1
|
Abd FH, Abbar AH. Treatment of hospital wastewater by anodic oxidation using a new approach made by combining rotation with pulsed electric current on Cu-SnO 2-Sb 2O 5 rotating cylinder anode. Heliyon 2025; 11:e42069. [PMID: 39897935 PMCID: PMC11787683 DOI: 10.1016/j.heliyon.2025.e42069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
A high-efficiency, low-cost Cu-SnO2-Sb2O5 anode was prepared using a novel approach that combines the effects of rotation with pulsed current. The effects of operating variables such as rotation speed (50-250 rpm), pulsed current density (5-20 mA/cm2), and electrodepostion time (30-60 min) on the morphology and activity of Cu-SnO2-Sb2O5 anode were investigated. The structure of Cu-SnO2-Sb2O5 anode was examined by SEM, EDS, and XRD techniques. The results showed that using higher rotation speed combined with pulsed current gave better properties of Cu-SnO2-Sb2O5 anode in terms of higher oxidation activity and longer service life time. The optimum conditions for preparing Cu-SnO2-Sb2O5 anode were a pulsed current density of 10 mA/cm2, rotation speed of 250 rpm, and deposition time of 60 min. The prepared anode has the ability to remove methylene blue (MB) with an efficiency of 99.7 %. It has an excellent service life of 30 h. Additionally, the prepared anode has the potential to remove COD from hospital wastewater with 85 % efficiency by applying a current density of 10 mA/cm2 for 120 min at an initial pH of 3 where an energy consumption of 2.85 kWh/kg was claimed. The novel approach of combining rotation with pulsed electric current in preparing Cu-SnO2-Sb2O5 anode offers enhanced methylene blue degradation efficiency and extended anode life, demonstrating potential for industrial-scale hospital wastewater treatment.
Collapse
Affiliation(s)
- Falah H. Abd
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| | - Ali H. Abbar
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| |
Collapse
|
2
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
3
|
Li Y, Ma H, Li Q, Yan G, Guo S. One-step synthesis of Pt-Nd co-doped Ti/SnO 2-Sb nanosphere electrodes used to degrade nitrobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4528-4538. [PMID: 38102431 DOI: 10.1007/s11356-023-31406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hairun Ma
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qianwei Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Guangxu Yan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
4
|
Yang ZX, Ye FF, Pan D, Yan GX, Guo SH. Synthesis and evaluation of Mn-Sn modified Ru-Ir electrode for electrocatalytic treatment of high chloride acrylonitrile wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:3331-3341. [PMID: 35316146 DOI: 10.1080/09593330.2022.2057237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Acrylonitrile wastewater was an organic wastewater with strong toxicity and poor biodegradability. Therefore, electro-catalytic technology became a promising acrylonitrile wastewater treatment technology because of no secondary pollution, wide application range and low water quality requirements. The optimal Mn-Sn modified Ru-Ir electrode material was synthesized by thermal method and applied in electro-catalytic treatment of acrylonitrile wastewater. The electrode materials were characterized by SEM, TEM, XRD, XPS and electrochemical characterization. SEM, TEM, XRD and XPS indicated that Mn and Sn were capable of incorporating and replacing the part of Ru or Ir and could alter the microstructure of Ru-Ir and the types of Mn and Sn oxides, raising the oxygen evolution potential (OEP) and voltampere charge. When the molar ratio of Mn-Sn was 1:1, OEP, voltampere charge and exchange current density could reach 1.303 V, 1.51 C/cm2 and 6.29×10-4 A/cm2, respectively. The co-doping of Mn-Sn had significant influence on the electrocatalytic performance of Ru-Ir electrode materials. The optimum synthesis conditions of Mn-Sn modified Ru-Ir electrode were as follows: the molar ratio of Mn-Sn was 1:1, calcination time was 4.0 hours, calcination temperature was 450℃, and solvent was water. Under certain conditions, the removal rate of acrylonitrile with Mn-Sn modified Ru-Ir electrode was 100%. Mn-Sn modified Ru-Ir electrode had high oxygen evolution potential and good removal effect of acrylonitrile, which was higher than that of ruthenium iridium electrode and RuO2 electrode.
Collapse
Affiliation(s)
- Zhen-Xing Yang
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Fang-Fang Ye
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, People's Republic of China
| | - Ding Pan
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Guang-Xu Yan
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Shao-Hui Guo
- Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| |
Collapse
|
5
|
Wu F, Yang ZQ, Sun W, Chen X, Qi H, Wang LD. Electrochemical Properties of Ti/SnO 2-Sb-Ir Electrodes Doped with a Low Iridium Content for the Oxygen Evolution Reaction in an Acidic Environment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Wu
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Zheng-Qing Yang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Wen Sun
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Xu Chen
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Hui Qi
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Li-Da Wang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| |
Collapse
|
6
|
Ren M, Sun S, Wu Y, Shi Y, Wang ZJ, Cao H, Xie Y. The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review. CHEMOSPHERE 2022; 296:134071. [PMID: 35216974 DOI: 10.1016/j.chemosphere.2022.134071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Advanced oxidation processes (AOPs) are widely used as efficient technologies to treat highly toxic and harmful substances in wastewater. Taking the most representative aromatic compounds (monosubstituted benzenes, substituted phenols and heterocyclic compounds) as examples, this paper firstly introduces their structures and the structural descriptors studied in AOPs before, and the influence of structural differences in AOPs with different reactive oxygen species (ROS) on the degradation rate was discussed in detail. The structure-activity relationship of pollutants has been previously analyzed through quantitative structure-activity relationship (QSAR) model, in which ROS is a very important influencing factor. When electrophilic oxidative species attacks pollutants, aromatic compounds with electron donating groups are more favorable for degradation than aromatic compounds with electron donating groups. While nucleophilic oxidative species comes to the opposite conclusion. The choice of advanced oxidation processes, the synergistic effect of various active oxygen species and the used catalysts will also change the degradation mechanism. This makes the structure-dependent activity relationship uncertain, and different conclusions are obtained under the influence of various experimental factors.
Collapse
Affiliation(s)
- Mingzhu Ren
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Sihan Sun
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiqiu Wu
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanchun Shi
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhou-Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
7
|
Zhang E, Tang J, Li Z, Zhou Y. Insight into the synergistic collaboration of g‐C3N4/SnO2 composites for photoelectrocatalytic CO2 reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Erhui Zhang
- Anhui Science and Technology University College ofChemistry and Materials Engineering No.1501, HuangShan Avenue 233000 Bengbu CHINA
| | - Jing Tang
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Zirong Li
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Yongsheng Zhou
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
8
|
Norouzi R, Zarei M, Khataee A, Ebratkhahan M, Rostamzadeh P. Electrochemical removal of fluoxetine via three mixed metal oxide anodes and carbonaceous cathodes from contaminated water. ENVIRONMENTAL RESEARCH 2022; 207:112641. [PMID: 34979125 DOI: 10.1016/j.envres.2021.112641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In this work, the fluoxetine (FLX) removal has been studied via the anodic oxidation (AO) process. Anode electrodes were Ti/RuO2, Ti/RuO2-IrO2, and Ti/RuO2-IrO2-SnO2, and cathode electrodes were graphite and carbon nanotubes (CNTs). The performances of electrodes were compared in terms of FLX removal efficiency. As a result, Ti/RuO2-IrO2-SnO2 and CNTs were the optimal anode and cathode, respectively. The properties of the optimal electrodes were investigated using scanning electron microscopy, atomic force microscopy and X-ray diffraction spectroscopy. Cyclic voltammetry analysis was performed to study the electrochemical behavior of electrodes. The effect of current intensity (mA), initial pH, initial FLX concentration (mg/L) and process time (min) on the FLX removal efficiency was investigated and the response surface methodology was applied for the optimization of the AO process. The results showed that at current intensity, pH, initial FLX concentration and process time of 500 mA, 6, 25 mg/L and 160 min, maximum FLX removal efficiency was observed, which was 96.25%. Gas Chromatography-Mass Spectrometry (GC-MS), and total organic carbon (TOC) analysis was determined to evaluate the intermediates, and mineralization efficiency. The TOC removal efficiency was reached 81.51% after 6 h under optimal experimental conditions, indicating the successful removal of the FLX.
Collapse
Affiliation(s)
- Ramin Norouzi
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| | - Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Paria Rostamzadeh
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
9
|
Eguiluz KI, Hernandez-Sanchez NK, Doria AR, O. S. Santos G, Salazar-Banda GR, Ponce de Leon C. Template-made tailored mesoporous Ti/SnO2-Sb2O5-IrO2 anodes with enhanced activity towards dye removal. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ganzoury MA, Ghasemian S, Zhang N, Yagar M, de Lannoy CF. Mixed metal oxide anodes used for the electrochemical degradation of a real mixed industrial wastewater. CHEMOSPHERE 2022; 286:131600. [PMID: 34346334 DOI: 10.1016/j.chemosphere.2021.131600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Mixed industrial wastewaters are often highly contaminated with heavy metals and organic pollutants. Treating these mixed wastewaters requires many stagewise unit operations. Our work investigates using an electrochemical oxidation-in-situ coagulation (ECO-IC) process as a pre-treatment step toward the efficient treatment of real mixed industrial wastewater rich with heavy metals and organic contaminants. The process degraded organic contaminants in the wastewater via anodic electrochemical oxidation. Simultaneously, heavy metals were precipitated in the solution by coagulants (iron hydroxides) formed in-situ by cathode-generated hydroxyl ions reacting with the significant amounts of dissolved iron in the wastewater. IrO2-RuO2 mixed metal oxide anodes were identified as the best electrodes for organic compound degradation demonstrating 97% degradation of methyl orange (MO) as a model compound within 15 min. These anodes were used to treat real industrial wastewater produced from the industrial cleaning of train tanker cars transporting industrial solvents. The electrochemical treatment experiments resulted in a treated solution with a lower heavy metal content, achieving 96% reduction in Fe and 30% reduction in As content. Only moderate decreases in organic content were observed up to a maximum of 13% reduction in total organic carbon after 1 h of treatment. Electrochemical treatment of the mixed industrial wastewater produced greater effective diameter of the suspended particles and distinct sediment, liquid, and suspended foam phases that could be easily separated for further treatment. ECO-IC shows promise as an efficient and chemical-free method to coagulate heavy metals in real industrial wastewaters and could be an effective pre-treatment in their separation.
Collapse
Affiliation(s)
- Mohamed A Ganzoury
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | - Saloumeh Ghasemian
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | - Nan Zhang
- Department of Chemical Engineering, McMaster University, 1280, Main St. W., Hamilton, ON, Canada
| | | | | |
Collapse
|
11
|
Singla J, Thakur I, Sangal V, Verma A. Dimensionally stable anode (Doped-MMO) mediated electro-oxidation and multi-response optimization study for remediation of urea wastewater. CHEMOSPHERE 2021; 285:131498. [PMID: 34252807 DOI: 10.1016/j.chemosphere.2021.131498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the potential application of novel doped-MMO (Ti/IrO2/Ta2O5/SnO2-Sb2O4) anodes as an alternative source to costly electrodes have been visualized for the EO treatment of urea. Parametric optimization for the treatment of urea through the EO process by doped-MMO has been done successfully. The high R2 values of both responses i.e. % Degradation and energy consumption for quadratic suggested by BBD under RSM advocates a good correlation between predicted and experimental data. The maximum % Degradation and energy consumption at optimized were found to be 91.2%, 51.53 kWh m-3 for urea respectively. Additionally, efforts were made to minimize treatment time further by implementing a dual effect, namely photo-electrocatalysis. The anode was found to be relatively stable even after 120 runs. The analysis of treated urea solution was verified in terms of total organic carbon (TOC) 90.0% reduction. The average operating cost of the electro-oxidation treatment process is determined to be 1.91 $ m-3. The results of this study demonstrate the potential of doped-MMO as a promising concept for the treatment of wastewater that can be successfully applied in real life.
Collapse
Affiliation(s)
- Jayishnu Singla
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| | - Ina Thakur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vikas Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India.
| |
Collapse
|
12
|
Zhao R, Wang YM, Li J, Meng W, Yang C, Sun C, Lan X. Metal modified (Ni, Ce, Ta) Ti/SnO2–Sb2O5–RuO2 electrodes for enhanced electrochemical degradation of Orange G. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Amorphous SnO2 nanoparticles embedded into a three-dimensional porous carbon matrix as high-performance anodes for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Lansing JL, Zhao L, Siboonruang T, Attanayake NH, Leo AB, Fatouros P, Park SM, Graham KR, Keith JA, Tang M.
Gd‐Ni‐Sb‐SnO
2
electrocatalysts for active and selective ozone production. AIChE J 2021. [DOI: 10.1002/aic.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James L. Lansing
- Department of Chemical and Biological Engineering Drexel University Philadelphia Pennsylvania USA
| | - Lingyan Zhao
- Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Tana Siboonruang
- Department of Chemical and Biological Engineering Drexel University Philadelphia Pennsylvania USA
| | - Nuwan H. Attanayake
- Department of Chemical and Biological Engineering Drexel University Philadelphia Pennsylvania USA
| | - Angela B. Leo
- Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Peter Fatouros
- Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| | - So Min Park
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Kenneth R. Graham
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - John A. Keith
- Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Maureen Tang
- Department of Chemical and Biological Engineering Drexel University Philadelphia Pennsylvania USA
| |
Collapse
|
15
|
Electrochemical Degradation of Crystal Violet Using Ti/Pt/SnO2 Electrode. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01 mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.
Collapse
|
16
|
Sun Y, Zhang S, Jin B, Cheng S. Efficient degradation of polyacrylamide using a 3-dimensional ultra-thin SnO 2-Sb coated electrode. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125907. [PMID: 34492842 DOI: 10.1016/j.jhazmat.2021.125907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Polyacrylamide (PAM) is widely used in polymer flooding processes to increase oil recovery while the byproduct of PAM-containing wastewater is a serious environmental issue. In this study, electrochemical oxidation process (EAOP) was applied for treating PAM wastewater using a new type of 3-dimensional ultra-thin SnO2-Sb electrode. Nano-sized catalysts were evenly dispersed both on the surface and inside of a porous Ti filter forming nano-thickness catalytic layer that enhances the utilization and bonding of catalysts. This porous Ti electrode showed 20% improved OH· production and 16.3 times increased accelerated service life than the planar Ti electrode. Using this electrode to treat 100 mg L-1 PAM, the TOC removal efficiency reached over 99% within 3 h under current density of 20 mA cm-2. The EAOP could fastly break the long-chain PAM molecules into small molecular intermediates. With the porous electrode treating 5 g L-1 PAM under current density of 30 mA cm-2, EAOP reduced 94.2% of average molecular weight in 1 h and 92.0% of solution viscosity in 0.5 h. Moreover, the biodegradability of PAM solution was significantly improved as the solution BOD5/COD ratio raised from 0.05 to 0.41 after 4 h treatment. The degradation pathway of PAM was also investigated.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China; PowerChina Huadong Engineering Co. Ltd., Hangzhou 310014, PR China
| | - Shudi Zhang
- School of Life Sciences, Anhui University, Anhui 230601, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
17
|
Electrochemical Degradation of Tetracycline Using a Ti/Ta 2O 5-IrO 2 Anode: Performance, Kinetics, and Degradation Mechanism. MATERIALS 2021; 14:ma14154325. [PMID: 34361518 PMCID: PMC8347010 DOI: 10.3390/ma14154325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
Tetracycline (TC) is widely used in production and in life. The high volume of its use and the difficulty of its disposal have become the most important causes of environmental pollution. A suitable method needs to be found to solve this problem. In this study, the Ti/Ta2O5-IrO2 electrode was characterized for its surface morphology and crystal composition. The electrochemical catalytic ability of the Ti/Ta2O5-IrO2 electrode was investigated using LSV and CV tests. The electrochemical degradation of tetracycline (TC) in water with a Ti/Ta2O5-IrO2 anode was investigated. The main influence factors, such as current density (2.5–10 mA/cm2), electrode spacing (20–40 mm), initial TC concentration (20–80 mg/L) and initial solution pH (4.74–9.48) were analyzed in detail and their influences on reaction kinetics was summed up. The removal rate increased along with the increasing current density, decreasing initial TC concentration and decreasing of electrode distance under the experimental conditions. The optimum pH was 4.74. UV–vis, total organic carbon (TOC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses were used to reveal the mechanism of TC degradation. Nine main intermediates were identified, and the degradation pathways were proposed. A new insight has been postulated for the safe and efficient degradation of TC using the Ti/Ta2O5-IrO2 electrode.
Collapse
|
18
|
The effect of ruthenium content on the stability and activity of Ti/RuO2-Sb2O5-SnO2 for oxygen evolution. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Preparation and investigation of a Ni–B-assisted SnO2–Sb anode for electrooxidation of phenol. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04923-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Zhu X, Hu W, Feng C, Chen N, Chen H, Kuang P, Deng Y, Ma L. Electrochemical oxidation of aniline using Ti/RuO 2-SnO 2 and Ti/RuO 2-IrO 2 as anode. CHEMOSPHERE 2021; 269:128734. [PMID: 33143899 DOI: 10.1016/j.chemosphere.2020.128734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Electrocatalytic properties of anode and the electrolyte composition are important parameters influence the degradation efficiency for aniline wastewater. Ti/RuO2-SnO2 and Ti/RuO2-IrO2 have been fabricated using thermal decomposition method and experiments in electrolyte containing 0.05 M Na2SO4, 0.05 M NaCl and 0.05 M Na2SO4+0.005 M FeSO4 at different current density were conducted to study the influence on aniline degradation. Linear sweep voltammetry (LSV) showed that Ti/RuO2-SnO2 had higher oxygen evolution potential and degrade aniline through electrochemical transformation and electrochemical combustion while Ti/RuO2-IrO2 degrade aniline mainly through electrochemical transformation. The study showed that Ti/RuO2-SnO2 had higher electrocatalytic activity towards the degradation of aniline than Ti/RuO2-IrO2 anode in 0.05 M Na2SO4 and in 0.05 M NaCl electrolyte. The maximum TOC removal efficiency for Ti/RuO2-SnO2 was 64.2% at 40 mA cm-2 in Na2SO4 electrolyte while the average MCE was 1.6% and the average ECTOC was 1.51 kWh (g TOC)-1. On the contrary, the maximum TOC removal efficiency for Ti/RuO2-IrO2 was 63.1% at 40 mA cm-2 in NaCl electrolyte while the average MCE was 1.6% and the average ECTOC was 1.95 kWh (g TOC)-1. The presence of Fe2+ in Na2SO4 electrolyte would decrease the TOC removal efficiency except at low current density (20 mA cm-2) for Ti/RuO2-SnO2. These results indicated that Ti/RuO2-SnO2 and Ti/RuO2-IrO2 anode were suitable in Na2SO4 and NaCl electrolyte, respectively, while the presence of Fe2+ would inhibit aniline degradation.
Collapse
Affiliation(s)
- Xu Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China; The Journal Center, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyan Chen
- College of Science, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, PR China
| | - Peijing Kuang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Linlin Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), No.29 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
21
|
Fabrication of tubular porous titanium membrane electrode and application in electrochemical membrane reactor for treatment of wastewater. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Li H, Lyu J, Chen Y, Jian L, Li R, Liu X, Dong X, Ma C, Ma H. Consecutive metal oxides with self-supported nanoarchitecture achieves highly stable and enhanced photoelectrocatalytic oxidation for water purification. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04886-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Simultaneous electrochemical decolorization of Acid Red 33, Reactive Orange 7, Acid Yellow 3 and Malachite Green dyes by electrophoretically prepared Ti/nanoZnO-MWCNTs anode: Experimental design. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y. CFD simulation of mass transfer in electrochemical reactor with mesh cathode for higher phenol degradation. CHEMOSPHERE 2021; 262:127626. [PMID: 32777608 DOI: 10.1016/j.chemosphere.2020.127626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Cathode, where electro-catalytic oxidation barely took place, could exert a significant influence on electro-catalytic efficiency, whereas little investigation has been focused on this effect. In this study, the effect of cathode configuration on electro-catalytic activities was investigated with phenol as model pollutant, and the mechanism was revealed from the perspective of mass transfer with computational fluid dynamics (CFD) simulation. Compared with the planar Ti cathode, the electro-catalytic reactor with mesh Ti exhibited 1.21-1.26 times faster phenol degradation rate under various testing inlet flow rates. CFD simulation revealed the higher velocity distribution both in the reactor and on anode surface when meshed Ti cathode was used, which benefited faster fluid flow so that the pollutant transfer was accelerate especially at higher inlet flow rate. Excellent agreement of mass transfer between CFD simulation and experimental analysis was achieved, the mass transfer coefficient with mesh Ti was 1.40-1.55 times of the case with planar cathode under various inlet flow rates. The enhanced mass transfer performance was mainly ascribed to the rhombic pores of mesh cathode where hydrogen bubbles generated on would escape timely and randomly at various directions, leading to the disturbance of fluid flow around the anode. This study highlighted mesh cathode played a key role in improving pollutant degradation, and CFD, as a versatile and convenient tool to analyze the hydrodynamic behavior of electro-catalytic reactor, showed a strong persuasion to guide the optimization of electrode configuration.
Collapse
Affiliation(s)
- Linlin Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Da Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lisha Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Changchao Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
25
|
Li X, Yan J, Zhu K. Effects of IrO2 interlayer on the electrochemical performance of Ti/Sb-SnO2 electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y. Enhanced mass transfer and service time of mesh Ti/Sb-SnO 2 electrode for electro-catalytic oxidation of phenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42072-42081. [PMID: 32705558 DOI: 10.1007/s11356-020-10070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Titanium-based SnO2 with Sb dopant (Ti/Sb-SnO2) was of interest in the field of electro-catalytic oxidation due to its high organic oxidation rates. However, the relatively poor mass transfer performance and short service time limited its practical application. To overcome this problem, Ti/Sb-SnO2 electrode was fabricated on mesh substrate and used as the anode for electrochemical oxidization of phenol. Compared to the anode prepared on planar Ti, the mesh anode with compact and uniform catalyst surface lowered electron transfer resistance and higher Oads content (17.41%), which benefited the generation of hydroxyl radicals (·OH) (increment of 24.5%). In addition, this structure accelerated the fluid perturbation around electrode in microscopic scale as the COMSOL simulation result indicated; the electric potential on mesh anode varied regularly along the undulant terrain of electrode so that the mass transfer coefficient was enhanced by 1.67 times. These structure-dependent characteristics contributed to the superior electro-catalytic performance toward degradation of phenol. Experimental results showed that mesh anode had a higher TOC removal efficiency of 90.6% and mineralization current efficiency of 20.1% at current density of 10 mA cm-2, which was 9.95% and 21.6% higher than the planar anode, and the service lifetime was 1.89 times longer than planar anode. This highly electro-catalytically active and stable Ti/Sb-SnO2 mesh electrode showed a potential application prospect toward electro-catalytic degradation process.
Collapse
Affiliation(s)
- Linlin Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Da Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lisha Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Changchao Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
27
|
A comparative study for degradation of RB5 dye using Ti/Ir0.15–Ru0.15–Sn0.6–Sb0.1 electrodes fabricated by employing two different thermal decomposition methods. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y. Construction of TiO 2 nanotube clusters on Ti mesh for immobilizing Sb-SnO 2 to boost electrocatalytic phenol degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122329. [PMID: 32126423 DOI: 10.1016/j.jhazmat.2020.122329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
An efficient Sb-doped SnO2 electrode featuring superior electrocatalytic characteristic and long stability was constructed by adopting clustered TiO2 nanotubes-covered Ti mesh as substrate (M-TNTs-SnO2). Compared with the electrodes prepared with mere Ti mesh or Ti plate grew with TiO2 nanotube, the M-TNTs-SnO2 exhibited higher TOC removal (99.97 %) and mineralization current efficiency (44.0 %), and longer accelerated service lifetime of 105 h for electrochemical degradation of phenol. The enhanced performance was mainly ascribed to the introduction of mutually self-supported TiO2 nanotube clusters in different orientations. Such unique structure not only favored a compact and smooth surface of catalyst layer which improved the stability of electrode by reinforcing the binding force between substrate and catalyst layer, but also increased the loading capacity for catalysts, leading to 1.5-2.2 times higher of ·OH generation, the main active species for indirect electrochemical oxidation of phenol. Meanwhile, the transverse electron transfer from TiO2 nanotube to catalyst layer was possibly achieved to further prompt the generation of ·OH. This study may provide a feasible option to design of efficient electrodes for electrocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Linlin Huang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Junfeng Liu
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lisha Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Changchao Dai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Shao D, Zhang Y, Lyu W, Zhang X, Tan G, Xu H, Yan W. A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122174. [PMID: 31999960 DOI: 10.1016/j.jhazmat.2020.122174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Oxygen evolution reaction (OER) anodes, (e.g., IrO2) are well-known inefficient catalysts for electrochemical oxidation (EO) of refractory organics in wastewater due to the high energy consumption via OER. However, in this study this kind of anode participated in a very effective EO process via a specific modular anode architecture. Traces of magnetic Fe3O4/Sb-SnO2 particles as auxiliary electrodes (AEs) were attracted on the surface of the two-dimensional (2D) Ti/IrO2-Ta2O5 by a NdFeB magnet, and thereby constituted a new magnetically assembled electrode (MAE). MAE could be renewed by recycling its AEs. The electrochemical properties as well as the EO performances of the MAE could be regulated by adjusting the loading amount of AEs. Results showed that even a small amount of AEs could increase surface roughness and offer massive effective active sites. When removing color of azo dye Acid Red G, the optimal MAE exhibited ∼1100 % and ∼500 % higher efficiencies than 2D Ti/IrO2-Ta2O5 and 2D Ti/Sb-SnO2, respectively. The superiority of the MAE was also applicable in degrading phenol. The synergy between Ti/IrO2-Ta2O5 and magnetic Sb-SnO2 particles was therefore discussed.
Collapse
Affiliation(s)
- Dan Shao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinlei Zhang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Guoqiang Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
31
|
Sun Y, Cheng S, Mao Z, Lin Z, Ren X, Yu Z. High electrochemical activity of a Ti/SnO 2-Sb electrode electrodeposited using deep eutectic solvent. CHEMOSPHERE 2020; 239:124715. [PMID: 31499311 DOI: 10.1016/j.chemosphere.2019.124715] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Electrodeposition is an economical and efficient way to prepare Ti/SnO2-Sb electrode for electrochemical oxidizing pollutants in wastewater. The solvent used for electrodeposition has a great effect on electrode performance. The conventional Ti/SnO2-Sb electrode electrodeposited using aqueous solvent has poor electrochemical activity and short service life. In this study, a Ti/SnO2-Sb electrode was prepared via electrodeposition using a deep eutectic solvent (DES). This new Ti/SnO2-Sb-DES electrode performed a rate constant of 0.571 h-1 for methylene blue decolorization and long accelerated service life of 12.9 h (100 mA cm-2; 0.5 M H2SO4), which were 1.7 times and 3.2 times as high as that of the electrode prepared in aqueous solvent, respectively. The enhanced properties were related to the 1.3 times increased electrochemically active surface area of Ti/SnO2-Sb-DES electrode which had a rough, multilayer and uniform surface structure packed with nano-sized coating particles. In conclusion, this study developed a facile, green and efficient pathway to prepare Ti/SnO2-Sb electrode with high performance.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Zhengzhong Mao
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiangrong Ren
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
32
|
Zhou C, Wang Y, Chen J, Niu J. Porous Ti/SnO 2-Sb anode as reactive electrochemical membrane for removing trace antiretroviral drug stavudine from wastewater. ENVIRONMENT INTERNATIONAL 2019; 133:105157. [PMID: 31520959 DOI: 10.1016/j.envint.2019.105157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Electrochemical degradation of trace antiretroviral drug stavudine was investigated by using a reactive electrochemical membrane (REM) with Ti/SnO2-Sb anode. From the results it was evident that the stavudine degradation followed pseudo-first-order kinetics, with the values of the degradation rate constant and half-life being 0.24 min-1 and 2.9 min, respectively, at a current density of 8 mA cm-2. The degradation rate was obviously decreased under alkaline condition (pH = 11.0) and the degradation was also inhibited in the presence of NO3- and Cl-. Five intermediates were identified in the electrochemical degradation of stavudine, and the degradation pathways were proposed. Density functional theory calculation revealed that the double bond carbon atom nearby hydroxymethyl group was the site attacked by OH and the cleavage of CN bond was the rate-determining step in the electrochemical degradation of stavudine. The nitrogen in stavudine was mainly converted to nitrate and ammonium. Quantitative structure-activity relationship model indicated that the toxicity of some intermediates was higher than the parent compound stavudine. The electric energy consumption for 90% stavudine degradation ranged from 0.87 to 2.29 Wh L-1 at the experimental conditions, indicating that stavudine can be degraded efficiently by the REM with Ti/SnO2-Sb anode.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yanping Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Chen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
33
|
Degradation of ciprofloxacin using electrochemical oxidation by Ti/nanoSnO2-MWCNT electrode: Optimization and modelling through central composite design. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Investigation on electro-catalytic oxidation properties of carbon nanotube–Ce-modified PbO2 electrode and its application for degradation of m-nitrophenol. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Zhang Y, He P, Jia L, Zhang T, Liu H, Wang S, Li C, Dong F, Zhou S. Dimensionally stable Ti/SnO 2-RuO 2 composite electrode based highly efficient electrocatalytic degradation of industrial gallic acid effluent. CHEMOSPHERE 2019; 224:707-715. [PMID: 30851522 DOI: 10.1016/j.chemosphere.2019.02.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
In this work, dimensionally stable Ti/SnO2-RuO2 electrode is successfully prepared using thermal decomposition method for the electrocatalytic degradation of high-concentration industrial gallic acid (GA) effluent in detail. The surface morphology, crystal structure and element analysis of as-prepared Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy, X-ray diffraction and X-ray fluorescence spectrometer, respectively. In addition, cyclic voltammetry, polarization curve and accelerated life tests are exploited to investigate the electrocatalytic activity and stability of Ti/SnO2-RuO2 electrode. Orthogonal experiment shows that, among the factors (current density, temperature and initial pH), current density is pivotal parameter influencing the degradation efficiency of industrial GA effluent. COD removal and degradation efficiencies of GA effluent reach up to 76.9% and 80.1% after 6 h, respectively, at the optimal conditions (current density of 10 mA cm-2, pH 6 and 35 °C). The degradation of GA effluent follows pseudo-first-order reaction kinetics. This work provides an in-depth theoretical support and application of electrocatalytic technology to the treatment of high-concentration industrial GA effluent.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Lingpu Jia
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tinghong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Huanhuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Shuai Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Caixia Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Shiping Zhou
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, PR China; National Engineering Research Center for Municipal Wastewater Treatment and Reuse, Mianyang, 621000, PR China
| |
Collapse
|
36
|
Giner‐Sanz JJ, Sánchez‐Rivera MJ, García‐Gabaldón M, Ortega EM, Mestre S, Pérez‐Herranz V. Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan J. Giner‐Sanz
- IEC group, Depto. Ingeniería Química y NuclearUniversitat Politècnica de València Valencia Spain
| | | | | | - Emma M. Ortega
- IEC group, Depto. Ingeniería Química y NuclearUniversitat Politècnica de València Valencia Spain
| | - Sergio Mestre
- University Institute of Ceramic TechnologyUniversitat Jaume I Castellón Spain
| | - Valentín Pérez‐Herranz
- IEC group, Depto. Ingeniería Química y NuclearUniversitat Politècnica de València Valencia Spain
| |
Collapse
|
37
|
Berenguer R, Quijada C, Morallón E. The Nature of the Electro‐Oxidative Catalytic Response of Mixed Metal Oxides: Pt‐ and Ru‐Doped SnO
2
Anodes. ChemElectroChem 2018. [DOI: 10.1002/celc.201801632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raul Berenguer
- Departamento de Química Física e Instituto Universitario de MaterialesUniversidad de Alicante Apartado 99 E-03080 Alicante Spain
| | - Cesar Quijada
- Departamento de Ingeniería Textil y PapeleraUniversitat Politècnica de València Pza Ferrándiz y Carbonell E-03801 Alcoy (Alicante) Spain
| | - Emilia Morallón
- Departamento de Química Física e Instituto Universitario de MaterialesUniversidad de Alicante Apartado 99 E-03080 Alicante Spain
| |
Collapse
|
38
|
Zhang T, Zhang H, Ji Y, Chi N, Cong Y. Preparation of a novel Fe2O3-MoS2-CdS ternary composite film and its photoelectrocatalytic performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Understanding how the oxygen evolution reaction kinetics influences electrochemical wastewater oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ti|Ir–Sn–Sb oxide anode: Service life and role of the acid sites content during water oxidation to hydroxyl radicals. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Lei X, Li L, Chen Y, Hu Y. Effect of calcination temperature on the properties of Ti/SnO 2-Sb anode and its performance in Ni-EDTA electrochemical degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11683-11693. [PMID: 29442304 DOI: 10.1007/s11356-018-1444-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Pd-doped Ti/SnO2-Sb anode was prepared at different calcination temperatures by a wet-impregnation method and employed in simultaneous electrochemical catalytic degradation of Ni-EDTA and recovery of nickel. The results showed that Ti/SnO2-Sb-Pd-500 could achieve the highest electrochemical activity (87.5% of Ni-EDTA removal efficiency), superior durability (50.7 h of accelerated lifetime), and higher Ni recovery (19.8%) on cathode. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis suggested that Ni-EDTA degradation on anode was mainly indirect oxidation-controlled reaction, attributing to the high oxide state of MOX + 1 and MOX(·OH), rather than direct oxidation. Scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses indicated that calcination temperature could modify the morphology of electrode surface and affect the incorporation and valence state transformation of metal species (Sb and Pd) in SnO2 lattice. Ti/SnO2-Sb-Pd-500 achieved the highest electrochemical capacity with the highest levels of adsorbed oxygen Oads/ET (27.11%) and lattice oxygen Olat/ET (29.69%). Moreover, the operation conditions for Ni-EDTA electrochemical degradation were optimized. These findings were valuable for developing a high-performance electrode for Ni-EDTA electrochemical degradation.
Collapse
Affiliation(s)
- Xin Lei
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Lianghao Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
42
|
Duan T, Ma L, Chen Y, Ma X, Hou J, Lin C, Sun M. Morphology-dependent activities of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3895-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Yang K, Lin H, Liang S, Xie R, Lv S, Niu J, Chen J, Hu Y. A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2–Sb filter for efficient contaminant removal from water. RSC Adv 2018; 8:13933-13944. [PMID: 35539342 PMCID: PMC9079889 DOI: 10.1039/c8ra00603b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
Tubular porous Ti/SnO2–Sb filters with excellent penetration flux (∼61.94 m3 m−2 h−1 bar−1) and electrochemical activity were prepared by a sol–gel method using low-cost porous titanium filters as the substrates. The porous Ti/SnO2–Sb filters were used as anodic reactive electrochemical membranes to develop reactive electrochemical filter systems, by combining membrane filtration technology with the electrooxidation process, for water treatment. A convection-enhanced rate constant of 4.35 × 10−4 m s−1 was achieved for Fe(CN)64− oxidation, which approached the kinetic limit and is the highest reported in an electrochemical system. The electrooxidative performance of the reactive electrochemical filter system was evaluated with 50 mg L−1 rhodamine B (RhB). The results showed that the reactive electrochemical filter system in flow-through mode resulted in an 8.6-fold enhancement in RhB oxidation as compared to those in flow-by mode under the same experimental conditions. A normalized rate constant of 5.76 × 10−4 m s−1 for RhB oxidation was observed at an anode potential of 3.04 V vs. SCE, which is much higher than that observed in a reactive electrochemical filter system with carbon nanotubes and/or Ti4O7 (1.7 × 10−5–1.4 × 10−4 m s−1). The electrical energy per order degradation (EE/O) for RhB was as low as 0.28 kW h m−3 in flow-through mode, with a relatively short residence time of 9.8 min. The overall mineralization current efficiency (MCE) was calculated to be 83.6% with ∼99% RhB removal and ∼51% TOC removal. These results illustrate that this reactive electrochemical filter system is expected to be a promising method for water treatment. An energy-efficient reactive electrochemical filter system was developed using porous Ti/SnO2–Sb filters as anodic reactive electrochemical membranes.![]()
Collapse
Affiliation(s)
- Kui Yang
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- School of Environment and Civil Engineering
| | - Hui Lin
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | | | - Ruzhen Xie
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Sihao Lv
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Junfeng Niu
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Jie Chen
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Yongyou Hu
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters
| |
Collapse
|
44
|
Investigating the Kinetics and Mechanism of Organic Oxidation in Parallel with the Oxygen Evolution Reaction. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0417-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Bai H, He P, Chen J, Liu K, Lei H, Zhang X, Dong F, Li H. Electrocatalytic degradation of bromocresol green wastewater on Ti/SnO 2-RuO 2 electrode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:220-227. [PMID: 28067662 DOI: 10.2166/wst.2016.509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thermal decomposition method was employed to prepare a Ti/SnO2-RuO2 electrode, on which electrocatalytic degradation of bromocresol green (BCG) was investigated in detail. Scanning electron microscopy, an X-ray diffraction analyzer and an X-ray fluorescence spectrometer were adopted to characterize the morphology, crystal structure and element analysis of the as-prepared Ti/SnO2-RuO2 electrode. It was indicated that the Ti/SnO2-RuO2 electrode had a 'cracked-mud' structure and exhibited a superior specific surface area. The removal efficiency of BCG on the Ti/SnO2-RuO2 electrode was determined in terms of chemical oxygen demand and ultraviolet-visible absorption spectrometry. The results of the batch experiment indicated that the removal efficiency of BCG was influenced by the following factors in descending order: initial pH0, reaction temperature, current density and electrolysis time. The removal efficiency of BCG reached up to 91% at the optimal experiment conditions (initial concentration of 100 mg L-1, initial pH0 7, reaction temperature of 30 °C, current density of 12 mA cm-2 and electrolysis time of 150 min). As a result, it was concluded that BCG wastewater was efficiently removed by electrochemical oxidation on the Ti/SnO2-RuO2 electrode.
Collapse
Affiliation(s)
- Hongmei Bai
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China E-mail:
| | - Ping He
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China E-mail:
| | - Jingchao Chen
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China E-mail:
| | - Kaili Liu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China E-mail:
| | - Hong Lei
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaojuan Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China E-mail:
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hong Li
- National Research Centre for Municipal Wastewater Treatment and Reuse, Mianyang 621010, China
| |
Collapse
|
46
|
Fabrication of dense spherical and rhombic Ti/Sb–SnO 2 electrodes with enhanced electrochemical activity by colloidal electrodeposition. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Shestakova M, Graves J, Sitarz M, Sillanpää M. Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0925-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Duan Y, Chen Y, Wen Q, Duan T. Electrodeposition preparation of a cauliflower-like Sb–SnO2 electrode from DMSO solution for electrochemical dye decolorization. RSC Adv 2016. [DOI: 10.1039/c6ra07744g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ti/Sb–SnO2 electrode prepared in DMSO solution exhibits a distinct cauliflower-like structure, and has the significantly enhanced service lifetime and electrochemical dye decolorization activity.
Collapse
Affiliation(s)
- Ying Duan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
- China
| | - Ye Chen
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
- China
| | - Qing Wen
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
- China
| | - Tigang Duan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin
- China
| |
Collapse
|
49
|
Vargas R, Borrás C, Méndez D, Mostany J, Scharifker BR. Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2984-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Significant Enhancement of the Photoelectrochemical Activity of Nanoporous TiO 2 for Environmental Applications. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|