1
|
Capela EV, Bairos J, Pedro AQ, Neves MC, Raquel Aires-Barros M, Azevedo AM, Coutinho JA, Tavares AP, Freire MG. Supported ionic liquids as customizable materials to purify immunoglobulin G. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Efficient Isolation of Bacterial RNAs Using Silica-Based Materials Modified with Ionic Liquids. Life (Basel) 2021; 11:life11101090. [PMID: 34685465 PMCID: PMC8536996 DOI: 10.3390/life11101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
High quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs. The investigated chloride-based SILs comprise the following cations: 1-methyl-3-propylimidazolium, triethylpropylammonium, dimethylbutylpropylammonium, and trioctylpropylammonium. All SILs were synthesized by us and characterized by solid-state 13C Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), elemental analysis, and zeta potential measurements, confirming the successful covalent attachment of each IL cation with no relevant changes in the morphology of materials. Their innovative application as chromatographic supports for the isolation of recombinant RNA was then evaluated. Adsorption kinetics of transfer RNA (tRNA) on the modified silica-based materials were investigated at 25 °C. Irrespective to the immobilized IL, the adsorption experimental data are better described by a pseudo first-order model, and maximum tRNA binding capacities of circa 16 µmol of tRNA/g of material were achieved with silica modified with 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Furthermore, the multimodal character displayed by SILs was explored towards the purification of tRNA from Escherichia coli lysates, which in addition to tRNA contain ribosomal RNA and genomic DNA. The best performance on the tRNA isolation was achieved with SILs comprising 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Overall, the IL modified silica-based materials represent a more efficient, sustainable, and cost-effective technology for the purification of bacterial RNAs, paving the way for their use in the purification of distinct biomolecules or nucleic acids from other sources.
Collapse
|
3
|
Bento RMF, Almeida CAS, Neves MC, Tavares APM, Freire MG. Advances Achieved by Ionic-Liquid-Based Materials as Alternative Supports and Purification Platforms for Proteins and Enzymes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2542. [PMID: 34684983 PMCID: PMC8538677 DOI: 10.3390/nano11102542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) have been applied in several fields in which enzymes and proteins play a noteworthy role, for instance in biorefinery, biotechnology, and pharmaceutical sciences, among others. Despite their use as solvents and co-solvents, their combination with materials for protein- and enzyme-based applications has raised significant attention in the past few years. Among them, significant advances were brought by supported ionic liquids (SILs), in which ILs are introduced to modify the surface and properties of materials, e.g., as ligands when covalently bond or when physiosorbed. SILs have been mainly investigated as alternative supports for enzymes in biocatalysis and as new supports in preparative liquid chromatography for the purification of high-value proteins and enzymes. In this manuscript, we provide an overview on the most relevant advances by using SILs as supports for enzymes and as purification platforms for a variety of proteins and enzymes. The interaction mechanisms occurring between proteins and SILs/ILs are highlighted, allowing the design of efficient processes involving SILs. The work developed is discussed in light of the respective development phase and innovation level of the applied technologies. Advantages and disadvantages are identified, as well as the missing links to pave their use in relevant applications.
Collapse
Affiliation(s)
| | | | | | | | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.M.F.B.); (C.A.S.A.); (M.C.N.); (A.P.M.T.)
| |
Collapse
|
4
|
An efficient preparation and characterization of 1-(2-ethoxy-2-oxoethyl)imidazolium based ionic liquids derivatives as potential bioactive agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Wide dynamic range and ultrasensitive detection of hydrogen peroxide based on beneficial role of gold nanoparticles on the electrochemical properties of prussian blue. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Banjare MK, Banjare RK, Behera K, Pandey S, Mundeja P, Ghosh KK. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. J Mol Liq 2020; 299:112204. [DOI: https:/doi.org/10.1016/j.molliq.2019.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
7
|
Banjare MK, Banjare RK, Behera K, Pandey S, Mundeja P, Ghosh KK. Inclusion complexation of novel synthesis amino acid based ionic liquids with β-cyclodextrin. J Mol Liq 2020; 299:112204. [DOI: 10.1016/j.molliq.2019.112204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Wong JF, Simmons CA. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability. LAB ON A CHIP 2019; 19:1060-1070. [PMID: 30778462 DOI: 10.1039/c8lc01321g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell monolayers, including endothelial cells lining the vasculature and blood-brain barrier, and epithelial cells lining the lung airways and gut, form a semipermeable barrier across which transport of biomolecules is tightly regulated. The assessment of barrier function is therefore critical in in vitro models of barrier-forming tissues, including microfluidic organ-on-a-chip models. Cell monolayer barrier function is commonly assessed using a fluorescent tracer-based permeability assay in both conventional Transwell and organ-on-a-chip models, but this method requires laborious manual sampling, bulky instrumentation and offline sample processing. In this work, we introduce a novel on-chip microfluidic permeability assay that replaces the traditional fluorescent tracer with an electroactive tracer. Similar to methods such as TEER, the electrochemical permeability assay eliminates the need for manual sampling and complex optical instrumentation. We validated the method by demonstrating close agreement between experimental and numerically-simulated diffusive and convective transport in the microfluidic device. Different electroactive tracers were screened for efficient electron transfer, stability and inertness relative to the cell monolayer. The assay was then used to measure the permeability of endothelial cells cultured under both static and flow culture conditions, and after exposure to a permeability mediator. In summary, the electrochemical permeability assay combines the simplicity of tracer-based permeability methods with the benefits of on-chip integration, which will ultimately facilitate the robust multiparametric characterization of barrier function in microfluidic organs-on-chips.
Collapse
Affiliation(s)
- Jeremy F Wong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | |
Collapse
|
9
|
Kohn EM, Lee JY, Calabro A, Vaden TD, Caputo GA. Heme Dissociation from Myoglobin in the Presence of the Zwitterionic Detergent N, N-Dimethyl- N-Dodecylglycine Betaine: Effects of Ionic Liquids. Biomolecules 2018; 8:biom8040126. [PMID: 30380655 PMCID: PMC6315634 DOI: 10.3390/biom8040126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
We have investigated myoglobin protein denaturation using the zwitterionic detergent Empigen BB (EBB, N,N-Dimethyl-N-dodecylglycine betaine). A combination of absorbance, fluorescence, and circular dichroism spectroscopic measurements elucidated the protein denaturation and heme dissociation from myoglobin. The results indicated that Empigen BB was not able to fully denature the myoglobin structure, but apparently can induce the dissociation of the heme group from the protein. This provides a way to estimate the heme binding free energy, ΔGdissociation. As ionic liquids (ILs) have been shown to perturb the myoglobin protein, we have investigated the effects of the ILs 1-butyl-3-methylimidazolium chloride (BMICl), 1-ethyl-3-methylimidazolium acetate (EMIAc), and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) in aqueous solution on the ΔGdissociation values. Absorbance experiments show the ILs had minimal effect on ΔGdissociation values when compared to controls. Fluorescence and circular dichroism data confirm the ILs have no effect on heme dissociation, demonstrating that low concentrations ILs do not impact the heme dissociation from the protein and do not significantly denature myoglobin on their own or in combination with EBB. These results provide important data for future studies of the mechanism of IL-mediated protein stabilization/destabilization and biocompatibility studies.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Bantivoglio Honors College, Rowan University, Glassboro, NJ 08028, USA.
| | - Joshua Y Lee
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Bantivoglio Honors College, Rowan University, Glassboro, NJ 08028, USA.
| | - Anthony Calabro
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
10
|
Janati-Fard F, Housaindokht MR, Monhemi H, Esmaeili AA, Nakhaei Pour A. The influence of two imidazolium-based ionic liquids on the structure and activity of glucose oxidase: Experimental and theoretical studies. Int J Biol Macromol 2018; 114:656-665. [DOI: 10.1016/j.ijbiomac.2018.03.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/27/2018] [Accepted: 03/17/2018] [Indexed: 01/27/2023]
|
11
|
Haji-Hashemi H, Norouzi P, Safarnejad MR, Larijani B, Habibi MM, Raeisi H, Ganjali MR. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ghorbanizamani F, Timur S. Ionic Liquids from Biocompatibility and Electrochemical Aspects toward Applying in Biosensing Devices. Anal Chem 2017; 90:640-648. [DOI: 10.1021/acs.analchem.7b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Faezeh Ghorbanizamani
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
| | - Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova, Izmir, Turkey, 35100
- Ege University, Central Research Testing and Analysis Laboratory Research and Application Center, Bornova, Izmir, Turkey, 35100
| |
Collapse
|
14
|
Hanna SL, Huang JL, Swinton AJ, Caputo GA, Vaden TD. Synergistic effects of polymyxin and ionic liquids on lipid vesicle membrane stability and aggregation. Biophys Chem 2017; 227:1-7. [PMID: 28526567 DOI: 10.1016/j.bpc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) have been investigated for potential antibacterial and antibiotic applications due to their ability to destabilize and permeabilize the lipid bilayers in cell membranes. Bacterial assays have shown that combining ILs with antibiotics can provide a synergistic enhancement of their antibacterial activities. We have characterized the mechanism by which the conventional ILs 1-butyl-3-methylimidazolium chloride (BMICl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) enhance the lipid membrane permeabilization of the well-known antibiotic polymyxin B (PMB). We studied the sizes and membrane permeabilities of multilamellar and unilamellar lipid bilayer vesicles in the presence of ILs alone in aqueous solution, PMB alone, and ILs combined together with PMB. Light scattering-based experiments show that vesicle sizes dramatically increase when ILs are combined with PMB, which suggests that the materials combine to synergistically enhance lipid membrane disruption leading to vesicle aggregation. Lipid bilayer leakage experiments using tris (2,2'-bipyridyl) ruthenium (II) (Ru(bpy)32+) trapped in lipid vesicles, in which the trapped Ru(bpy)32+ fluorescence lifetime increases when it leaks out of the vesicle, show that combining BMIBF4 and PMB together permeabilize the membrane significantly more than with PMB or the IL alone. This demonstrates that ILs can assist in antibiotic permeabilization of lipid bilayers which could explain the increased antibiotic activities in the presence of ILs in solution.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Jenny L Huang
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Alana J Swinton
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States; Department of Biomedical and Translational Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States.
| |
Collapse
|
15
|
Borrell KL, Cancglin C, Stinger BL, DeFrates KG, Caputo GA, Wu C, Vaden TD. An Experimental and Molecular Dynamics Study of Red Fluorescent Protein mCherry in Novel Aqueous Amino Acid Ionic Liquids. J Phys Chem B 2017; 121:4823-4832. [PMID: 28425717 DOI: 10.1021/acs.jpcb.7b03582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The search for biocompatible ionic liquids (ILs) with novel biochemical and biomedical applications has recently gained greater attention. In this report, we characterize the effects of two novel amino acid-based aqueous ILs composed of tetramethylguanidinium (TMG) and amino acids on the structure and stability of a widely used red fluorescent protein (mCherry). Our experimental data shows that while the aspartic acid-based IL (TMGAsp) has effects similar to previously studied conventional ILs (BMIBF4, EMIAc, and TMGAc), the alanine-based IL (TMGAla) has a much stronger destabilization effect on the protein structure. Addition of 0.30 M TMGAla to mCherry decreases the unfolding temperature from 83 to 60 °C. Even at 25 °C, TMGAla results in a blue shift of the mCherry absorbance and fluorescence peaks and an increased Stokes shift. Molecular dynamics simulations show that the chromophore conformation and its interaction with mCherry with TMGAla are changed relative to those with TMGAsp or in the absence of ILs. Protein-ILs contact analysis indicates that the mCherry-Asp interactions are hydrophilic but the (fewer) mCherry-Ala interactions are more hydrophobic and may modulate the TMG interaction with the protein. Hence, the anion hydrophobicity may explain the special TMGAla destabilization of mCherry.
Collapse
Affiliation(s)
- Kelsey L Borrell
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Christine Cancglin
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brittany L Stinger
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Kelsey G DeFrates
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry amd ‡Department of Biomedical and Translational Sciences, Rowan University , 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
16
|
Kumar A, Bisht M, Venkatesu P. Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. Int J Biol Macromol 2017; 96:611-651. [DOI: 10.1016/j.ijbiomac.2016.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
17
|
Yamada S, Yamamoto N, Takamori E. Synthesis of Molecular Seesaw Balances and the Evaluation of Pyridinium−π Interactions. J Org Chem 2016; 81:11819-11830. [DOI: 10.1021/acs.joc.6b02295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Natsuo Yamamoto
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Eri Takamori
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| |
Collapse
|
18
|
Feng T, Wang Y, Qiao X. Recent Advances of Carbon Nanotubes-based Electrochemical Immunosensors for the Detection of Protein Cancer Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taotao Feng
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yue Wang
- GRINM Semiconductor materials Co., Ltd.; General Research Institute for Nonferrous Metals; Beijing 100088 China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
| |
Collapse
|
19
|
Zhang X, Xue X, Jia H, Wang J, Ji Q, Xu Z. Influence of ionic liquid on the polymer-filler coupling and mechanical properties of nano-silica filled elastomer. J Appl Polym Sci 2016. [DOI: 10.1002/app.44478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xumin Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Xiaodong Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Jingyi Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology; Nanjing Institute of Technology; Nanjing 211167 China
- College of Material Engineering; Nanjing Institute of Technology; Nanjing 211167 China
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology; Nanjing 210094 China
| | - Zhaodong Xu
- Key Laboratory of C & PC Structures of Ministry of Education; Southeast University; Nanjing 210096 China
| |
Collapse
|
20
|
A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 2016; 79:386-397. [PMID: 26735873 DOI: 10.1016/j.bios.2015.12.055] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
The electrochemical biosensor with enzyme as biorecognition element is traditionally pursued as an attractive research topic owing to their high commercial perspective in healthcare and environmental sectors. The research interest on the subject is sharply increased since the beginning of 21st century primarily, due to the concomitant increase in knowledge in the field of material science. The remarkable effects of many advance materials such as, conductive polymers and nanomaterials, were acknowledged in the developing efficient 3rd generation enzyme bioelectrodes which offer superior selectivity, sensitivity, reagent less detection, and label free fabrication of biosensors. The present review article compiles the major knowledge surfaced on the subject since its inception incorporating the key review and experimental papers published during the last decade which extensively cover the development on the redox enzyme based 3rd generation electrochemical biosensors. The tenet involved in the function of these direct electrochemistry based enzyme electrodes, their characterizations and various strategies reported so far for their development such as, nanofabrication, polymer based and reconstitution approaches are elucidated. In addition, the possible challenges and the future prospects in the development of efficient biosensors following this direct electrochemistry based principle are discussed. A comparative account on the design strategies and critical performance factors involved in the 3rd generation biosensors among some selected prominent works published on the subject during last decade have also been included in a tabular form for ready reference to the readers.
Collapse
Affiliation(s)
- Priyanki Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Madhuri Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Somasekhar R Chinnadayyala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Irom Manoj Singha
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
22
|
Miller MC, Hanna SL, DeFrates KG, Fiebig OC, Vaden TD. Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions. Int J Biol Macromol 2016; 85:200-7. [DOI: 10.1016/j.ijbiomac.2015.12.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/27/2023]
|
23
|
Xing C, Wang Y, Huang X, Li Y, Li J. Poly(vinylidene fluoride) Nanocomposites with Simultaneous Organic Nanodomains and Inorganic Nanoparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chenyang Xing
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Rd., Hangzhou 310036, People’s Republic of China
- CAS
Center for Excellence on TMSR Energy System, Shanghai Institute of
Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading District, Shanghai 201800, People’s Republic of China
- University of Chinese
Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yanyuan Wang
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Rd., Hangzhou 310036, People’s Republic of China
| | - Xingyi Huang
- Department
of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical
Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yongjin Li
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Rd., Hangzhou 310036, People’s Republic of China
| | - Jingye Li
- CAS
Center for Excellence on TMSR Energy System, Shanghai Institute of
Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading District, Shanghai 201800, People’s Republic of China
| |
Collapse
|
24
|
Liu B, Wang M, Xiao B. Application of carbon nanotube–ionic liquid–epinephrine composite gel modified electrode as a sensor for glutathione. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Silvester DS, Aldous L. Electrochemical Detection Using Ionic Liquids. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ionic liquids are relatively new additions to the field of electrochemical sensing. Despite that, they have had a significant impact, and several major areas are covered herein. This includes the application of ionic liquids in the quantification of heavy metals, explosives, and chemical warfare agents, and in biosensors and bioanalysis. Also highlighted are the significant advantages ionic liquids inherently have with regards to gas sensors and carbon paste electrodes, by virtue of their non-volatility, inherent conductivity, and diversity of structure and function. Finally, their incorporation with carbon nanomaterials to form various gels, pastes, films, and printed electrodes is also highlighted.
Collapse
Affiliation(s)
- Debbie S. Silvester
- Nanochemistry Research Institute, Department of Chemistry, Curtin University Perth, WA Australia
| | - Leigh Aldous
- School of Chemistry, UNSW Australia Sydney, NSW Australia
| |
Collapse
|
26
|
A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1573-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
High performance, All solid state, flexible Supercapacitor based on Ionic liquid functionalized Graphene. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Yang J, Zheng J, Zhang J, Sun L, Chen F, Fan P, Zhong M. Synthesis and characterization of “comb-like” poly(ionic liquid-co-styrene): expected applications in graphene dispersion and CO2 separation. RSC Adv 2015. [DOI: 10.1039/c4ra17176d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new PIL “comb-like” copolymer was synthesized by directly polymerizing ionic liquid monomer by ATRP using macroinitiator. This polymer is potentially useful in graphene dispersion and CO2 separation.
Collapse
Affiliation(s)
- Jintao Yang
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jiongzhou Zheng
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jingjing Zhang
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Li Sun
- College of Education Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Feng Chen
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Ping Fan
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Mingqiang Zhong
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
30
|
Kumar A, Venkatesu P. A comparative study of myoglobin stability in the presence of Hofmeister anions of ionic liquids and ionic salts. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Attri P, Choi EH, Kwon GC, Bhatia R, Gaur J, Arora B, Kim IT. Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Serrà A, Gómez E, Vallés E. One-step electrodeposition from ionic liquid and water as a new method for 2D composite preparation. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Attri P, Jha I, Choi EH, Venkatesu P. Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. Int J Biol Macromol 2014; 69:114-23. [DOI: 10.1016/j.ijbiomac.2014.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
|
34
|
Ronkainen NJ, Okon SL. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4669-4709. [PMID: 28788700 PMCID: PMC5455914 DOI: 10.3390/ma7064669] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022]
Abstract
Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.
Collapse
Affiliation(s)
- Niina J Ronkainen
- Department of Chemistry and Biochemistry, Benedictine University, 5700 College Road, Lisle, IL 60532, USA.
| | - Stanley L Okon
- Department of Psychiatry, Advocate Lutheran General Hospital, 8South, 1775 West Dempster Street, Park Ridge, IL 60068, USA.
- Formerly of the Department of Pathology, University of Illinois at Chicago, MC 847, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Egorova KS, Ananikov VP. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. CHEMSUSCHEM 2014; 7:336-60. [PMID: 24399804 DOI: 10.1002/cssc.201300459] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/22/2013] [Indexed: 05/19/2023]
Abstract
Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991 (Russia)
| | | |
Collapse
|
36
|
Jha I, Attri P, Venkatesu P. Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys Chem Chem Phys 2014; 16:5514-26. [DOI: 10.1039/c3cp54398f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Sarhangzadeh K, Mmohamma-Rezaei R, Jabbri M. Room-Temperature Ionic Liquid and Multi-Walled Carbon Nanotube Composite Modified Carbon-Ceramic Electrode as a Sensitive Voltammetric Sensor for Indomethacin. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.832267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Improvement of the electrochemical and electrocatalytic behavior of Prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Gunasekaran SG, Dharmendirakumar M. Carboxyl-tailed ionic liquid promoted aqueous dispersion of multi-walled carbon nanotubes. HIGH PERFORM POLYM 2013. [DOI: 10.1177/0954008313511349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work reports the dispersion of multiwalled carbon nanotubes (MWCNTs) in water using a short chain carboxyl-tailed ionic liquid (IL), 1-carboxymethyl-3-methyl imidazolium tetrafluoroborate ([cmmim][BF4]), as an IL-based hydrophilic surfactant, instead of long-chain hydrophobic ILs. MWCNTs can be dispersed effectively in the aqueous solution of [cmmim][BF4] due to their molecular structure, including one imidazolium ring head group and one carboxyl group with fewer hydrophobic chains. The resulting MWCNT suspensions are stable for more than a month, and no precipitation is observed. The transmission electron microscopy results showed that the structural integrity of MWCNTs did not deteriorate because of their dispersal in water. Ultraviolet–visible–near infrared spectral studies confirm the presence of IL molecules onto the surface of the MWCNTs. X-Ray photoelectron spectroscopy and Fourier transform Raman studies confirmed the cation–π or π–π interactions between the MWCNTs and IL molecules, which makes the suspension of MWCNTs more stable.
Collapse
Affiliation(s)
- S. G. Gunasekaran
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu, India
| | - M. Dharmendirakumar
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Kumar A, Venkatesu P. Does the stability of proteins in ionic liquids obey the Hofmeister series? Int J Biol Macromol 2013; 63:244-53. [PMID: 24211268 DOI: 10.1016/j.ijbiomac.2013.10.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
Abstract
Understanding the behavior of Hofmeister anions of ionic liquids (ILs) on protein stability helps to shed light on how the anions interact with proteins in aqueous solution and is a long standing object for chemistry and biochemistry. Ions effects play a major role in understanding the physicochemical and biological phenomenon that undertakes the protein folding/unfolding and refolding process. Despite the generality of these effects, our understanding of ions at the molecular-level is still limited. This review offers a tour through past successful investigations and presents a challenge in current research in the field to reassess the possibilities of ions and to apply new strategies. This review highlights on the stability behavior of the proteins and also comparisons of our past research work in the Hofmeister series of ILs. Furthermore, we specifically focus on the critical discussion on the recent findings with existing results and their implications, along with our understanding of the Hofmeister series of anions of ILs on biomolecular stability. A detailed examination of the difference between selective proteins can provide a better understanding of the molecular mechanism of protein folding/unfolding in the presence of the Hofmeister series of ions of ILs.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
41
|
Subramaniam K, Das A, Stöckelhuber KW, Heinrich G. ELASTOMER COMPOSITES BASED ON CARBON NANOTUBES AND IONIC LIQUID. RUBBER CHEMISTRY AND TECHNOLOGY 2013. [DOI: 10.5254/rct.13.86984] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Carbon nanotubes (CNTs) are known for excellent electrical conductivity and high elastic modulus. But difficulties arise in realizing their potential in matrices due to their existence in the form of aggregates or agglomerates. A simplified mixing technique using ionic liquid (IL) was developed to improve the dispersion of CNTs in elastomers. At first, CNTs were modified using an IL, 1-butyl-3-methyl-imidazolium-bis-(trifluoromethylsulfonyl)-imide in a mortar and pestle, and later, the modified tubes were incorporated into elastomers using a two-roll mill. The effect of modified tubes and IL on polar polychloroprene and nonpolar solution styrene butadiene rubber is studied. Enhanced dispersion and networking of CNTs can be achieved using this technique, based on which highly conducting composites were developed. Moreover, the composites with modified CNTs exhibited higher mechanical properties (tensile modulus, hardness) and thermal stability than the composites with unmodified CNTs. ILs are also found to have multifunctional roles (as antioxidants, as coupling agents) in the composites. The applications of composites with a particular focus on actuators and sensors are also discussed.
Collapse
Affiliation(s)
- Kalaivani Subramaniam
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Werkstoffwissenschaft, Helmholzstraße 7, 01069 Dresden, Germany
| | - Amit Das
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
| | | | - Gert Heinrich
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Werkstoffwissenschaft, Helmholzstraße 7, 01069 Dresden, Germany
| |
Collapse
|
42
|
Yan H, Sun N, Han Y, Yang C, Wang M, Wu R. Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables. J Chromatogr A 2013; 1307:21-6. [DOI: 10.1016/j.chroma.2013.07.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 11/24/2022]
|
43
|
Pérez-Mella B, Álvarez-Lueje A. Development of a Carbon Nanotube Modified Ionic Liquid Electrode for the Voltammetric Determination of Methyldopa Levels in Urine. ELECTROANAL 2013. [DOI: 10.1002/elan.201300241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Polo-Luque M, Simonet B, Valcárcel M. Functionalization and dispersion of carbon nanotubes in ionic liquids. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abdellaoui S, Noiriel A, Henkens R, Bonaventura C, Blum LJ, Doumèche B. A 96-well electrochemical method for the screening of enzymatic activities. Anal Chem 2013; 85:3690-7. [PMID: 23461701 DOI: 10.1021/ac303777r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid electrochemical screening of enzyme activities in bioelectronics is still a challenging issue. In order to solve this problem, we propose to use a 96-well electrochemical assay. This system is composed of 96 screen-printed electrodes on a printed circuit board adapted from a commercial system (carbon is used as the working electrode and silver chloride as the counter/reference electrode). The associated device allows for the measurements on the 96 electrodes to be performed within a few seconds. In this work, we demonstrate the validity of the screening method with the commercial laccase from the fungus Trametes versicolor. The signal-to-noise ratio (S/N) is found to be the best way to analyze the electrochemical signals. The S/N follows a saturation-like mechanism with a dynamic linear range of two decades ranging from 0.5 to 75 ng of laccase (corresponding to enzymatic activities from 62 × 10(-6) to 9.37 × 10(-3) μmol min(-1)) and a sensitivity of 3027 μg(-1) at +100 mV versus Ag/AgCl. Laccase inhibitors (azide and fluoride anions), pH optima, and interfering molecules could also be identified within a few minutes.
Collapse
Affiliation(s)
- Sofiène Abdellaoui
- GEMBAS (Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires), ICBMS UMR 5246, Université Lyon 1, CNRS, INSA Lyon, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon with a nanostructure that can have a length-to-diameter ratio greater than 1,000,000. Techniques have been developed to produce nanotubes in sizeable quantities, including arc discharge, laser ablation, and chemical vapor deposition. Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing, and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by other materials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Various immobilization methods have been developed, and in particular, specific attachment of enzymes on carbon nanotubes has been an important focus of attention. With the growing attention paid to cascade enzymatic reaction, it is possible that multienzyme coimmobilization would be one of the next goals in the future. In this paper, we focus on advances in methodology for enzyme immobilization on carbon nanotubes.
Collapse
|
48
|
|
49
|
Zhao L, Li Y, Qiu J, You J, Dong W, Cao X. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer. NANOSCALE 2012; 4:6613-6621. [PMID: 22976380 DOI: 10.1039/c2nr31401k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m(-1)). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.
Collapse
Affiliation(s)
- Liping Zhao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Rd, Xiasha High-tech Zone, Hangzhou 310036, China
| | | | | | | | | | | |
Collapse
|
50
|
Lu L, Hu Y, Huang X, Qu Y. A Bioelectrochemical Method for the Quantitative Description of the Hofmeister Effect of Ionic Liquids in Aqueous Solution. J Phys Chem B 2012; 116:11075-80. [DOI: 10.1021/jp3054263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Lu
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, People's Republic of China
| | - Yan Hu
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, People's Republic of China
| | - Xirong Huang
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, People's Republic of China
- State Key Laboratory
of Microbial Technology of China, Shandong University, Jinan 250100, People's Republic of China
| | - Yinbo Qu
- State Key Laboratory
of Microbial Technology of China, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|