1
|
Song Y, Zhu C, Gong Z, Kang X, Liu Q, Liu Y, Ji M, Uji-I H, Huang W, Lu G. Improving the Activity of Platinum Nanoparticles in Electrocatalytic Oxidation of Formic Acid via the Surface Grafting of Thiol or Thiophenol Molecules. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40421574 DOI: 10.1021/acsami.5c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Electrocatalytic oxidation of organic molecules, in particular the formic acid oxidation reaction (FAOR), is crucial for applications such as direct liquid fuel cells. As one of the effective catalysts, platinum (Pt) has been widely used as the electrocatalyst for these reactions in the laboratory; however, its utilization in practical FAOR is still limited due to insufficient activity. This study introduces a simple and rapid molecular modification method to improve the FAOR performance of Pt by chemically adsorbing thiol or thiophenol molecules. At an optimal surface coverage of 7.1%, the current density of FAOR on cysteamine-grafted Pt reached up to 24.76 mA cm-2, a 7.2-fold increase compared to that on pristine Pt. This increase is mainly attributed to the change in the electronic structure of the Pt surface and the charge transfer at the interface, which are induced by the cysteamine molecules. X-ray photoelectron spectroscopy and in situ Raman spectroscopy demonstrated that the adsorption of cysteamine molecules on the Pt surface improves the charge transfer on the Pt surface and the production of formic acid via the formate pathway. The mechanism of enhanced catalysis on Pt-Cysteamine is revealed by density functional theory calculations. Interestingly, various thiols and thiophenols were also proved to be effective in promoting the FAOR reaction, and this strategy could also be applied to improve the performance of many other reactions (such as, methanol oxidation reaction).
Collapse
Affiliation(s)
- Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qinghua Liu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaning Liu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Miao Ji
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Wei Huang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Li Y, Yao MS, He Y, Du S. Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges. NANO-MICRO LETTERS 2025; 17:148. [PMID: 39960581 PMCID: PMC11832879 DOI: 10.1007/s40820-025-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025]
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Collapse
Affiliation(s)
- Yang Li
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ming-Shui Yao
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650504, People's Republic of China.
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Lin X, Geng S, Du X, Wang F, Zhang X, Xiao F, Xiao Z, Wang Y, Cheng J, Zheng Z, Huang X, Bu L. Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures. Nat Commun 2025; 16:147. [PMID: 39747847 PMCID: PMC11696842 DOI: 10.1038/s41467-024-55612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt-1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt-1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis.
Collapse
Affiliation(s)
- Xin Lin
- College of Energy, Xiamen University, Xiamen, China
| | - Shize Geng
- College of Energy, Xiamen University, Xiamen, China
| | - Xianglong Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feiteng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xu Zhang
- College of Energy, Xiamen University, Xiamen, China
| | - Fang Xiao
- College of Energy, Xiamen University, Xiamen, China
| | - Zhengyi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Paredes-Arriaga A, López-Islas A, Frias D, Rivera AL, Cordero-Tercero G, Ramos-Bernal S, Negrón-Mendoza A. Numerical modeling vs experiment of formic acid and formate ion behavior under gamma radiation at several pH values: Implications on prebiotic chemistry. PLoS One 2024; 19:e0315409. [PMID: 39666684 PMCID: PMC11637377 DOI: 10.1371/journal.pone.0315409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Formic acid is consistently produced and detected in prebiotic chemistry experiments, constituting a precursor of many carboxylic acids and amino acids. Its behavior with exposure to gamma radiation varies with the pH and solution concentration. This work aimed to model different environmental conditions for formic acid under ionizing radiation using a system of coupled differential equations based on chemical kinetics. An ensemble of radiolysis reaction mechanisms was generated for formic acid at pH 1.5 and formate ion at pH 9, both with radiation doses from 0 to 2 kGy. This was also done for systems with both species in equilibrium, using high molar concentrations, long irradiation times, and large irradiation doses (from 0 to 70 kGy). The results show that these systems can be modeled with a high statistical relationship between the computed solutions and the experimental data; furthermore, the synthesis and degradation of the radiolysis products can be followed. Another dimension of the issue of prebiotic environments was explored using ionizing radiation and analyzing the reactions at various pH values (acidic to basic media). These models allow one to gain insights into the behavior of molecules that are difficult to detect or analyze in the laboratory. Additionally, they offer the possibility of studying potential prebiotic environments.
Collapse
Affiliation(s)
- Alejandro Paredes-Arriaga
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| | - Anayelly López-Islas
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| | - Diego Frias
- Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia (UNEB), Silveira Martins, Salvador, BA, Brazil
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| | - Guadalupe Cordero-Tercero
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| | - Sergio Ramos-Bernal
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CDMX, México
| |
Collapse
|
5
|
Zheng X, Wu Q, Xiao M, Li L, Zhao R, Cui C. Electrochemical Redox Conversion of Formate to CO via Coupling Fe-Co Layered Double Hydroxides and Au Catalysts. Chemistry 2024; 30:e202303383. [PMID: 38164084 DOI: 10.1002/chem.202303383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Formate has been considered an inactive molecule and thus cannot be further reduced under CO2 reduction conditions, which limits its widespread application as feedstock. Here we present an electrochemical redox conversion of formate to CO through the potential-dependent generation of carbon dioxide radical anions (CO2 ⋅- ) on Fe-Co layered double hydroxides (Fe-Co LDHs) and the subsequent reduction of CO2 ⋅- to CO on Au catalysts. We present an electrodeposition protocol for the synthesis of Fe-Co LDHs with precise composition control and find that Fe1 Co4 exhibits a promising potential window for CO2 ⋅- formation between 1.14 and 1.4 V and an optimized potential at 1.24 V at a neutral pH condition. We further determined the formation of CO2 ⋅- at 1.24 V via electron paramagnetic resonance and CO2 at >1.4 V through differential electrochemical mass spectrometry. This work provides a redox chemistry route for converting formate into CO through a coupled slit parallel-plate electrode system.
Collapse
Affiliation(s)
- Xia Zheng
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
6
|
Nacys A, Simkunaitė D, Balciunaite A, Zabielaite A, Upskuviene D, Levinas R, Jasulaitiene V, Kovalevskij V, Simkunaite-Stanyniene B, Tamasauskaite-Tamasiunaite L, Norkus E. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6427. [PMID: 37834564 PMCID: PMC10573893 DOI: 10.3390/ma16196427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations.
Collapse
Affiliation(s)
- Antanas Nacys
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| | | | | | | | | | | | | | | | | | | | - Eugenijus Norkus
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| |
Collapse
|
7
|
Zhu X, Huang J, Eikerling M. pH Effects in a Model Electrocatalytic Reaction Disentangled. JACS AU 2023; 3:1052-1064. [PMID: 37124300 PMCID: PMC10131201 DOI: 10.1021/jacsau.2c00662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Varying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Xinwei Zhu
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
8
|
Chen W, Zhang LL, Wei Z, Zhang MK, Cai J, Chen YX. The electrostatic effect and its role in promoting electrocatalytic reactions by specifically adsorbed anions. Phys Chem Chem Phys 2023; 25:8317-8330. [PMID: 36892566 DOI: 10.1039/d2cp04547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The adsorption of anions and its impact on electrocatalytic reactions are fundamental topics in electrocatalysis. Previous studies revealed that adsorbed anions display an overall poisoning effect in most cases. However, for a few reactions such as the hydrogen evolution reaction (HER), oxidation of small organic molecules (SOMs), and reduction of CO2 and O2, some specifically adsorbed anions can promote their reaction kinetics under certain conditions. The promotion effect is frequently attributed to the adsorbate induced modification of the nature of the active sites, the change of the adsorption configuration and free energy of the key reactive intermediate which consequently change the activation energy, the pre-exponential factor of the rate determining step etc. In this paper, we will give a mini review of the indispensable role of the classical double layer effect in enhancing the kinetics of electrocatalytic reactions by anion adsorption. The ubiquitous electrostatic interactions change both the potential distribution and the concentration distribution of ionic species across the electric double layer (EDL), which alters the electrochemical driving force and effective concentration of the reactants. The contribution to the overall kinetics is highlighted by taking HER, oxidation of SOMs, reduction of CO2 and O2, as examples.
Collapse
Affiliation(s)
- Wei Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lu-Lu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhen Wei
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Meng-Ke Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Jun Cai
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Pérez-Martínez L, Herrero E, Cuesta A. Kinetics of formic acid dehydration on Pt electrodes by time-resolved ATR-SEIRAS. J Chem Phys 2023; 158:094705. [PMID: 36889977 DOI: 10.1063/5.0138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The potential dependence of the rate of dehydration of formic acid to adsorbed CO (COad) on Pt at pH 1 has been studied on a polycrystalline Pt surface by time-resolved surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) with simultaneous recording of current transients after a potential step. A range of formic acid concentrations has been used to obtain a deeper insight into the mechanism of the reaction. The experiments have allowed us to confirm that the potential dependence of the rate of dehydration has a bell shape, going through a maximum around the potential of zero total charge (pztc) of the most active site. The analysis of the integrated intensity and frequency of the bands corresponding to COL and COB/M shows a progressive population of the active sites on the surface. The observed potential dependence of the rate of formation of COad is consistent with a mechanism in which the reversible electroadsorption of HCOOad is followed by its rate-determining reduction to COad.
Collapse
Affiliation(s)
- Laura Pérez-Martínez
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE Scotland, United Kingdom
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, E-03080 Alicante, Spain
| | - Angel Cuesta
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE Scotland, United Kingdom
| |
Collapse
|
10
|
Wang X, Liu Y, Ma XY, Chang LY, Zhong Q, Pan Q, Wang Z, Yuan X, Cao M, Lyu F, Yang Y, Chen J, Sham TK, Zhang Q. The Role of Bismuth in Suppressing the CO Poisoning in Alkaline Methanol Electrooxidation: Switching the Reaction from the CO to Formate Pathway. NANO LETTERS 2023; 23:685-693. [PMID: 36594847 DOI: 10.1021/acs.nanolett.2c04568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xing-Yu Ma
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qi Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhiqiang Wang
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Fenglei Lyu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Bagger A, Jensen KD, Rashedi M, Luo R, Du J, Zhang D, Pereira IJ, Escudero-Escribano M, Arenz M, Rossmeisl J. Correlations between experiments and simulations for formic acid oxidation. Chem Sci 2022; 13:13409-13417. [PMID: 36507186 PMCID: PMC9682913 DOI: 10.1039/d2sc05160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Electrocatalytic conversion of formic acid oxidation to CO2 and the related CO2 reduction to formic acid represent a potential closed carbon-loop based on renewable energy. However, formic acid fuel cells are inhibited by the formation of site-blocking species during the formic acid oxidation reaction. Recent studies have elucidated how the binding of carbon and hydrogen on catalyst surfaces promote CO2 reduction towards CO and formic acid. This has also given fundamental insights into the reverse reaction, i.e. the oxidation of formic acid. In this work, simulations on multiple materials have been combined with formic acid oxidation experiments on electrocatalysts to shed light on the reaction and the accompanying catalytic limitations. We correlate data on different catalysts to show that (i) formate, which is the proposed formic acid oxidation intermediate, has similar binding energetics on Pt, Pd and Ag, while Ag does not work as a catalyst, and (ii) *H adsorbed on the surface results in *CO formation and poisoning through a chemical disproportionation step. Using these results, the fundamental limitations can be revealed and progress our understanding of the mechanism of the formic acid oxidation reaction.
Collapse
Affiliation(s)
- Alexander Bagger
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark
| | - Kim D. Jensen
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark
| | - Maryam Rashedi
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark,College of Science, University of TehranEnghelab SquareTehranIran
| | - Rui Luo
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark,School of Environmental and Biological Engineering, Nanjing University of Science & TechnologyNanjing 210094China
| | - Jia Du
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical SciencesCH-3012 BernSwitzerland
| | - Damin Zhang
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical SciencesCH-3012 BernSwitzerland
| | - Inês J. Pereira
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark
| | - María Escudero-Escribano
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and TechnologyUAB Campus, 08193 BellaterraBarcelonaSpain,ICREAPg. Lluís Companys 2308010 BarcelonaSpain
| | - Matthias Arenz
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark,University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical SciencesCH-3012 BernSwitzerland
| | - Jan Rossmeisl
- University of Copenhagen, Department of ChemistryUniversitetsparken 52100 Kbh-ØDenmark
| |
Collapse
|
12
|
Salamon MJ, Briega-Martos V, Cuesta A, Herrero E. Insight into the role of adsorbed formate in the oxidation of formic acid from pH-dependent experiments with Pt single-crystal electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Liu Y, Wang QL, Yang YY. CO 2 and Formate Pathway of Methanol Electrooxidation at Rhodium Electrodes in Alkaline Media: An In Situ Electrochemical Attenuated Total Refection Surface-Enhanced Infrared Absorption Spectroscopy and Infrared Reflection Absorption Spectroscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12510-12520. [PMID: 36205573 DOI: 10.1021/acs.langmuir.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rh catalysts exhibit unexpected high activity for the methanol oxidation reaction (MOR) in alkaline conditions, making them potential anodic catalysts for direct methanol fuel cells (DMFCs). Nevertheless, the MOR mechanism on Rh electrodes has not been clarified thus far, which impedes the development of high-efficiency Rh-based MOR catalysts. To investigate it, a combination of in situ electrochemical techniques called attenuated total refection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and infrared reflection absorption spectroscopy (IRAS) is used. Cyclic voltammograms of MOR at Rh electrodes show considerable activity in alkaline media rather than acidic media, although the real-time ATR-SEIRA spectral results demonstrate that methanol can rarely self-decompose on Rh at open-circuit conditions. Meanwhile, in combination of ATR-SEIRAS and IRAS results, CO2 and formate are thought to be MOR products, suggesting a dual-pathway mechanism ("CO2 pathway" and "formate pathway"). Specifically, COad species, which are the major intermediates in the CO2 pathway, can produce at lower potentials and be oxidized into CO2 at a potential of 0.5-0.75 V. Concurrently, the formate can be produced from 0.5 V and diffuse into the bulk electrolyte to become one of the MOR products, while the further electrochemical conversion of formate to CO2 is essentially negligible. More directly, the apparent selectivity (r) of the CO2 pathway is estimated to reach ca. 0.63 at 0.9 V, confirming the potential-dependent selectivity of MOR at Rh surfaces. This study might provide fresh insights into the design and fabrication of effective Rh-based catalysts for MOR.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| | - Qiong-Lan Wang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| | - Yao-Yue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan610041, People's Republic of China
| |
Collapse
|
14
|
Yalavarthi R, Henrotte O, Kment Š, Naldoni A. Determining the role of Pd catalyst morphology and deposition criteria over large area plasmonic metasurfaces during light-enhanced electrochemical oxidation of formic acid. J Chem Phys 2022; 157:114706. [PMID: 36137800 DOI: 10.1063/5.0102012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of metal composites based on plasmonic nanostructures partnered with catalytic counterparts has recently emerged as a promising approach in the field of plasmon-enhanced electrocatalysis. Here, we report on the role of the surface morphology, size, and anchored site of Pd catalysts coupled to plasmonic metasurfaces formed by periodic arrays of multimetallic Ni/Au nanopillars for formic acid electro-oxidation reaction (FAOR). We compare the activity of two kinds of metasurfaces differing in the positioning of the catalytic Pd nanoparticles. In the first case, the Pd nanoparticles have a polyhedron crystal morphology with exposed (200) facets and were deposited over the Ni/Au metasurfaces in a site-selective fashion by limiting their growth at the electromagnetic hot spots (Ni/Au-Pd@W). In contrast, the second case consists of spherical Pd nanoparticles grown in solution, which are homogeneously deposited onto the Ni/Au metasurface (Ni/Au-Pd@M). Ni/Au-Pd@W catalytic metasurfaces demonstrated higher light-enhanced FAOR activity (61%) in comparison to the Ni/Au-Pd@M sample (42%) for the direct dehydrogenation pathway. Moreover, the site-selective Pd deposition promotes the growth of nanoparticles favoring a more selective catalytic behavior and a lower degree of CO poisoning on Pd surface. The use of cyclic voltammetry, energy-resolved incident photon to current conversion efficiency, open circuit potential, and electrochemical impedance spectroscopy highlights the role of plasmonic near fields and hot holes in driving the catalytic enhancement under light conditions.
Collapse
Affiliation(s)
- Rambabu Yalavarthi
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Olivier Henrotte
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Štěpán Kment
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Alberto Naldoni
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
15
|
Montero MA, Gennero de Chialvo MR, Chialvo AC. Steady State Kinetic Study of the Formic Acid Electrooxidation Reaction on Iridium in a Flow Cell. Top Catal 2022. [DOI: 10.1007/s11244-022-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Chandra Sekhar Y, Raghavendra P, Thulasiramaiah G, Sravani B, Sri Chandana P, Maiyalagan T, Sarma LS. Reduced graphene oxide (RGO)-supported Pd–CeO 2 nanocomposites as highly active electrocatalysts for facile formic acid oxidation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05603d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reduced graphene oxide (RGO)-supported Pd–CeO2 nanoparticles prepared by a chemical reduction method were shown to exhibit superior electrocatalytic activity towards formic acid compared to the commercial Pd/C catalyst.
Collapse
Affiliation(s)
- Yellatur Chandra Sekhar
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, KADAPA–516 005, Andhra Pradesh, India
| | - Padmasale Raghavendra
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies (RGUKT)-AP, IIIT Campus, ONGOLE-516 216, Andhra Pradesh, India
| | - Gondi Thulasiramaiah
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, KADAPA–516 005, Andhra Pradesh, India
| | - Bathinapatla Sravani
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, KADAPA–516 005, Andhra Pradesh, India
| | - Panchangam Sri Chandana
- Department of Civil and Environmental Engineering, Annamacharya Institute of Science & Technology, Utukuru (Post), C. K. Dinne (Mandal), KADAPA–516 003, Andhra Pradesh, India
| | - Thandavarayan Maiyalagan
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai–603 203, Tamilnadu, India
| | - Loka Subramanyam Sarma
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, KADAPA–516 005, Andhra Pradesh, India
| |
Collapse
|
17
|
Deng KC, Lu ZX, Sun JJ, Ye JY, Dong F, Su HS, Yang K, Sartin MM, Yan S, Cheng J, Zhou ZY, Ren B. Accelerated interfacial proton transfer for promoting the electrocatalytic activity. Chem Sci 2022; 13:10884-10890. [PMID: 36320703 PMCID: PMC9491081 DOI: 10.1039/d2sc01750d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Interfacial pH is critical to electrocatalytic reactions involving proton-coupled electron transfer (PCET) processes, and maintaining an optimal interfacial pH at the electrochemical interface is required to achieve high activity. However, the interfacial pH varies inevitably during the electrochemical reaction owing to slow proton transfer at the interfacial layer, even in buffer solutions. It is therefore necessary to find an effective and general way to promote proton transfer for regulating the interfacial pH. In this study, we propose that promoting proton transfer at the interfacial layer can be used to regulate the interfacial pH in order to enhance electrocatalytic activity. By adsorbing a bifunctional 4-mercaptopyridine (4MPy) molecule onto the catalyst surface via its thiol group, the pyridyl group can be tethered on the electrochemical interface. The pyridyl group acts as both a good proton acceptor and donor for promoting proton transfer at the interfacial layer. Furthermore, the pKa of 4MPy can be modulated with the applied potentials to accommodate the large variation of interfacial pH under different current densities. By in situ electrochemical surface-enhanced Raman spectroscopy (in situ EC-SERS), we quantitatively demonstrate that proton transfer at the interfacial layer of the Pt catalyst coated with 4MPy (Pt@4MPy) remains ideally thermoneutral during the H+ releasing electrocatalytic oxidation reaction of formic acid (FAOR) at high current densities. Thus, the interfacial pH is controlled effectively. In this way, the FAOR apparent current measured from Pt@4MPy is twice that measured from a pristine Pt catalyst. This work establishes a general strategy for regulating interfacial pH to enhance the electrocatalytic activities. Adsorbing 4MPy on Pt surface promotes proton transfer at the interfacial layer, maintaining an optimal interfacial pH and promotes electrocatalytic reactions involving proton-coupled electron transfer (PCET) processes.![]()
Collapse
Affiliation(s)
- Kai-Chao Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhi-Xuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Juan-Juan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jin-Yu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Fujian Science and Technology Innovation Laboratory for Energy Materials of China China
| | - Fan Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Kang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Fujian Science and Technology Innovation Laboratory for Energy Materials of China China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Fujian Science and Technology Innovation Laboratory for Energy Materials of China China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Fujian Science and Technology Innovation Laboratory for Energy Materials of China China
| |
Collapse
|
18
|
Chiou Y, Juchniewicz K, Kupiec KR, Mikolajczuk‐Zychora A, Mierzwa B, Lin H, Borodzinski A. Pd Nanoparticle Size Effect of Anodic Catalysts on Direct Formic Acid Fuel Cell Initial Performance: Development of a Mathematical Model and Comparison with Experimental Results. ChemElectroChem 2021. [DOI: 10.1002/celc.202100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuh‐Jing Chiou
- Department of Chemical Engineering and Biotechnology Tatung University 40, Chungshan N. Rd., 3rd Sec 104 Taipei Taiwan
| | - Karol Juchniewicz
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Krzysztof R. Kupiec
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Bogusław Mierzwa
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Hong‐Ming Lin
- Department of Materials Engineering Tatung University 40, Chungshan N. Rd., 3rd Sec 104 Taipei Taiwan
| | - Andrzej Borodzinski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
19
|
Folkman SJ, González-Cobos J, Giancola S, Sánchez-Molina I, Galán-Mascarós JR. Benchmarking Catalysts for Formic Acid/Formate Electrooxidation. Molecules 2021; 26:4756. [PMID: 34443343 PMCID: PMC8398888 DOI: 10.3390/molecules26164756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Energy production and consumption without the use of fossil fuels are amongst the biggest challenges currently facing humankind and the scientific community. Huge efforts have been invested in creating technologies that enable closed carbon or carbon neutral fuel cycles, limiting CO2 emissions into the atmosphere. Formic acid/formate (FA) has attracted intense interest as a liquid fuel over the last half century, giving rise to a plethora of studies on catalysts for its efficient electrocatalytic oxidation for usage in fuel cells. However, new catalysts and catalytic systems are often difficult to compare because of the variability in conditions and catalyst parameters examined. In this review, we discuss the extensive literature on FA electrooxidation using platinum, palladium and non-platinum group metal-based catalysts, the conditions typically employed in formate electrooxidation and the main electrochemical parameters for the comparison of anodic electrocatalysts to be applied in a FA fuel cell. We focused on the electrocatalytic performance in terms of onset potential and peak current density obtained during cyclic voltammetry measurements and on catalyst stability. Moreover, we handpicked a list of the most relevant examples that can be used for benchmarking and referencing future developments in the field.
Collapse
Affiliation(s)
- Scott J. Folkman
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - Jesús González-Cobos
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 Avenue A. Einstein, 69626 Villeurbanne, France
| | - Stefano Giancola
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - Irene Sánchez-Molina
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans, 16, 43007 Tarragona, Spain; (S.G.); (I.S.-M.); (J.R.G.-M.)
- ICREA, Pg. Llu’ıs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Hermann JM, Abdelrahman A, Jacob T, Kibler LA. The Effect of pH and Anion Adsorption on Formic Acid Oxidation on Au(111) Electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
|
22
|
Zhang MK, Chen W, Wei Z, Xu ML, He Z, Cai J, Chen YX, Santos E. Mechanistic Implication of the pH Effect and H/D Kinetic Isotope Effect on HCOOH/HCOO – Oxidation at Pt Electrodes: A Study by Computer Simulation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meng-Ke Zhang
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-Le Xu
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - ZhengDa He
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Xia Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Elizabeth Santos
- Institute of Theoretical Chemistry, Ulm University, Ulm 89069, Germany
| |
Collapse
|
23
|
Nakova A, Ilieva M, Czibula C, Teichert C, Tsakova V. PEDOT-supported Pd nanocatalysts – oxidation of formic acid. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zhang MK, Chen W, Xu ML, Wei Z, Zhou D, Cai J, Chen YX. How Buffers Resist Electrochemical Reaction-Induced pH Shift under a Rotating Disk Electrode Configuration. Anal Chem 2021; 93:1976-1983. [PMID: 33395265 DOI: 10.1021/acs.analchem.0c03033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In mild acidic or alkaline solutions with limited buffer capacity, the pH at the electrode/electrolyte interface (pHs) may change significantly when the supply of H+ (or OH-) is slower than its consumption or production by the electrode reaction. Buffer pairs are usually applied to resist the change of pHs during the electrochemical reaction. In this work, by taking H2X ⇄ 2H+ + X + 2e- under a rotating disk electrode configuration as a model reaction, numerical simulations are carried out to figure out how pHs changes with the reaction rate in solutions of different bulk pHs (pHb in the range from 0 to 14) and in the presence of buffer pairs with different pKa values and concentrations. The quantitative relation of pHs, pHb, pKa, and concentration of buffer pairs as well as of the reaction current density is established. Diagrams of pHs and ΔpH (ΔpH = pHs - pHb) as a function of pHb and the reaction current density as well as of the jmax-pHb plots are provided, where jmax is defined as the maximum allowable current density within the acceptable tolerance of deviation of pHs from that of pHb (e.g., ΔpH < 0.2). The j-pHs diagrams allow one to estimate the pHs and ΔpH without direct measurement. The jmax-pHb plots may serve as a guideline for choosing buffer pairs with appropriate pKa and concentration to mitigate the pHs shift induced by electrode reactions.
Collapse
Affiliation(s)
- Meng-Ke Zhang
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-Le Xu
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Da Zhou
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Xia Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
The effect of morphological difference and hydride incorporation on the activity of Pd/C catalysts in direct alkaline formate fuel cell. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Calderón-Cárdenas A, Hartl FW, Gallas JA, Varela H. Modeling the triple-path electro-oxidation of formic acid on platinum: Cyclic voltammetry and oscillations. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Affiliation(s)
- Zhenni Ma
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ulrich Legrand
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
- Canada Research Chair in Intensified Mechano-Chemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
28
|
Montero MA, Luque GC, Gennero de Chialvo MR, Chialvo AC. Kinetic evaluation of the formic acid electrooxidation on steady state on palladium using a flow cell. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kormányos A, Speck FD, Mayrhofer KJJ, Cherevko S. Influence of Fuels and pH on the Dissolution Stability of Bifunctional PtRu/C Alloy Electrocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Attila Kormányos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstaße 3, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstaße 3, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
30
|
Ji SG, Kim H, Park C, Kim W, Choi CH. Underestimation of Platinum Electrocatalysis Induced by Carbon Monoxide Evolved from Graphite Counter Electrodes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01783] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sang Gu Ji
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Cheolwoo Park
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
| | - Wooyul Kim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
31
|
Moradzaman M, Mul G. Infrared Analysis of Interfacial Phenomena during Electrochemical Reduction of CO2 over Polycrystalline Copper Electrodes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mozhgan Moradzaman
- Photocatalytic Synthesis Group, Faculty of Science & Technology of the University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido Mul
- Photocatalytic Synthesis Group, Faculty of Science & Technology of the University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
32
|
Betts A, Briega-Martos V, Cuesta A, Herrero E. Adsorbed Formate is the Last Common Intermediate in the Dual-Path Mechanism of the Electrooxidation of Formic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00791] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander Betts
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE Scotland, U.K
| | - Valentín Briega-Martos
- Instituto de Electroquimı́ca, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Angel Cuesta
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE Scotland, U.K
| | - Enrique Herrero
- Instituto de Electroquimı́ca, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
33
|
Tarnowicz-Staniak N, Vázquez-Díaz S, Pavlov V, Matczyszyn K, Grzelczak M. Cellulose as an Inert Scaffold in Plasmon-Assisted Photoregeneration of Cofactor Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19377-19383. [PMID: 32253909 PMCID: PMC7497628 DOI: 10.1021/acsami.9b21556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasmonic nanoparticles exhibit excellent light-harvesting properties in the visible spectral range, which makes them a convenient material for the conversion of light into useful chemical fuel. However, the need for using surface ligands to ensure colloidal stability of nanoparticles inhibits their photochemical performance due to the insulating molecular shell hindering the carrier transport. We show that cellulose fibers, abundant in chemical functional groups, can serve as a robust substrate for the immobilization of gold nanorods, thus also providing a facile way to remove the surfactant molecules. The resulting functional composite was implemented in a bioinspired photocatalytic process involving dehydrogenation of sodium formate and simultaneous photoregeneration of cofactor molecules (NADH, nicotinamide adenine dinucleotide) using visible light as an energy source. By systematic screening of experimental parameters, we compare photocatalytic and thermocatalytic properties of the composite and evaluate the role of palladium cocatalyst.
Collapse
Affiliation(s)
- Nina Tarnowicz-Staniak
- Wrocław University
of Science and Technology, Advanced Materials
Engineering and Modelling Group, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Valeri Pavlov
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Katarzyna Matczyszyn
- Wrocław University
of Science and Technology, Advanced Materials
Engineering and Modelling Group, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marek Grzelczak
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International
Physics Center DIPC, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
34
|
|
35
|
The oscillatory electro-oxidation of formic acid: Insights on the adsorbates involved from time-resolved ATR-SEIRAS and UV reflectance experiments. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Real-time electrochemical ATR-SEIRAS investigation of CO adsorption and oxidation on Rh electrode in 0.1 M NaOH and 0.1 M H2SO4. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Petrii OA. The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review). RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519010129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Melle GB, Hartl FW, Varela H, Sitta E. The effect of solution pH on the oscillatory electro-oxidation of methanol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Gennero de Chialvo MR, Luque GC, Chialvo AC. Formic Acid Electrooxidation on Platinum, Resolution of the Kinetic Mechanism in Steady State and Evaluation of the Kinetic Constants. ChemistrySelect 2018. [DOI: 10.1002/slct.201801725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- María R. Gennero de Chialvo
- Instituto de Química Aplicada del Litoral (IQAL); Programa de Electroquímica Aplicada e Ingeniería Electroquímica; PRELINE (FIQ-UNL), Facultad de Ingeniería Química; Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe; Argentina
| | - Gisela C. Luque
- Instituto de Química Aplicada del Litoral (IQAL); Programa de Electroquímica Aplicada e Ingeniería Electroquímica; PRELINE (FIQ-UNL), Facultad de Ingeniería Química; Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe; Argentina
| | - Abel C. Chialvo
- Instituto de Química Aplicada del Litoral (IQAL); Programa de Electroquímica Aplicada e Ingeniería Electroquímica; PRELINE (FIQ-UNL), Facultad de Ingeniería Química; Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe; Argentina
| |
Collapse
|
40
|
Uwitonze N, Zhou D, Lei J, Chen W, Zuo XQ, Cai J, Chen YX. The high Tafel slope and small potential dependence of activation energy for formic acid oxidation on a Pd electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
|
43
|
El-Nagar GA, Hassan MA, Lauermann I, Roth C. Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood waste: Migration Mechanism. Sci Rep 2017; 7:17818. [PMID: 29259210 PMCID: PMC5736546 DOI: 10.1038/s41598-017-17978-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
Commercial Pt/C anodes of direct formic acid fuel cells (DFAFCs) get rapidly poisoned by in-situ generated CO intermediates from formic acid non-faradaic dissociation. We succeeded in increasing the Pt nanoparticles (PtNPs) stability and activity for formic acid oxidation (DFAFCs anodic reaction) by embedding them inside a chitosan matrix obtained from seafood wastes. Atop the commercial Pt/C, formic acid (FA) is predominantly oxidized via the undesired poisoning dehydration pathway (14 times higher than the desired dehydrogenation route), wherein FA is non-faradaically dissociated to CO resulting in deactivation of the majority of the Pt active-surface sites. Surprisingly, PtNPs chemical insertion inside a chitosan matrix enhanced their efficiency for FA oxidation significantly, as demonstrated by their 27 times higher stability along with ~400 mV negative shift of the FA oxidation onset potential together with 270 times higher CO poisoning-tolerance compared to that of the commercial Pt/C. These substantial performance enhancements are believed to originate from the interaction of chitosan functionalities (e.g., NH2 and OH) with both PtNPs and FA molecules improving FA adsorption and preventing the PtNPs aggregation, besides providing the required oxygen helping with the oxidative removal of the adsorbed poisoning CO-like species at low potentials. Additionally, chitosan induced the retrieval of the Pt surface-active sites by capturing the in-situ formed poisoning CO intermediates via a so-called “migration mechanism”.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Chemistry Department, Faculty of Science, Cairo University, 12613, Cairo, Egypt. .,Institute for Chemistry and Biochemistry, FU Berlin, Takustr. 3, D-14195, Berlin, Germany.
| | - Mohamed A Hassan
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt
| | - Iver Lauermann
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Christina Roth
- Institute for Chemistry and Biochemistry, FU Berlin, Takustr. 3, D-14195, Berlin, Germany
| |
Collapse
|
44
|
Hartl FW, Varela H. The Effect of Solution pH and Temperature on the Oscillatory Electro-Oxidation of Formic Acid on Platinum. ChemistrySelect 2017. [DOI: 10.1002/slct.201702008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fabian W. Hartl
- Department of Physical Chemistry; Institute of Chemistry of São Carlos; University of São Paulo, POBox 780; 13560-970 São Carlos, SP Brazil
| | - Hamilton Varela
- Department of Physical Chemistry; Institute of Chemistry of São Carlos; University of São Paulo, POBox 780; 13560-970 São Carlos, SP Brazil
| |
Collapse
|
45
|
Jiang K, Wang JY, Zhao TT, Cai WB. Formic acid oxidation at palladium electrode in acidic media containing chloride anions: An in situ ATR-SEIRAS investigation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Chen X, Koper MT. Mass-transport-limited oxidation of formic acid on a Pd ML Pt(100) electrode in perchloric acid. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Jusys Z, Behm R. Electrooxidation of formic acid on a polycrystalline Au film electrode–A comparison with mass transport limited bulk CO oxidation and kinetically limited oxalic acid oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Preface. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Wei Y, Zuo XQ, He ZD, Chen W, Lin CH, Cai J, Sartin M, Chen YX. The mechanisms of HCOOH/HCOO – oxidation on Pt electrodes: Implication from the pH effect and H/D kinetic isotope effect. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
50
|
Zhang S, Jiang B, Jiang K, Cai WB. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24678-24687. [PMID: 28658569 DOI: 10.1021/acsami.7b08441] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Steerable hydrogen generation from the hydrogen storage chemical formic acid via heterogeneous catalysis has attracted considerable interest given the safety and efficiency concerns in handling H2. Herein, a series of carbon-supported capping-agent-free Pd nanoparticles (NPs) with mean sizes tunable from 2.0 to 5.2 nm are developed due to the demand for more efficient dehydrogenation from a formic acid-formate solution of pH 3.5 at room temperature. The trick for the facile size-controlled synthesis of Pd/C catalysts is the selective addition of Na2CO3, NH3·H2O, or NaOH to a Pd(II) solution to attain initial pH values of 7-9.5. For comparison, cuboctahedron modeling and electrochemical COads stripping methods are applied to evaluate active surface Pd sites for turnover frequency (TOF) calculation. Both mass activity and specific activity (TOF) of hydrogen production are not only time-dependent but also Pd-size-dependent. An initial H2 production rate of 246 L·h-1·gPd-1 is achieved on 2.0 nm Pd/C at 303 K, together with a TOF of 1815 h-1 on the basis of cuboctahedron modeling of surface-active Pd sites. The initial TOF exhibits a significant rise from 3.5 down to 2.8 nm and then levels off below 2.8 nm and even shows a maxima at ca. 2.2 nm using the electrochemical surface area for calculation. The volcano-shaped dependence of TOF on Pd NP size may be better attributed to the changing ratios of terrace sites to defect sites on Pd NPs.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University , Shanghai 200433, China
| | - Bei Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University , Shanghai 200433, China
| | - Kun Jiang
- Rowland Institute, Harvard University , Cambridge, Massachusetts 02142, United States
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University , Shanghai 200433, China
| |
Collapse
|