCoCrCuFe integrated within a GDE demonstrated up to 88 % Faradaic efficiency for NO2 - at the anode coupled to close to 100 % Faradaic efficiency for the cathodic H2 production.
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Bhawana Kumari
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Lars M Alfes
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Str. 199, D-47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
4
|
Tsai MH, Juang Y, Hu CC, Hua LC, Mahata BK, Huang C. The direct electrocatalytic oxidation of ammonia by copper-deposited nickel foam catalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
A Petal-like Structured NiCuOOH-NF Electrode by a Sonochemical Combined with the Electrochemical Method for Ammonia Oxidation Reaction. Processes (Basel) 2023. [DOI: 10.3390/pr11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Direct electrochemical oxidation, as an economical and efficient method, has recently received increasing attention for ammonia-nitrogen wastewater treatment. Developing a low-cost, efficient catalytic electrode is the key to solve the problem of sluggish ammonia oxidation reaction (AOR) kinetics. In this study, a three-dimensional (3D) Ni foam electrode coated with NiCuOOH petal-like cluster structures was prepared using a simple sonochemical method combined with a surface electrochemical reconstruction strategy. This structure has a large surface area and abundant NiCuOOH active sites, giving a good premise for extraordinary electrocatalytic activity of AOR. The results show that the maximum current density for AOR reaches 97.8 mA cm−2 at 0.60 V vs. saturated calomel electrode (SCE). Additionally, 96.53% of NH4+-N removal efficiency and 63.12% of TN removal efficiency were acquired in the electrolysis system based on the NiCuOOH-NF electrode, as well as a good stability for at least 24 h. It is a promising flow-through anode for the clean treatment of ammonia-nitrogen wastewater.
Collapse
|
6
|
Wang H, Tong X, Zhou L, Wang Y, Liao L, Ouyang S, Zhang H. Unique three-dimensional nanoflower-like NiCu electrodes constructed by Co, S co-doping for efficient ammonia oxidation reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Johnston S, Cohen S, Nguyen CK, Dinh KN, Nguyen TD, Giddey S, Munnings C, Simonov AN, MacFarlane DR. A Survey of Catalytic Materials for Ammonia Electrooxidation to Nitrite and Nitrate. CHEMSUSCHEM 2022; 15:e202200614. [PMID: 35879863 PMCID: PMC9827930 DOI: 10.1002/cssc.202200614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Studies of the ammonia oxidation reaction (AOR) for the synthesis of nitrite and nitrate (NO2/3 - ) have been limited to a small number of catalytic materials, majorly Pt based. As the demand for nitrate-based products such as fertilisers continues to grow, exploration of alternative catalysts is needed. Herein, 19 metals immobilised as particles on carbon fibre electrodes were tested for their catalytic activity for the ammonia electrooxidation to NO2/3 - under alkaline conditions (0.1 m KOH). Nickel-based electrodes showed the highest overall NO2/3 - yield with a rate of 5.0±1.0 nmol s-1 cm-2 , to which nitrate contributed 62±8 %. Cu was the only catalyst that enabled formation of nitrate, at a rate of 1.0±0.4 nmol s-1 cm-2 , with undetectable amounts of nitrite produced. Previously unexplored in this context, Fe and Ag also showed promise and provided new insights into the mechanisms of the process. Ag-based electrodes showed strong indications of activity towards NH3 oxidation in electrochemical measurements but produced relatively low NO2/3 - yields, suggesting the formation of alternate oxidation products. NO2/3 - production over Fe-based electrodes required the presence of dissolved O2 and was more efficient than with Ni on longer timescales. These results highlight the complexity of the AOR mechanism and provide a broad set of catalytic activity and nitrate versus nitrite yield data, which might guide future development of a practical process for the distributed sustainable production of nitrates and nitrites at low and medium scales.
Collapse
Affiliation(s)
- Sam Johnston
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Sam Cohen
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
- CSIRO EnergyPrivate Bag 10Clayton SouthVictoria 3169Australia
| | - Cuong K. Nguyen
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Khang N. Dinh
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Tam D. Nguyen
- School of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Sarbjit Giddey
- CSIRO EnergyPrivate Bag 10Clayton SouthVictoria 3169Australia
| | | | | | | |
Collapse
|
8
|
Jiang B, Li A, Shuang C, Tan Y, Pan Y, Liu F. Improved mineralization and total nitrogen reduction by combination of electro-reduction and electro-oxidation for nitrophenol removal. CHEMOSPHERE 2022; 305:135400. [PMID: 35728664 DOI: 10.1016/j.chemosphere.2022.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, p-Nitrophenol (p-NP) was electro-chemically removed by using a prepared Co3O4/Ti cathode and a BDD anode to achieve the simultaneous reduction of total organic carbon (TOC), total nitrogen (TN) and toxicity. The prepared Co3O4/Ti cathode showed higher electro-activity than the Ti cathode towards p-NP reduction with the removal rate higher than 90.6% but without mineralization. The electro-oxidation removed 84.3% of TOC but none of TN. To develop an optimized process for mineralization and TN removal during p-NP electrolysis, the combination of electro-oxidation and electro-reduction were evaluated by using a dual-chamber cell and a single-chamber cell, respectively. As a result of the re-oxidation and re-reduction in the single-chamber cell, the typically used mode of the simultaneous redox, showed a lower removal of TOC and TN than the combination processes as well as an increased toxicity. The TN removal for both combined modes (21.0%-32.9%) was all higher than that of the mode of reduction because the produced inorganic nitrogen such as ammonia and nitrate could be partially oxidized or reduced to nitrogen gas. The results suggested that the combination process could significantly improve the mineralization and TN reduction for p-NP removal, accompanied with 60.3% decrease of acute toxicity for the reduction after oxidation mode.
Collapse
Affiliation(s)
- Bicun Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Yan Tan
- Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Yang Pan
- Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Innovation Center for Environmental Protection Industry Co., Ltd., Nanjing, 211102, PR China
| |
Collapse
|
9
|
Shultz LR, Preradovic K, Ghimire S, Hadley HM, Xie S, Kashyap V, Beazley MJ, Crawford KE, Liu F, Mukhopadhyay K, Jurca T. Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catal Sci Technol 2022; 12:3804-3816. [PMID: 35965882 PMCID: PMC9373473 DOI: 10.1039/d1cy02313f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Contiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts. The highly sustainable synthesis requires no specialized equipment, no surfactants or additive redox reagents, uses water as solvent, and CuCl2(H2O)2 as precursor. The resulting material seeds as well-separated micro-crystalline Cu2(OH)3Cl evenly covering the Ni foam. Calcination above 400 °C transforms the Cu2(OH)3Cl to highly porous CuO. All materials display promising activity towards the reduction of 4-nitrophenol and methyl orange. Notably, our leading CuO-based material displays 4-nitrophenol reduction activity comparable with very reactive precious-metal based systems. Recyclability studies highlight the intrinsic ease of handling for the Ni foam support, and our results point to a very robust, highly recyclable catalyst system.
Collapse
Affiliation(s)
- Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Konstantin Preradovic
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Suvash Ghimire
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Hayden M Hadley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Varchaswal Kashyap
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Melanie J Beazley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Kaitlyn E Crawford
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, 32826, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| |
Collapse
|
10
|
Liu Z, Zhang G, Lan H, Liu H, Qu J. Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12596-12606. [PMID: 34495652 DOI: 10.1021/acs.est.1c02825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Regulation of fast three-electron-transfer processes for electrocatalytic oxidation of ammonia to nitrogen by achieving efficient generation and utilization of active sites is the optimal strategy in ammonia-containing wastewater treatment. However, the limited number of accessible active sites and sluggish interfacial mass transfer are two main bottlenecks restricting conventional ammonia oxidation configurations. Herein, we develop a macroporous Ni foam electrode integrated with vertically aligned two-dimensional mesoporous Ni2P nanosheets to create sufficient exposure of active centers. A novel ammonia oxidation reactor with the developed hierarchical porous-structured electrodes was assembled to construct an intensified microfluidic process with flow-through operation to mitigate macroscopic mass transport limitations. The confined microreaction space in the hierarchical porous reactor further promotes spontaneous nanoscale diffusion/convection of the target contaminant to high-valence Ni sites and enhances the microscopic mass transfer. The combined results of electrochemical measurements and in situ Raman spectra showed that the ammonia degradation mechanism results from direct oxidation by the high-valence Ni, significantly different from the conventional indirect active-chlorine-species-mediated oxidation. The optimized reactor achieves high-efficiency three-electron-transfer ammonia conversion with an ammonia removal efficiency of ∼70% from an initial concentration of ∼1400 mg/L and byproduct production of ∼4%, significantly superior to a conversion unit comprising a featureless Ni-based electrode in the immersed configuration, which had >50% byproduct yield. 20 days of continuous operation under variable conditions achieved >90% ammonia degradation performance and an energy consumption of 25.42 kW h kg-1 N (1 order of magnitude lower than the active-chlorine-mediated process), showing the potential of the reactor in medium-concentration ammonia-containing wastewater treatment.
Collapse
Affiliation(s)
- Zichen Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|