1
|
Ricardo J, Duarte A, Chiussi S, Martins GV, Moreira FTC. Biomimetic Prussian Blue Sensor for Ultrasensitive Direct Detection of Myoglobin. Polymers (Basel) 2025; 17:630. [PMID: 40076122 PMCID: PMC11902790 DOI: 10.3390/polym17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
This research presents a novel, cost-effective, and scalable approach for the direct detection of myoglobin (Myo) in point-of-care (PoC) applications. In this strategy, redox-active Prussian Blue nanocubes (PBNCs) are applied to a disposable platinum screen-printed electrode (Pt-SPE). Subsequently, a biomimetic sensing layer is generated by electropolymerization of ortho-phenylenediamine (o-PD) in the presence of Myo, which forms molecularly imprinted polymer (MIP) sites by cyclic voltammetry (CV). The electropolymerization process takes place in a potential range of -0.2 V to +0.8 V, for five cycles at a scan rate of 50 mV/s, in a 10 mmol/L o-PD solution. After polymerization, the electrode is incubated in trypsin for 2 h to create Myo-specifically imprinted cavities. The structural and morphological properties of the biomimetic layer were analyzed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The direct detection of Myo was analyzed by differential pulse voltammetry (DPV). The results showed a linear response to Myo concentrations ranging from 1.0 ag/mL to 10 ng/mL, a limit of detection (LOD) of 0.76 ag/mL, and a R2 value of 0.9775. The absence of an external liquid redox probe simplifies the sensor design, improves portability, and reduces the complexity of the assay, making it more suitable for PoC.
Collapse
Affiliation(s)
- Jacinta Ricardo
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Abel Duarte
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | | | - Gabriela V. Martins
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Felismina T. C. Moreira
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| |
Collapse
|
2
|
Sharma I, Bhardwaj S, Karwasra R, Kaushik D, Sharma S. The Emergence of Nanotechnology in the Prognosis and Treatment of Myocardial Infarctions. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:35-55. [PMID: 37904554 DOI: 10.2174/1872210517666230721123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 11/01/2023]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, is a critical cardiovascular condition associated with high morbidity and mortality rates worldwide. Despite significant advancements in traditional treatment modalities, there remains a need for innovative approaches to improve the prognosis and treatment outcomes of MI. The emergence of nanotechnology has provided a promising avenue for revolutionizing the management of this life-threatening condition. This manuscript aims to explore the role of nanotechnology in the prognosis and treatment of myocardial infarctions. Nanotechnology offers unique advantages in the field of cardiovascular medicine, including targeted drug delivery, precise imaging and diagnosis, regenerative medicine approaches, biosensors and monitoring, and the integration of therapy and diagnostics (theragnostic). One of the key advantages of nanotechnology is the ability to deliver therapeutic agents directly to the affected site. Nanoparticles can be engineered to carry drugs specifically to damaged heart tissue, enhancing their efficacy while minimizing off-target effects. Additionally, nanoparticles can serve as contrast agents, facilitating high-resolution imaging and accurate diagnosis of infarcted heart tissue. Furthermore, nanotechnology-based regenerative approaches show promise in promoting tissue healing and regeneration after MI. Nanomaterials can provide scaffolding structures or release growth factors to stimulate the growth of new blood vessels and support tissue repair. This regenerative potential holds significant implications for restoring cardiac function and minimizing long-term complications. Nanotechnology also enables real-time monitoring of critical parameters within the heart, such as oxygen levels, pH, and electrical activity, through the utilization of nanoscale devices and sensors. This capability allows for the early detection of complications and facilitates timely interventions. Moreover, the integration of therapy and diagnostics through nanotechnology- based platforms, known as theragnostic, holds tremendous potential. Nanoparticles can simultaneously deliver therapeutic agents while providing imaging capabilities, enabling personalized treatment strategies tailored to individual patients. This manuscript will review the recent advancements, clinical trials, and patents in nanotechnology for the prognosis and treatment of myocardial infarctions. By leveraging nanotechnology's unique properties and applications, researchers and clinicians can develop innovative therapeutic approaches that enhance patient outcomes, improve prognosis, and ultimately revolutionize the management of myocardial infarctions.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shivani Bhardwaj
- ICAR- Central Institute for Research on Buffaloes Hisar, Haryana, 125001, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of Ayush, Govt. of India, New Delhi, 110058, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shivkant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
3
|
Kogularasu S, Lin WC, Lee YY, Huang BW, Chen YL, Chang-Chien GP, Sheu JK. Advancements in electrochemical biosensing of cardiovascular disease biomarkers. J Mater Chem B 2024; 12:6305-6327. [PMID: 38912548 DOI: 10.1039/d4tb00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cardiovascular diseases (CVDs) stand as a predominant global health concern, introducing vast socioeconomic challenges. In addressing this pressing dilemma, enhanced diagnostic modalities have become paramount, positioning electrochemical biosensing as an instrumental innovation. This comprehensive review navigates the multifaceted terrain of CVDs, elucidating their defining characteristics, clinical manifestations, therapeutic avenues, and intrinsic risk factors. Notable emphasis is placed on pivotal diagnostic tools, spotlighting cardiac biomarkers distinguished by their unmatched clinical precision in terms of relevance, sensitivity, and specificity. Highlighting the broader repercussions of CVDs, there emerges an accentuated need for refined diagnostic strategies. Such an exploration segues into a profound analysis of electrochemical biosensing, encapsulating its foundational principles, diverse classifications, and integral components, notably recognition molecules and transducers. Contemporary advancements in biosensing technologies are brought to the fore, emphasizing pioneering electrode architectures, cutting-edge signal amplification processes, and the synergistic integration of biosensors with microfluidic platforms. At the core of this discourse is the demonstrated proficiency of biosensors in detecting cardiovascular anomalies, underpinned by empirical case studies, systematic evaluations, and clinical insights. As the narrative unfolds, it addresses an array of inherent challenges, spanning intricate technicalities, real-world applicability constraints, and regulatory considerations, finally, by casting an anticipatory gaze upon the future of electrochemical biosensing, heralding a new era of diagnostic tools primed to revolutionize cardiovascular healthcare.
Collapse
Affiliation(s)
- Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan.
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Wan-Ching Lin
- Department of Neuroradiology, E-da Hospital, I-Shou University, Kaohsiung 84001, Taiwan
- Department of Neurosurgery, E-da Hospital, I-Shou University, Kaohsiung 84001, Taiwan
| | - Yen-Yi Lee
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan.
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan.
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
4
|
Rabbani G, Ahmad E, Khan ME, Khan AU, Zamzami MA, Ahmad A, Ali SK, Bashiri AH, Zakri W. Synthesis of carbon nanotubes-chitosan nanocomposite and immunosensor fabrication for myoglobin detection: An acute myocardial infarction biomarker. Int J Biol Macromol 2024; 265:130616. [PMID: 38447842 DOI: 10.1016/j.ijbiomac.2024.130616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The use of single-walled carbon nanotubes (SWCNTs) in biomedical applications is limited due to their inability to disperse in aqueous solutions. In this study, dispersed -COOH functionalized CNTs with N-succinylated chitosan (CS), greatly increasing the water solubility of CNTs and forming a uniformly dispersed nanocomposite solution of CNTs@CS. Coupling reagent EDC/NHS was used as a linker with the -COOH groups present on the N-succinylated chitosan which significantly improved the affinity of the CNTs for biomolecules. Myoglobin (Mb) is a promising biomarker for the precise assessment of cardiovascular risk, type 2 diabetes, metabolic syndrome, hypertension and several types of cancer. A high level of Mb can be used to diagnose the mentioned pathogenic diseases. The CNTs@CS-FET demonstrates superior sensing performance for Mb antigen fortified in buffer, with a wide linear range of 1 to 4000 ng/mL. The detection limit of the developed Mb immunosensor was estimated to be 4.2 ng/mL. The novel CNTs@CS-FET immunosensor demonstrates remarkable capability in detecting Mb without being affected by interferences from nonspecific antigens. Mb spiked serum showed a recovery rate of 100.262 to 118.55 % indicating great promise for Mb detection in clinical samples. The experimental results confirmed that the CNTs@CS-FET immunosensor had excellent selectivity, reproducibility and storage stability.
Collapse
Affiliation(s)
- Gulam Rabbani
- IT-medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea.
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia.
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Rong Y, Zareef M, Liu L, Din ZU, Chen Q, Ouyang Q. Application of portable Vis-NIR spectroscopy for rapid detection of myoglobin in frozen pork. Meat Sci 2023; 201:109170. [PMID: 37004370 DOI: 10.1016/j.meatsci.2023.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Myoglobin content is considered as a crucial index to evaluate the quality of frozen pork. In this study, a portable visible and near-infrared (Vis-NIR) spectrometer combined with chemometrics was used to detect myoglobin content in frozen pork. Metmyoglobin, deoxymyoglobin, oxymyoglobin, and total myoglobin were assessed spectrophotometrically. The raw Vis-NIR spectra of frozen pork samples were pre-processed using 1st derivatives (FD). Afterward, Synergy Interval Partial Least Square (Si-PLS) coupled Competitive Adaptive Reweighted Sampling algorithm (Si-CARS-PLS) was applied to select characteristic variables. The Si-CARS-PLS models revealed the probability of estimating myoglobin content in frozen pork, with predictive correlation coefficients (Rp) for metmyoglobin, deoxymyoglobin, oxymyoglobin, and total myoglobin as 0.9095, 0.9004, 0.8578, and 0.9133, respectively. The findings of this study showed that Vis-NIR spectroscopy coupled with Si-CARS-PLS is a promising method and offered a way forward for determining the myoglobin content in frozen pork.
Collapse
Affiliation(s)
- Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lihua Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zia Ud Din
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Almehizia AA, Naglah AM, Alrasheed LS, Alanazi MG, Amr AEGE, Kamel AH. Point-of-care paper-based analytical device for potentiometric detection of myoglobin as a cardiovascular disease biomarker. RSC Adv 2023; 13:15199-15207. [PMID: 37213337 PMCID: PMC10193383 DOI: 10.1039/d3ra02375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
One of the cardiac biomarkers, myoglobin (Mb), is important in the rapid identification of cardio-vascular disorders. Therefore, point-of-care monitoring is essential. Pursuing this goal, a robust, reliable, and affordable paper-based analytical apparatus for potentiometric sensing has been developed and characterized. The molecular imprint technique was used to create a customized biomimetic antibody for myoglobin (Mb) on the surface of carboxylated multiwalled carbon nanotubes (MWCNT-COOH). This was accomplished by attaching Mb to carboxylated MWCNTs' surfaces and then filling the empty spaces through the mild polymerization of acrylamide in N,N-methylenebisacrylamide and ammonium persulphate. The modification of the MWCNTs' surface was verified by SEM and FTIR analysis. A hydrophobic paper substrate coated with fluorinated alkyl silane (CF3(CF2)7CH2CH2SiCl3, CF10) has been coupled with a printed all-solid-state Ag/AgCl reference electrode. The presented sensors showed a linear range of 5.0 × 10-8 to 1.0 × 10-4 M with a potentiometric slope of -57.1 ± 0.3 mV decade-1 (R2 = 0.9998) and a detection limit of 28 nM at pH 4. Compared to creatinine, sucrose, fructose, galactose, sodium glutamate, thiamine, alanine, ammonium, uric acid, albumin, glutamine, guanine, troponine T, and glucose, the sensor showed good selectivity for Mb. It demonstrated a good recovery for the detection of Mb in several fake serum samples (93.0-103.3%), with an average relative standard deviation of 4.5%. The current approach might be viewed as a potentially fruitful analytical tool for obtaining disposable, cost-effective paper-based potentiometric sensing devices. These types of analytical devices can be potentially manufacturable at large scales in clinical analysis.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Lamees S Alrasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mashael G Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdel El-Galil E Amr
- Applied Organic Chemistry Department, National Research Center Dokki Giza 12622 Egypt
| | - Ayman H Kamel
- Department, College of Science, University of Bahrain Sokheer 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
7
|
Harshita, Park TJ, Kailasa SK. Microwave-assisted synthesis of blue fluorescent molybdenum nanoclusters with maltose-cysteine Schiff base for detection of myoglobin and γ-aminobutyric acid in biofluids. LUMINESCENCE 2023. [PMID: 36758217 DOI: 10.1002/bio.4454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1-0.5 μM) and GABA (0.125-2.5 μM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.
Collapse
Affiliation(s)
- Harshita
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Tae-Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
8
|
Abstract
The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy.
Collapse
|
9
|
Lima FMR, de Menezes AS, Maciel AP, Sinfrônio FSM, Kubota LT, Damos FS, Luz RCS. Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite. Molecules 2022; 27:molecules27154778. [PMID: 35897951 PMCID: PMC9330231 DOI: 10.3390/molecules27154778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient's survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction. Thus, we described the photoelectrochemical immunosensor development to detect myoglobin. It was based on fluorine-doped tin oxide modified with CdSeS/ZnSe quantum dots and barium titanate (BTO), designated as CdSeS/ZnSQDS/BTO. It was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and amperometry. The anodic photocurrent at the potential of 0 V (vs. Ag/AgCl) and pH 7.4 was found linearly related to the myoglobin (Mb) concentration from 0.01 to 1000 ng mL-1. Furthermore, the immunosensor showed an average recovery rate of 95.7-110.7% for the determination of myoglobin.
Collapse
Affiliation(s)
- Fernanda M. R. Lima
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | - Alan S. de Menezes
- Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil;
| | - Adeilton P. Maciel
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | | | - Lauro T. Kubota
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil;
| | - Flávio S. Damos
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| | - Rita C. S. Luz
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| |
Collapse
|
10
|
El Sharif HF, Dennison SR, Tully M, Crossley S, Mwangi W, Bailey D, Graham SP, Reddy SM. Evaluation of electropolymerized molecularly imprinted polymers (E-MIPs) on disposable electrodes for detection of SARS-CoV-2 in saliva. Anal Chim Acta 2022; 1206:339777. [PMID: 35473858 PMCID: PMC8974637 DOI: 10.1016/j.aca.2022.339777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
We investigate electropolymerized molecularly imprinted polymers (E-MIPs) for the selective recognition of SARS-CoV-2 whole virus. E-MIPs imprinted with SARS-CoV-2 pseudoparticles (pps) were electrochemically deposited onto screen printed electrodes by reductive electropolymerization, using the water-soluble N-hydroxmethylacrylamide (NHMA) as functional monomer and crosslinked with N,N'-methylenebisacrylamide (MBAm). E-MIPs for SARS-CoV-2 showed selectivity for template SARS-CoV-2 pps, with an imprinting factor of 3:1, and specificity (significance = 0.06) when cross-reacted with other respiratory viruses. E-MIPs detected the presence of SARS-CoV-2 pps in <10 min with a limit of detection of 4.9 log10 pfu/mL, suggesting their suitability for detection of SARS-CoV-2 with minimal sample preparation. Using electrochemical impedance spectroscopy (EIS) and principal component analysis (PCA), the capture of SARS-CoV-2 from real patient saliva samples was also evaluated. Fifteen confirmed COVID-19 positive and nine COVID-19 negative saliva samples were compared against the established loop-mediated isothermal nucleic acid amplification (LAMP) technique used by the UK National Health Service. EIS data demonstrated a PCA discrimination between positive and negative LAMP samples. A threshold real impedance signal (ZRe) ≫ 4000 Ω and a corresponding charge transfer resistance (RCT) ≫ 6000 Ω was indicative of absence of virus (COVID-19 negative) in agreement with values obtained for our control non-imprinted polymer control. A ZRe at or below a threshold value of 600 Ω with a corresponding RCT of <1200 Ω was indicative of a COVID-19 positive sample. The presence of virus was confirmed by treatment of E-MIPs with a SARS-CoV-2 specific monoclonal antibody.
Collapse
Affiliation(s)
- H F El Sharif
- Department of Chemistry, UCLan Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - S R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - M Tully
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S Crossley
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - W Mwangi
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - D Bailey
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S P Graham
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - S M Reddy
- Department of Chemistry, UCLan Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| |
Collapse
|
11
|
Palladium nanocluster-based fluorescent sensing platform via synergistic effects of inner filter effect and agglomeration-induced quenching for myoglobin determination. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
13
|
Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker; nano-aptasensors approaches. J Pharm Biomed Anal 2022; 211:114624. [DOI: 10.1016/j.jpba.2022.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
14
|
Borse S, Jha S, Murthy ZVP, Kailasa SK. Sustainable chemistry approach for the preparation of bluish green emissive copper nanoclusters from Justicia adhatoda leaves extract: a facile analytical approach for the sensing of myoglobin and l-thyroxine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02524h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustainable chemistry approach for synthesis of fluorescent copper nanoclusters for sensing of myoglobin and l-thyroxine.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat 39500, Gujarat, India
| | - Z. V. P. Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, India
| |
Collapse
|
15
|
Al Fatease A, Haque M, Umar A, Ansari SG, Alhamhoom Y, Muhsinah AB, Mahnashi MH, Guo W, Ansari ZA. Label-Free Electrochemical Sensor Based on Manganese Doped Titanium Dioxide Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction. Molecules 2021; 26:4252. [PMID: 34299527 PMCID: PMC8306677 DOI: 10.3390/molecules26144252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
A label free electrochemical sensor based on pure titanium oxide and manganese (Mn)-doped titanium oxide (TiO2) nanoparticles are fabricated and characterized for the sensitive detection of myoglobin (Mb) levels to analyze the cardiovascular infarction. Pristine and Mn-doped TiO2 nanoparticles were synthesized via the sol-gel method and characterized in order to understand their structure, morphologies, composition and optical properties. The structural properties revealed that the pure- and doped-TiO2 nanoparticles possess different TiO2 planes. FTIR studies confirm the formation of metal oxide nanoparticles by exhibiting a well-defined peak in the range of 600-650 cm-1. The values of the optical band gap, estimated from UV-Vis spectroscopy, are decreased for the Mn-doped TiO2 nanoparticles. UV-Vis spectra in the presence of myoglobin (Mb) indicated interaction between the TiO2 nanoparticles and myoglobin. The SPE electrodes were then fabricated by printing powder film over the working electrode and tested for label-free electrochemical detection of myoglobin (Mb) in the concentration range of 0-15 nM Mb. The fabricated electrochemical sensor exhibited a high sensitivity of 100.40 μA-cm-2/nM with a lowest detection limit of 0.013 nM (0.22 ng/mL) and a response time of ≤10 ms for sample S3. An interference study with cyt-c and Human Serum Albumin (HSA) of the sensors show the selective response towards Mb in 1:1 mixture.
Collapse
Affiliation(s)
- Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mazharul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India; (M.H.); (S.G.A.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Shafeeque G. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India; (M.H.); (S.G.A.)
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 29613, Saudi Arabia;
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China;
| | - Zubaida A. Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India; (M.H.); (S.G.A.)
| |
Collapse
|
16
|
Piloto AML, Ribeiro DSM, Rodrigues SSM, Santos JLM, Sampaio P, Sales G. Imprinted Fluorescent Cellulose Membranes for the On-Site Detection of Myoglobin in Biological Media. ACS APPLIED BIO MATERIALS 2021; 4:4224-4235. [PMID: 35006835 DOI: 10.1021/acsabm.1c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, the conjugation of molecularly imprinted polymers (MIPs) to quantum dots (QDs) was successfully applied in the assembly of an imprinted cellulose membrane [hydroxy ethyl cellulose (HEC)/MIP@QDs] for the specific recognition of the cardiac biomarker myoglobin (Myo) as a sensitive, user-friendly, and portable system with the potential for point-of-care (POC) applications. The concept is to use the MIPs as biorecognition elements, previously prepared on the surface of semiconductor cadmium telluride QDs as detection particles. The fluorescent quenching of the membrane occurred with increasing concentrations of Myo, showing linearity in the interval range of 7.39-291.3 pg/mL in a1000-fold diluted human serum. The best membrane showed a linear response below the cutoff values for myocardial infarction (23 ng/mL), a limit of detection of 3.08 pg/mL, and an imprinting factor of 1.65. The incorporation of the biorecognition element MIPs on the cellulose substrate brings an approach toward a portable and user-friendly device in a sustainable manner. Overall, the imprinted membranes display good stability and selectivity toward Myo when compared with the nonimprinted membranes (HEC/NIP@QDs) and have the potential to be applied as a sensitive system for Myo detection in the presence of other proteins. Moreover, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical label-free detection method, reaching concentration levels with clinical significance.
Collapse
Affiliation(s)
- Ana Margarida L Piloto
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
| | - David S M Ribeiro
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - S Sofia M Rodrigues
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - João L M Santos
- Associated Laboratory for Green Chemistry LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Paula Sampaio
- i3S-Institute for Research and Innovation in Health, Porto University, 4200-135 Porto, Portugal.,IBMC-Institute of Molecular and Cell Biology, Porto University, 4200-135 Porto, Portugal
| | - Goreti Sales
- BioMark Sensor Research, School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal.,BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
17
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Crapnell RD, Dempsey-Hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Reyes-Retana JA, Duque-Ossa LC. Acute Myocardial Infarction Biosensor: A Review From Bottom Up. Curr Probl Cardiol 2020; 46:100739. [PMID: 33250264 DOI: 10.1016/j.cpcardiol.2020.100739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/09/2023]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease that is produced due to a deficiency of oxygen generating irreversible damage in the heart muscle. In diagnosis, electrocardiogram (ECG) investigation has been the main method but is insufficient, so approaches like the measurement of biomarkers levels in plasma or saliva have become one of the most commonly applied strategies for prognosis of AMI, as some of them are specifically related to a heart attack. Many tests are carrying on to determine biological markers changes, but usually, they present disadvantages related to time consumption and laborious work. To overcome the issues, researchers around the world have been developing different ways to enhance detection through the use of biosensors. These diagnostic devices have a biological sensing element associated to a physicochemical transducer that can be made from different materials and configurations giving place to different kinds of detection: Electrical/Electrochemical, Optical and Mechanical. In this review, the authors presents relevant investigations related to the most important biomarkers and biosensors used for their detection having in mind the nanotechnology participation in the process through the application of nanostructures as a good choice for device configuration.
Collapse
Affiliation(s)
- J A Reyes-Retana
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| | - L C Duque-Ossa
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| |
Collapse
|
20
|
Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1802594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Jiangsu Sunan Pharmaceutical Industrial Co., Ltd, Zhenjiang, Jiangsu, China
| | - Renlong Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yang Qu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Chia Tai Qingjiang Pharmaceutical Industry Co., Ltd, Huaian, China
| | - Hongfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Yingshu Feng
- School of Medical Technology, Zhenjiang college, Zhenjiang, Jiangsu, China
| | - Lin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Wenjing Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
21
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Sharma A, Bhardwaj J, Jang J. Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection. ACS OMEGA 2020; 5:3924-3931. [PMID: 32149219 PMCID: PMC7057319 DOI: 10.1021/acsomega.9b03368] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 05/24/2023]
Abstract
Acute myocardial infarction (AMI), also recognized as a "heart attack," is one leading cause of death globally, and cardiac myoglobin (cMb), an important cardiac biomarker, is used for the early assessment of AMI. This paper presents an ultrasensitive, label-free electrochemical aptamer-based sensor (aptasensor) for cMb detection using polyethylenimine (PEI)-functionalized reduced graphene oxide (PEI-rGO) thin films. PEI, a cationic polymer, was used as a reducing agent for graphene oxide (GO), providing highly positive charges on the rGO surface and allowing direct immobilization of negatively charged single-strand DNA aptamers against cMb via electrostatic interaction without any linker or coupling chemistry. The presence of cMb was detected on Mb aptamer-modified electrodes using differential pulse voltammetry via measuring the current change due to the direct electron transfer between the electrodes and cMb proteins (Fe3+/Fe2+). The limits of detection were 0.97 pg mL-1 (phosphate-buffered saline) and 2.1 pg mL-1 (10-fold-diluted human serum), with a linear behavior with logarithmic cMb concentration. The specificity and reproducibility of the aptasensors were also examined. This electrochemical aptasensor using polymer-modified rGO shows potential for the early assessment of cMb in point-of-care testing applications.
Collapse
Affiliation(s)
- Abhinav Sharma
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Department
of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Department
of Biomedical Engineering, UNIST, Ulsan 44919, Republic of Korea
- School
of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
23
|
Ma Y, Liu C, Zeng Q, Wang L. An Impedance Molecularly Imprinted Sensor for the Detection of Bovine Serum Albumin (BSA) Using the Dynamic Electrochemical Impedance Spectroscopy. ELECTROANAL 2019. [DOI: 10.1002/elan.201900570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ya Ma
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Li‐Shi Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| |
Collapse
|
24
|
Regan B, Boyle F, O'Kennedy R, Collins D. Evaluation of Molecularly Imprinted Polymers for Point-of-Care Testing for Cardiovascular Disease. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3485. [PMID: 31395843 PMCID: PMC6720456 DOI: 10.3390/s19163485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Molecular imprinting is a rapidly growing area of interest involving the synthesis of artificial recognition elements that enable the separation of analyte from a sample matrix and its determination. Traditionally, this approach can be successfully applied to small analyte (<1.5 kDa) separation/ extraction, but, more recently it is finding utility in biomimetic sensors. These sensors consist of a recognition element and a transducer similar to their biosensor counterparts, however, the fundamental distinction is that biomimetic sensors employ an artificial recognition element. Molecularly imprinted polymers (MIPs) employed as the recognition elements in biomimetic sensors contain binding sites complementary in shape and functionality to their target analyte. Despite the growing interest in molecularly imprinting techniques, the commercial adoption of this technology is yet to be widely realised for blood sample analysis. This review aims to assess the applicability of this technology for the point-of-care testing (POCT) of cardiovascular disease-related biomarkers. More specifically, molecular imprinting is critically evaluated with respect to the detection of cardiac biomarkers indicative of acute coronary syndrome (ACS), such as the cardiac troponins (cTns). The challenges associated with the synthesis of MIPs for protein detection are outlined, in addition to enhancement techniques that ultimately improve the analytical performance of biomimetic sensors. The mechanism of detection employed to convert the analyte concentration into a measurable signal in biomimetic sensors will be discussed. Furthermore, the analytical performance of these sensors will be compared with biosensors and their potential implementation within clinical settings will be considered. In addition, the most suitable application of these sensors for cardiovascular assessment will be presented.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Fiona Boyle
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
25
|
Lach P, Cieplak M, Majewska M, Noworyta KR, Sharma PS, Kutner W. “Gate Effect” in p-Synephrine Electrochemical Sensing with a Molecularly Imprinted Polymer and Redox Probes. Anal Chem 2019; 91:7546-7553. [DOI: 10.1021/acs.analchem.8b05512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Majewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof R. Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
26
|
Yin C, Weng W, Gao R, Liu J, Niu Y, Li G, Sun W. Investigation of the direct electrochemistry and electrocatalysis of myoglobin on gold nanorods modified electrode. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunxiao Yin
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao P. R. China
| | - Wenju Weng
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao P. R. China
| | - Rui Gao
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao P. R. China
| | - Juan Liu
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao P. R. China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical EngineeringHainan Normal University Haikou P. R. China
| | - Guangjiu Li
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical EngineeringHainan Normal University Haikou P. R. China
| |
Collapse
|
27
|
Chen J, Ran F, Chen Q, Luo D, Ma W, Han T, Wang C, Wang C. A fluorescent biosensor for cardiac biomarker myoglobin detection based on carbon dots and deoxyribonuclease I-aided target recycling signal amplification. RSC Adv 2019; 9:4463-4468. [PMID: 35520187 PMCID: PMC9060577 DOI: 10.1039/c8ra09459d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/27/2022] [Accepted: 01/20/2019] [Indexed: 01/14/2023] Open
Abstract
A sensitive biosensor using carbon dots and deoxyribonuclease I-aided target recycling signal amplification has been developed to detect myoglobin (MB), which is an important cardiac biomarker and plays a major role in the diagnosis of acute myocardial infarction (AMI). Here, in the absence of MB, the MB aptamer (Ap) is absorbed on the surface of carbon dots (CDs) through π-π stacking interactions, resulting in quenching of the fluorescent label by forming CD-aptamer complexes. Upon adding MB, the Ap sequences could be specifically recognized by MB, leading to the recovery of quenched fluorescence. Thus, quantitative evaluation of MB concentration has been achieved in a broad range from 50 pg mL-1 to 100 ng mL-1, and the detection limit is as low as 20 pg mL-1. This strategy is capable of specific and sensitive detection of MB in human serum, urine, and saliva and can be used for the diagnosis of AMI in the future.
Collapse
Affiliation(s)
- Jishun Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi 710004 China +86-02987679770
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan Hubei 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan Hubei 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan Hubei 442008 China
- Shennongjia Golden Monkey Key Laboratory of Conservation Biology in Hubei Province Shennongjia Hubei 442400 China
| | - Dan Luo
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan Hubei 442008 China
| | - Weidong Ma
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi 710004 China +86-02987679770
| | - Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi 710004 China +86-02987679770
| | - Ceming Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan Hubei 442008 China
| | - Congxia Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi 710004 China +86-02987679770
| |
Collapse
|
28
|
Nsabimana A, Ma X, Yuan F, Du F, Abdussalam A, Lou B, Xu G. Nanomaterials-based Electrochemical Sensing of Cardiac Biomarkers for Acute Myocardial Infarction: Recent Progress. ELECTROANAL 2018. [DOI: 10.1002/elan.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anaclet Nsabimana
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| |
Collapse
|
29
|
Keçili R. Selective Recognition of Myoglobin in Biological Samples Using Molecularly Imprinted Polymer-Based Affinity Traps. Int J Anal Chem 2018; 2018:4359892. [PMID: 30174693 PMCID: PMC6106809 DOI: 10.1155/2018/4359892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
The current work demonstrates the design, characterization, and preparation of molecularly imprinted microspheres for the selective detection of myoglobin in serum samples. The suspension polymerization approach was applied for the preparation of myoglobin imprinted microspheres. For this purpose, N-methacryloylamino folic acid-Nd3+ (MAFol- Nd3+) was chosen as the complex functional monomer. The optimization studies were performed changing the medium pH, temperature, and myoglobin concentration. pH 7.0 was determined as the optimum value where the prepared imprinted microspheres displayed maximum binding for myoglobin. The maximum binding capacity was achieved as 623 mgg-1. In addition, the selectivity studies were conducted. The results confirmed that the imprinted microspheres showed great selectivity towards myoglobin in the existence of hemoglobin, cytochrome c, and lysozyme which were chosen as potentially competing proteins.
Collapse
Affiliation(s)
- Rüstem Keçili
- Anadolu University, Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, 26470 Eskisehir, Turkey
| |
Collapse
|
30
|
Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018; 159:406-424. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Hitit University, Faculty of Arts and Sciences, Department of Chemistry, Corum, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey.
| |
Collapse
|
31
|
Jeon WY, Choi YB, Kim HH. Ultrasonic synthesis and characterization of poly(acrylamide)-co-poly(vinylimidazole)@MWCNTs composite for use as an electrochemical material. ULTRASONICS SONOCHEMISTRY 2018; 43:73-79. [PMID: 29555290 DOI: 10.1016/j.ultsonch.2017.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Applying a nanocomposite to increase the conductivity of an electrode can facilitate electrochemical analysis. In this regard, multi-walled carbon nanotubes (MWCNTs) evenly dispersed in hydrophilic solution can play an important role in electrochemical bio-sensing due to their unique properties, such as their high electrical conductivity and ability to conjugate with hydrophilic enzymes. Herein, we report the simple ultrasonic synthesis of a highly dispersible, enzyme-binding nanocomposite, poly(acrylamide)-co-poly(vinyl imidazole) (7:1 mol ratio)-MWCNTs (PAA-PVI@MWCNTs). This material, having a zeta potential of 36.6 ± 0.53 mV, was applied as a film to an electrode surface and stably bound with glucose oxidase to transfer an electron between the enzyme and electrode in the presence of glucose. The PAA-PVI@MWCNTs composite, which was readily dispersed in deionized water, can be used as a biocompatible material for applications such as bio-sensing, point-of-care testing (POCT), and other health care functions.
Collapse
Affiliation(s)
- Won-Yong Jeon
- Department of Chemistry, College of Natural Science, Dankook University, Anseo-Dong, Cheonan, Chungnam 31116, Republic of Korea; Department of Nanobiomedical Sciences and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Anseo-Dong, Cheonan, Chungnam 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Natural Science, Dankook University, Anseo-Dong, Cheonan, Chungnam 31116, Republic of Korea
| | - Hyug-Han Kim
- Department of Chemistry, College of Natural Science, Dankook University, Anseo-Dong, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
32
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
33
|
Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Mikrochim Acta 2018; 185:158. [PMID: 29594650 DOI: 10.1007/s00604-018-2705-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 11/26/2022]
Abstract
A nanohybrid mediated SERS substrate was prepared by in-situ synthesis and assembly of gold nanoparticles (AuNPs) on exfoliated nanosheets of tungsten disulfide (WS2) to form plasmonic hotspots. The nanohybrid surface was functionalized with specific aptamers which imparted high selectivity for the cardiac marker myoglobin (Mb). The fabricated aptasensor was read by SERS using a 532 nm laser and demonstrated significant signal enhancement, and this allowed Mb to be determined in the 10 f. mL-1 to 0.1 μg mL-1 concentration range. The study presents an approach to synergistically exploit the unique chemical and electromagnetic properties of both WS2 and AuNPs for many-fold enhancement of SERS signals. Graphical abstract Schematic presentation of a nanohybrid-mediated SERS substrate prepared by in-situ assembly of gold nanoparticles (AuNPs) reduced on exfoliated nanosheets of tungsten disulfide (WS2) to form plasmonic hot spots. Specific aptamers immobilized on the SERS surface impart high sensitivity and selectivity for the cardiac marker myoglobin (Mb).
Collapse
Affiliation(s)
- Munish Shorie
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Vinod Kumar
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Harmanjit Kaur
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Kulvinder Singh
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Vijay K Tomer
- Institute of Nano Science and Technology, Mohali, -160062, India
| | | |
Collapse
|
34
|
Huang Y, Xu J, Liu J, Wang X, Chen B. Disease-Related Detection with Electrochemical Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2375. [PMID: 29039742 PMCID: PMC5676665 DOI: 10.3390/s17102375] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
Abstract
Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.
Collapse
Affiliation(s)
- Ying Huang
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Jin Xu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Junjie Liu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Xiangyang Wang
- CET-College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Matta DP, Tripathy S, Krishna Vanjari SR, Sharma CS, Singh SG. An ultrasensitive label free nanobiosensor platform for the detection of cardiac biomarkers. Biomed Microdevices 2017; 18:111. [PMID: 27864741 DOI: 10.1007/s10544-016-0126-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We report the fabrication of a label free nano biosensor platform comprising single nanofiber that is derived out of multi-walled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, for the detection of three important human cardiac biomarkers viz., myoglobin (Myo), cardiac Troponin I (cTn I) and Creatine Kinase-MB (CK-MB). These composite nanofibers were synthesized using electrospinning process. Single nanofibers were aligned between pairs of electrodes in-situ during the electrospinning process. The target proteins were detected using chemiresistive detection methodology. Each biomarker was detected using a specific, single, aligned nanofiber, functionalized with its corresponding monoclonal antibody. Chemiresistive detection involves measuring the change in conductance of the functionalized nanofibers upon the binding of the targeted antigen. The minimum detection limits of Myo, CK-MB and cTn I were experimentally found out to be as low as 6, 20 and 50 fg/ml respectively. No response was observed when the nanofibers were exposed to a non-specific protein, demonstrating excellent specificity to the targeted detection. These MWCNTs embedded SU-8 nanofibers based nanobiosensor platform shows great promise in the detection of cardiac markers and other proteins as they have fast response time, high sensitivity and good specificity.
Collapse
Affiliation(s)
- Durga Prakash Matta
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Suryasnata Tripathy
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | | | - Chandra Shekhar Sharma
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| |
Collapse
|
36
|
Ribeiro J, Pereira C, Silva A, Sales MGF. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal Chim Acta 2017; 981:41-52. [DOI: 10.1016/j.aca.2017.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 02/03/2023]
|
37
|
Affiliation(s)
- Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 46241 S. Korea
| |
Collapse
|
38
|
Yang S, Li L, Zhang X, Shang P, Ding S, Zha W, Xu W. Electrochemical determination of thrombin with molecularly imprinted polymers and multiwalled carbon nanotubes. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The preparation and application of reagentless electrochemical thrombin molecularly imprinted sensors were studied using multiwalled carbon nanotubes as sensitivity-enhanced materials. The molecularly imprinted polymer film was prepared by the electropolymerization of o-phenylenediamine with thrombin as the template molecule onto the surface of multiwalled carbon nanotubes modified glassy carbon electrode. After removing thrombin, the poly-o-phenylenediamine molecularly imprinted film was obtained with specific recognition for thrombin. Using the poly-o-phenylenediamine molecularly imprinted polymers as the electron probe, the electrochemical molecularly imprinted sensor was fabricated for the detection of the protein thrombin. Under optimized experimental conditions, the sensor exhibited a good linear response from 10.0 fg/mL to 1.0 μg/mL for thrombin, with correlation coefficient 0.999 and a low detection limit of 1.7 fg/mL. The fabricated molecularly imprinted sensor can be applied to the detection of thrombin in actual sample bovine serum with satisfactory results.
Collapse
Affiliation(s)
- Shaoming Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Lingling Li
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Xiaorong Zhang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Peiling Shang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Shaoqing Ding
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Wenling Zha
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| | - Wenyuan Xu
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
39
|
Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:465-470. [PMID: 28254318 DOI: 10.1016/j.msec.2016.12.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a worldwide disease considered as a major health problem with high morbidity and mortality rates. Poor detection of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis remains a major obstacle to the global control of this disease. Here we report the development of a new test based on the detection of the major virulent factor of Mtb, namely the early secreted antigenic target 6-kDa protein or ESAT-6. A label free electrochemical immunosensor using an anti-ESAT-6 monoclonal antibody as a bio-receptor is described herein. Anti-ESAT-6 antibodies were first covalently immobilized on the surface of a gold screen-printed electrode functionalized via a self-assembled thiol monolayer. Interaction between the bio-receptor and ESAT-6 antigen was evaluated by square wave voltammetry method using [Fe(CN)6]3-/4- as redox probe. The detection limit of ESAT-6 antigen was 7ng/ml. The immunosensor has also been able to detect native ESAT-6 antigen secreted in cell culture filtrates of three pathogenic strains of Mtb (CDC1551, H37RV and H8N8). Overall, this work describes an immune-electrochemical biosensor, based on ESAT-6 antigen detection, as a useful diagnostic tool for tuberculosis.
Collapse
Affiliation(s)
- Mohamed Fethi Diouani
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia.
| | - Oussama Ouerghi
- Prince Sattam Bin Abdulaziz University, Saudi Arabia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amira Refai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Kamel Belgacem
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Chaker Tlili
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Research Center for Precision Medicine and Single Molecule Diagnostics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Makram Essafi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
40
|
Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2036-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Wang Y, Han M, Ye X, Wu K, Wu T, Li C. Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2005-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Zhang G, Liu Z, Wang L, Guo Y. Electrochemical Aptasensor for Myoglobin-Specific Recognition Based on Porphyrin Functionalized Graphene-Conjugated Gold Nanocomposites. SENSORS 2016; 16:s16111803. [PMID: 27801833 PMCID: PMC5134462 DOI: 10.3390/s16111803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 12/17/2022]
Abstract
In this work, a novel electrochemical aptasensor was developed for sensitive and selective detection of myoglobin based on meso-tetra (4-carboxyphenyl) porphyrin-functionalized graphene-conjugated gold nanoparticles (TCPP–Gr/AuNPs). Due to its good electric conductivity, large specific surface area, and excellent mechanical properties, TCPP–Gr/AuNPs can act as an enhanced material for the electrochemical detection of myoglobin. Meanwhile, it provides an effective matrix for immobilizing myoglobin-binding aptamer (MbBA). The electrochemical aptasensor has a sensitive response to myoglobin in a linear range from 2.0 × 10−11 M to 7.7 × 10−7 M with a detection limit of 6.7 × 10−12 M (S/N = 3). Furthermore, the method has the merits of high sensitivity, low price, and high specificity. Our work will supply new horizons for the diagnostic applications of graphene-based materials in biomedicine and biosensors.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
43
|
Kumar V, Brent JR, Shorie M, Kaur H, Chadha G, Thomas AG, Lewis EA, Rooney AP, Nguyen L, Zhong XL, Burke MG, Haigh SJ, Walton A, McNaughter PD, Tedstone AA, Savjani N, Muryn CA, O'Brien P, Ganguli AK, Lewis DJ, Sabherwal P. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22860-8. [PMID: 27508925 DOI: 10.1021/acsami.6b06488] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the electrochemical detection of the redox active cardiac biomarker myoglobin (Mb) using aptamer-functionalized black phosphorus nanostructured electrodes by measuring direct electron transfer. The as-synthesized few-layer black phosphorus nanosheets have been functionalized with poly-l-lysine (PLL) to facilitate binding with generated anti-Mb DNA aptamers on nanostructured electrodes. This aptasensor platform has a record-low detection limit (∼0.524 pg mL(-1)) and sensitivity (36 μA pg(-1) mL cm(-2)) toward Mb with a dynamic response range from 1 pg mL(-1) to 16 μg mL(-1) for Mb in serum samples. This strategy opens up avenues to bedside technologies for multiplexed diagnosis of cardiovascular diseases in complex human samples.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
| | - Jack R Brent
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Munish Shorie
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
| | - Harmanjit Kaur
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
| | - Gaganpreet Chadha
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
| | - Andrew G Thomas
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Edward A Lewis
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Aidan P Rooney
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lan Nguyen
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Xiang Li Zhong
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Grace Burke
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah J Haigh
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alex Walton
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul D McNaughter
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Aleksander A Tedstone
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nicky Savjani
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christopher A Muryn
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul O'Brien
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashok K Ganguli
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
- Department of Chemistry, Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016, India
| | - David J Lewis
- School of Materials, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Priyanka Sabherwal
- Institute of Nano Science & Technology , Habitat Centre, Sector-64, Mohali 160062, Punjab, India
| |
Collapse
|
44
|
Impedimetric immunosensor for detection of cardiovascular disorder risk biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:52-58. [PMID: 27523995 DOI: 10.1016/j.msec.2016.05.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
We report the construction and characterization of a novel, level free impedimetric immunosensor for rapid, sensitive and selective detection of myoglobin (Mb). Monoclonal anti-myoglobin (anti-Mb-IgG) antibody was immobilized on screen-printed multiwalled carbon nanotubes electrode for signal amplification without the need of natural enzymes. The fabrication of resulting immunosensor was extensively characterized by using scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) technique offered a linear detection range (0.1-90ngmL(-1)) of myoglobin with sensitivity of 0.74kΩngmL(-1) (correlation coefficient, R(2)=0.97) and detection limit of 0.08ngmL(-1) (S/N=3). The mean percentage recovery of Mb in serum samples using this working biosensor is 97.33%. Furthermore, the proposed strategy can be a promising alternative for detection of Mb related cardiovascular disorders.
Collapse
|
45
|
Han L, Tao H, Huang M, Zhang Y, Qiao S, Shi R. A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516020051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abnous K, Danesh NM, Sarreshtehdar Emrani A, Ramezani M, Taghdisi SM. A novel fluorescent aptasensor based on silica nanoparticles, PicoGreen and exonuclease III as a signal amplification method for ultrasensitive detection of myoglobin. Anal Chim Acta 2016; 917:71-8. [PMID: 27026602 DOI: 10.1016/j.aca.2016.02.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
Measurement of myoglobin (Mb) in human blood serum is of great interest for quick diagnosis of acute myocardial infarction (AMI). In this study, a novel fluorescent aptasensor was designed for ultrasensitive and selective detection of Mb, based on target-induced high fluorescence intensity, complementary strand of aptamer (CS), PicoGreen (PG) dye, exonuclease III (Exo III) and silica nanoparticles coated with streptavidin (SNPs-Streptavidin). The developed aptasensor obtains characteristics of SNPs as enhancers of fluorescence intensity, Exo III as an enzyme which selectively digests the 3'-end of double-stranded DNA (dsDNA), PG as a fluorescent dye which could selectively bind to dsDNA and high selectivity and sensitivity of aptamer (Apt) toward its target. In the absence of Mb, no free CS remains in the environment of SNPs-Streptavidin, resulting in a weak fluorescence emission. In the present of Mb, dsDNA-modified SNPs-Streptavidin complex forms, leading to a very strong fluorescence emission. The developed fluorescent aptasensor exhibited high specificity toward Mb with a limit of detection (LOD) as low as 52 pM. In addition, the designed fluorescent aptasensor was efficiently used to detect Mb in human serum.
Collapse
Affiliation(s)
- Khalil Abnous
- Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | | | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens Bioelectron 2016; 80:532-537. [PMID: 26894983 DOI: 10.1016/j.bios.2016.02.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Monitoring of myoglobin (Mb) in human blood serum is highly in demand for early diagnosis of acute myocardial infarction (AMI). Here, a novel electrochemical aptasensor was developed for ultrasensitive and selective detection of Mb, based on Y-shape structure of dual-aptamer (DApt)-complementary strand of aptamer (CS) conjugate, gold electrode and exonuclease I (Exo I). The designed aptasensor obtains features of gold, such as high electrochemical conductivity and large surface area, property of Y-shape structure of DApt-CS conjugate to function as a gate and obstacle for the access of redox probe to the surface of electrode, as well as high specificity and sensitivity of aptamer toward its target and Exo I as an enzyme which specifically degrades the 3'-end of single-stranded DNA (ssDNA). In the absence of Mb, the Y-shape structure remains intact. So, a weak electrochemical signal is observed. Upon addition of target, the DApt leave the CS and bind to Mb, leading to disassembly of Y-shape structure and following the addition of Exo I, a strong electrochemical signal could be recorded. The fabricated aptasensor showed high selectivity toward Mb with a limit of detection (LOD) as low as 27 pM. Besides, the developed aptasensor was effectively applied to detect Mb in human serum.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF. Screen-printed electrode produced by printed-circuit board technology. Application to Cancer Biomarker Detection by means of plastic antibody as sensing material. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 223:927-935. [PMID: 30740000 PMCID: PMC6366552 DOI: 10.1016/j.snb.2015.09.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research work presents, for the first time, a screen-printed electrode (SPE) made on a PCB board with silver tracks (Ag) and a three electrode configuration (AgxO-working, AgxO-counter and Ag/AgxO-reference electrodes), following the same approach as printed-circuit boards (PCBs). This low cost and disposable device was tested for screening a cancer biomarker in point-of-care. The selected biomarker was carcinogenic embryonic antigen (CEA) protein, routinely used to follow-up the progression of specific cancer diseases. The biosensor was constructed by assembling a plastic antibody on the Ag-working electrode area, acting as the biorecognition element of the device. The protein molecules that were entrapped on the polymer and positioned at the outer surface of the polypyrrole (PPy) film were removed by protease action. The imprinting effect was tested by preparing non-imprinted (NPPy) material, including only PPy as biorecognition element. Infrared and Raman studies confirmed the surface modification of these electrodes. The ability of the sensing material to rebind CEA was measured by several electrochemical techniques: cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV). The linear response ranged from 0.05 to 1.25 pg/mL against logarithm concentration. Overall, producing screen-printed electrodes by means of conventional PCB technology showed promising features, mostly regarding cost and prompt availability. The plastic antibody-based biosensor also seems to be a promising tool for screening CEA in point-of-care, with low response time, low cost, good sensitivity and high stability.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| | | | - José R T Puga
- TID-CINTESIS/ School of Engineering, Polytechnic Institute of Porto, Portugal
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| |
Collapse
|
49
|
Zhang B, Zhang Y, Liang W, Cui B, Li J, Yu X, Huang L. Nanogold-penetrated poly(amidoamine) dendrimer for enzyme-free electrochemical immunoassay of cardiac biomarker using cathodic stripping voltammetric method. Anal Chim Acta 2016; 904:51-7. [DOI: 10.1016/j.aca.2015.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023]
|
50
|
Cieplak M, Szwabinska K, Sosnowska M, Chandra BKC, Borowicz P, Noworyta K, D'Souza F, Kutner W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron 2015; 74:960-6. [PMID: 26258876 DOI: 10.1016/j.bios.2015.07.061] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/10/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum.
Collapse
Affiliation(s)
- Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Katarzyna Szwabinska
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Bikram K C Chandra
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Science, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|