1
|
Mandal N, Mitra R, Pramanick B. C-MEMS-derived glassy carbon electrochemical biosensors for rapid detection of SARS-CoV-2 spike protein. MICROSYSTEMS & NANOENGINEERING 2023; 9:137. [PMID: 37937185 PMCID: PMC10625972 DOI: 10.1038/s41378-023-00601-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
According to a World Health Organization (WHO) report, the world has experienced more than 766 million cases of positive SARS-CoV-2 infection and more than 6.9 million deaths due to COVID through May 2023. The WHO declared a pandemic due to the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and the fight against this pandemic is not over yet. Important reasons for virus spread include the lack of detection kits, appropriate detection techniques, delay in detection, asymptomatic cases and failure in mass screening. In the last 3 years, several researchers and medical companies have introduced successful test kits to detect the infection of symptomatic patients in real time, which was necessary to monitor the spread. However, it is also important to have information on asymptomatic cases, which can be obtained by antibody testing for the SARS-CoV-2 virus. In this work, we developed a simple, advantageous immobilization procedure for rapidly detecting the SARS-CoV-2 spike protein. Carbon-MEMS-derived glassy carbon (GC) is used as the sensor electrode, and the detection is based on covalently linking the SARS-CoV-2 antibody to the GC surface. Glutaraldehyde was used as a cross-linker between the antibody and glassy carbon electrode (GCE). The binding was investigated using Fourier transform infrared spectroscopy (FTIR) characterization and cyclic voltammetric (CV) analysis. Electrochemical impedance spectroscopy (EIS) was utilized to measure the change in total impedance before and after incubation of the SARS-CoV-2 antibody with various concentrations of SARS-CoV-2 spike protein. The developed sensor can sense 1 fg/ml to 1 µg/ml SARS-CoV-2 spike protein. This detection is label-free, and the chances of false positives are minimal. The calculated LOD was ~31 copies of viral RNA/mL. The coefficient of variation (CV) number is calculated from EIS data at 100 Hz, which is found to be 0.398%. The developed sensor may be used for mass screening because it is cost-effective. A schematic representation of the SARS-CoV-2 spike protein sensing using surface functionalized glassy carbon electrode.
Collapse
Affiliation(s)
- Naresh Mandal
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Bidhan Pramanick
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- Centre of Excellence in Particulates Colloids and Interfaces, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| |
Collapse
|
2
|
Zhou L, Hou H, Wei H, Yao L, Sun L, Yu P, Su B, Mao L. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Anal Chem 2019; 91:3645-3651. [DOI: 10.1021/acs.analchem.8b05658] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Hou
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Huan Wei
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Sun
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Yu
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lanqun Mao
- Beijing National Research Center for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
3
|
Trouillon R, Gijs MAM. Paper-Based Polymer Electrodes for Bioanalysis and Electrochemistry of Neurotransmitters. Chemphyschem 2018; 19:1164-1172. [DOI: 10.1002/cphc.201701124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems 2; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems 2; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces. Biomed Eng Lett 2017. [DOI: 10.1007/s13534-016-0230-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
5
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
6
|
Trouillon R, Letizia MC, Menzies KJ, Mouchiroud L, Auwerx J, Schoonjans K, Gijs MAM. A multiscale study of the role of dynamin in the regulation of glucose uptake. Integr Biol (Camb) 2017; 9:810-819. [DOI: 10.1039/c7ib00015d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells- and organisms-on-a-chip strategies were used to highlight the role of the molecular motor dynamin in regulating the translocation of specific glucose transporters.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| | - M. Cristina Letizia
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| | - Keir J. Menzies
- Laboratory of Metabolic Signaling
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-UPSCHOONJANS
- CH-1015 Lausanne
- Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-LISP
- CH-1015 Lausanne
- Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-LISP
- CH-1015 Lausanne
- Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-SV-IBI-UPSCHOONJANS
- CH-1015 Lausanne
- Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- EPFL-STI-IMT-LMIS2
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
7
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
8
|
Giuliani JG, Benavidez TE, Duran GM, Vinogradova E, Rios A, Garcia CD. Development and Characterization of Carbon Based Electrodes from Pyrolyzed Paper for Biosensing Applications. J Electroanal Chem (Lausanne) 2016; 765:8-15. [PMID: 27175108 PMCID: PMC4860743 DOI: 10.1016/j.jelechem.2015.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article details the study of electrochemical behavior of new carbon electrodes based on pyrolysis of different paper sources to be used in biosensor applications. The resistivity of the pyrolyzed papers was initially used as screening parameters to select the best three paper samples (imaging card paper, multipurpose printing paper, and 3MM chromatography paper) and assemble working electrodes that were further characterized by a combination of microscopy, electrochemistry, and spectroscopy. Although slight differences in performance were observed, all carbon substrates fabricated from pyrolysis of paper allowed the development of competitive biosensors for uric acid. The presented results demonstrate the potential of these electrodes for sensing applications and highlight the potential advantages of 3MM chromatography paper as a substrate to fabricate electrodes by pyrolysis.
Collapse
Affiliation(s)
- Jason G. Giuliani
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | - Gema M. Duran
- Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Ciudad Real, Spain
| | - Ekaterina Vinogradova
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Angel Rios
- Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Ciudad Real, Spain
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
9
|
Trouillon R, Gijs MAM. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv 2016. [DOI: 10.1039/c6ra02487d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A simple hybrid microfluidic/electrochemical system is used to observe the secretion of neurotransmitters from a cells-on-paper system.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
10
|
|
11
|
Yu CL, Lo NC, Cheng H, Tsuda T, Sakamoto T, Chen YH, Kuwabata S, Chen PY. An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Cheng H, Chen HT, Hsien KC, Lu CY, Chen PY. New copper complexes incorporated with the one-step preparation of ionic liquid carbon paste electrode for highly selectively reducing hydrogen peroxide. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Zhang L, Wang J, Tian Y. Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1203-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Li M, Phair J, Cardosi MF, Davis J. Nanostructuring carbon fibre probes for use in central venous catheters. Anal Chim Acta 2013; 812:1-5. [PMID: 24491756 DOI: 10.1016/j.aca.2013.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/20/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022]
Abstract
A carbon fibre probe is described which utilises the oxidation of an endogenous biomarker to provide diagnostic information on the condition of intravascular access lines. The probe surface was modified through anodic oxidation to provide a high selectivity towards urate which was used as a redox probe through which the pH could be determined. A Nernstian response (-60 mV/pH) was obtained which was free from the interference of other redox species common to biofluids. The electroanalytical performance of the probe has been optimised and the applicability of the approach demonstrated through testing the responses in whole blood.
Collapse
Affiliation(s)
- Meixian Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jolene Phair
- School of Engineering, University of Ulster, Jordanstown, Northern Ireland BT37 0QB, UK
| | - Marco F Cardosi
- Lifescan Scotland Ltd, Beechwood Park North, Inverness IV2 3ED, UK
| | - James Davis
- School of Engineering, University of Ulster, Jordanstown, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
15
|
Croushore CA, Sweedler JV. Microfluidic systems for studying neurotransmitters and neurotransmission. LAB ON A CHIP 2013; 13:1666-76. [PMID: 23474943 PMCID: PMC3632338 DOI: 10.1039/c3lc41334a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurotransmitters and neuromodulators are molecules within the nervous system that play key roles in cell-to-cell communication. Upon stimulation, neurons release these signaling molecules, which then act at local or distant locations to elicit a physiological response. Ranging from small molecules, such as diatomic gases and amino acids, to larger peptides, these chemical messengers are involved in many functional processes including growth, reproduction, memory and behavior. Understanding signaling molecules and the conditions that govern their release in healthy or damaged networks promises to deliver insights into neural network formation and function. Microfluidic devices can provide optimal cell culture conditions, reduced volume systems, and precise control over the chemical and physical nature of the extracellular environment, making them well-suited for studying neurotransmission and other forms of cell-to-cell signaling. Here we review selected microfluidic approaches that are suitable for monitoring cell-to-cell signaling molecules. We highlight devices that improve in vivo sample collection as well as compartmentalized devices designed to isolate individual neurons or co-cultures in vitro, including a focus on systems used for studying neural injury and regeneration, and devices that allow selective chemical stimulations and the characterization of released molecules.
Collapse
Affiliation(s)
- Callie A. Croushore
- Department of Chemistry and the Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana IL 61801,
USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana IL 61801,
USA
| |
Collapse
|
16
|
Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 2012; 405:3753-71. [PMID: 23241816 PMCID: PMC3608872 DOI: 10.1007/s00216-012-6578-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.
Collapse
|
17
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|