1
|
Yang J, Jiang L, Guo Z, Sarkodie EK, Li K, Shi J, Peng Y, Liu H, Liu X. The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133174. [PMID: 38086299 DOI: 10.1016/j.jhazmat.2023.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Ma J, Xing S, Wang Y, Yang J, Yu F. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination. NANO-MICRO LETTERS 2024; 16:143. [PMID: 38436834 PMCID: PMC11329485 DOI: 10.1007/s40820-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 - xO electrode in situ growth on carbon felt (ZnxNi1 - xO@CF) through constraining the rate of OH- generation in the hydrothermal method. ZnxNi1 - xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g-1), ultra-low energy consumption (0.164 kW h kgNaCl-1), high salt removal rate (1.21 mgNaCl g-1 min-1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
Collapse
Affiliation(s)
- Jie Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Siyang Xing
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yabo Wang
- School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Zhang M, Ma M, Miao Z, Chai W, Cao Y. Coal-based activated carbon functionalized with anionic and cationic surfactants for asymmetric capacitive deionization of nitrate. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Xue Y, Cheng W, Cao M, Gao J, Chen J, Gui Y, Zhu W, Ma F. Development of nitric acid-modified activated carbon electrode for removal of Co 2+/Mn 2+/Ni 2+ by electrosorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77536-77552. [PMID: 35680747 DOI: 10.1007/s11356-022-21272-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In this paper, nitric acid-modified activated carbon was used as an electrode in the electrosorption process for the removal of Co2+, Mn2+, and Ni2+ from wastewater. The effects of applied voltage, initial pH, and coexisting ions on removal efficiency were investigated. The adsorption process was evaluated by adsorption isotherm models. The results indicated that the electrosorption process was consistent with the Langmuir model, proving that the electrosorption process was a monolayer adsorption process. The maximum adsorption capacities of Co2+, Mn2+, and Ni2+ were 131.58 mg/g, 102.04 mg/g, and 103.09 mg/g. Electrochemical tests revealed that the specific capacitance of AC-HNO3 was 54.11 F/g when the scanning rate was 5 mV/s, while the specific capacitance of AC was 36.51 F/g. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed that the content of oxygen groups on the surface of activated carbon increased after modification, which provided more adsorption sites for electrosorption. When the selected concentration of HCl was used as the eluent, the elution efficiency of Co2+, Mn2+, and Ni2+ could reach 94.23%, 93.65%, and 90.61%. The removal efficiency could reach more than 95% after three cycles. The results of the study can be used as a reference significance for the removal of cobalt, manganese, and nickel ions from heavy metal wastewater by electrosorption.
Collapse
Affiliation(s)
- Yun Xue
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Wanting Cheng
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Meng Cao
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jianzhang Gao
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jiaqi Chen
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Yunyang Gui
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Wenmin Zhu
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China.
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
5
|
Zhao L, Sun D, Cao Q, Xiao Z, Yu Z, Qi C, Li X, Ning G, Ma X, Peng C, Gao J, Huang X. The green and universal S doping technique coupled with construction of conductive network boosting the enhanced kinetics of Li-ion capacitor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Xiong Y, Yu F, Arnold S, Wang L, Presser V, Ren Y, Ma J. Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9754145. [PMID: 34806019 PMCID: PMC8566195 DOI: 10.34133/2021/9754145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Faradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity (117 ± 6 mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.
Collapse
Affiliation(s)
- Yuecheng Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Stefanie Arnold
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Lei Wang
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
| | - Volker Presser
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- Saarene-Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Yifan Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Toledo-Carrillo E, Zhang X, Laxman K, Dutta J. Asymmetric electrode capacitive deionization for energy efficient desalination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
|
11
|
Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Cheng Y, Hao Z, Hao C, Deng Y, Li X, Li K, Zhao Y. A review of modification of carbon electrode material in capacitive deionization. RSC Adv 2019; 9:24401-24419. [PMID: 35527893 PMCID: PMC9069735 DOI: 10.1039/c9ra04426d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/21/2019] [Indexed: 11/21/2022] Open
Abstract
Capacitive deionization (CDI) technology has attracted wide attention since its advent and is considered as one of the most promising technologies in the field of desalination and ion recycling. It is constructed with an electric field by applying a low voltage of direct-current to make ions migrate directionally in solution to achieve the purpose of ion separation and removal. The performance of CDI is heavily dependent on the electrode material. Carbon is widely used as CDI electrode material because of its lower price and better stability. To enhance the adsorption capacity, extensive research efforts have been made for the modification of carbon material. In this review, we enumerate and analyze four modification methods of carbon material including element doping, metal oxide modification, chemical treatment and surface coating. The influence of each modification method on CDI performance is concluded in the perspective mechanism and some constructive advice is put forward on how to effectively enhance the performance of CDI by the decoration of carbon materials.
Collapse
Affiliation(s)
- Yutuo Cheng
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Zhiqi Hao
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Changrun Hao
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Yu Deng
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Xingying Li
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Kexun Li
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| | - Yubo Zhao
- The College of Environmental Science and Engineering, Nankai University Tianjin 300071 China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Ma D, Wang Y, Cai Y, Xu S, Wang J. Multifunctional group sulfobutyl ether β-cyclodextrin polymer treated CNT as the cathode for enhanced performance in asymmetric capacitive deionization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Ma D, Cai Y, Wang Y, Xu S, Wang J, Khan MU. Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17617-17628. [PMID: 31013424 DOI: 10.1021/acsami.8b20588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the capacitive deionization (CDI) process, the degradation of desalting performance is predominantly due to the co-ion expulsion effect and electrode oxidation. To overcome these complications, carbon nanotubes grafted with amine and sulfonic functional groups respectively were prepared and used as the CDI electrodes. The structural characterizations and performance tests confirmed that a uniform functional layer was formed on the surface of the modified electrodes and it enhanced the ion selectivity and wettability of the electrode surface. Moreover, the effects of the functional layer on the electrode stability were investigated by circulating CV tests and desalination tests. The positive shift value of the potential of zero charge (PZC) for the as-prepared electrodes was tested as a quantitative indication for their possible surface oxidation during cyclic tests. Analysis of the PZC variation and desalting performance demonstrated that the excellent desalting stability was achieved by the Cell N-S assembled with the ammoniated CNTs electrode as anode and sulfonated CNTs electrode as cathode. Because the functional layer could preserve the pores system on the modified electrodes and diminish the parasitic reactions that exacerbate the electrode oxidation. This work provides an effective strategy for promoting the electrode performance and prolonging the life of the electrode.
Collapse
Affiliation(s)
- Dongya Ma
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- State Key Laboratory of Chemical Engineering , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yanmeng Cai
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- State Key Laboratory of Chemical Engineering , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yue Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- State Key Laboratory of Chemical Engineering , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Shichang Xu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- State Key Laboratory of Chemical Engineering , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Maaz Ullah Khan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , PR China
- State Key Laboratory of Chemical Engineering , Tianjin 300072 , PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| |
Collapse
|
15
|
Oladunni J, Zain JH, Hai A, Banat F, Bharath G, Alhseinat E. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.046] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Chemical activation of biochar for energy and environmental applications: a comprehensive review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biochar (BC) generated from thermal and hydrothermal cracking of biomass is a carbon-rich product with the microporous structure. The graphene-like structure of BC contains different chemical functional groups (e.g. phenolic, carboxylic, carbonylic, etc.), making it a very attractive tool for wastewater treatment, CO2 capture, toxic gas adsorption, soil amendment, supercapacitors, catalytic applications, etc. However, the carbonaceous and mineral structure of BC has a potential to accept more favorable functional groups and discard undesirable groups through different chemical processes. The current review aims at providing a comprehensive overview on different chemical modification mechanisms and exploring their effects on BC physicochemical properties, functionalities, and applications. To reach these objectives, the processes of oxidation (using either acidic or alkaline oxidizing agents), amination, sulfonation, metal oxide impregnation, and magnetization are investigated and compared. The nature of precursor materials, modification preparatory/conditions, and post-modification processes as the key factors which influence the final product properties are considered in detail; however, the focus is dedicated to the most common methods and those with technological importance.
Collapse
|
17
|
Li Y, Kim J, Wang J, Liu NL, Bando Y, Alshehri AA, Yamauchi Y, Hou CH, Wu KCW. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. NANOSCALE 2018; 10:14852-14859. [PMID: 29869671 DOI: 10.1039/c8nr02288g] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Zeolitic imidazolate framework (ZIF) composite-derived carbon exhibiting large surface area and high micropore volume is demonstrated to be a promising electrode material for the capacitive deionization (CDI) application. However, some inherent serious issues (e.g., low electrical conductivity, narrow pore size, relatively low pore volume, etc.) are still observed for nitrogen-doped porous carbon particles, which restrict their CDI performance. To solve the above-mentioned problems, herein, we prepared gold-nanoparticle-embedded ZIF-8-derived nitrogen-doped carbon calcined at 800 °C (Au@NC800) and PEDOT doped-NC-800 (NC800-PEDOT). The newly generated NC800-PEDOT and Au@NC800 electrodes exhibited notably increased conductivity, and they also achieved high electrosorption capacities of 16.18 mg g-1 and 14.31 mg g-1, respectively, which were much higher than that of NC800 (8.36 mg g-1). Au@NC800 and NC800-PEDOT can be promisingly applicable as highly efficient CDI electrode materials.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Facile synthesis of TiO 2/ZrO 2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Sci Rep 2018; 8:541. [PMID: 29323229 PMCID: PMC5765043 DOI: 10.1038/s41598-017-19027-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
Capacitive deionization, as a second generation electrosorption technique to obtain water, is one of the most promising water desalination technologies. Yet; in order to achieve high CDI performance, a well-designed structure of the electrode materials is needed, and is in high demand. Here, a novel composite nitrogen-TiO2/ZrO2 nanofibers incorporated activated carbon (NACTZ) is synthesized for the first time with enhanced desalination efficiency as well as disinfection performance towards brackish water. Nitrogen and TiO2/ZrO2 nanofibers are used as the support of activated carbon to improve its low capacitance and hydrophobicity, which had dramatically limited its adequacy during the CDI process. Importantly, the as-fabricated NACTZ nanocomposite demonstrates enhanced electrochemical performance with significant specific capacitance of 691.78 F g−1, low internal resistance and good cycling stability. In addition, it offers a high capacitive deionization performance of NACTZ yield with electrosorptive capacity of 3.98 mg g−1, and, good antibacterial effects as well. This work will provide an effective solution for developing highly performance and low-cost design for CDI electrode materials.
Collapse
|
19
|
Chang Y, Zhang G, Han B, Li H, Hu C, Pang Y, Chang Z, Sun X. Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29753-29759. [PMID: 28805056 DOI: 10.1021/acsami.7b08181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Doped carbon materials (DCM) with multiple heteroatoms hold broad interest in electrochemical catalysis and energy storage but require several steps to fabricate, which greatly hinder their practical applications. In this study, a facile strategy is developed to enable the fast fabrication of multiply doped carbon materials via room-temperature dehalogenation of polyvinyl dichloride (PVDC) promoted by KOH with the presence of different organic dopants. A N,S-codoped carbon material (NS-DCM) is demonstratively synthesized using two dopants (dimethylformamide for N doping and dimethyl sulfoxide for S doping). Afterward, the precursive room-temperature NS-DCM with intentionally overdosed KOH is submitted to inert annealing to obtain large specific surface area and high conductivity. Remarkably, NS-DCM annealed at 600 °C (named as 600-NS-DCM), with 3.0 atom % N and 2.4 atom % S, exhibits a very high specific capacitance of 427 F g-1 at 1.0 A g-1 in acidic electrolyte and also keeps ∼60% of capacitance at ultrahigh current density of 100.0 A g-1. Furthermore, capacitive deionization (CDI) measurements reveal that 600-NS-DCM possesses a large desalination capacity of 32.3 mg g-1 (40.0 mg L-1 NaCl) and very good cycling stability. Our strategy of fabricating multiply doped carbon materials can be potentially extended to the synthesis of carbon materials with various combinations of heteroatom doping for broad electrochemical applications.
Collapse
Affiliation(s)
- Yingna Chang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | - Guoxin Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
- College of Electrical Engineering and Automation, Shandong University of Science and Technology , Qingdao 266590, China
| | - Biao Han
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | - Haoyuan Li
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | - Cejun Hu
- College of Energy, Beijing University of Chemical Technology , Beijing 100029, China
| | - Yingchun Pang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology , Beijing 100029, China
- College of Energy, Beijing University of Chemical Technology , Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
20
|
Sakar H, Celik I, Balcik Canbolat C, Keskinler B, Karagunduz A. Electro-sorption of ammonium by a modified membrane capacitive deionization unit. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1336556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hacer Sakar
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Kocaeli, Turkey
| | - Isıl Celik
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Kocaeli, Turkey
| | - Cigdem Balcik Canbolat
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Kocaeli, Turkey
| | - Bulent Keskinler
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Kocaeli, Turkey
| | - Ahmet Karagunduz
- Environmental Engineering Department, Gebze Technical University, Gebze, Kocaeli, Kocaeli, Turkey
| |
Collapse
|
21
|
Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|