1
|
Xiao L, Guo G, Zhang M, You M, Luo S, Guo G, He C, Tang C, Zhong J. Cu- and Al-Decorated Monolayer TiSe 2 for Enhanced Gas Detection Sensitivity: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18631-18643. [PMID: 38064293 DOI: 10.1021/acs.langmuir.3c03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rapid industrial development has contributed to worsening global pollution, necessitating the urgent development of highly sensitive, cost-effective, and portable gas sensors. In this work, the adsorption of CO, CO2, H2S, NH3, NO, NO2, O2, and SO2 gas molecules on pristine and Cu- and Al-decorated monolayer TiSe2 has been investigated based on first-principles calculations. First, the results of the phonon spectrum and ab initio molecular dynamics simulations demonstrated that TiSe2 is dynamically stable. In addition, compared to pristine TiSe2 (-0.029 to -0.154 eV), the adsorption energy of gas molecules (excluding CO2) significantly decreased after decorated with Cu or Al (-0.212 to -0.977 eV in Cu-decorated TiSe2, -0.438 to -2.896 eV in Al-decorated TiSe2). Among them, NH3 and NO2 have the lowest adsorption energies in Cu and Al-decorated TiSe2, respectively. Further research has shown that the decrease in adsorption energy of gas molecules is mainly due to orbital hybridization and charge transfer between decorated Cu and Al atoms and gas molecules. These findings suggest that TiSe2 decorated with Cu and Al can effectively improve its sensitivity to NH3 and NO2, respectively, making it promising in gas sensing applications.
Collapse
Affiliation(s)
- Landong Xiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Gencai Guo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong 528311, China
| | - Mengyang Zhang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Manqi You
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Siwei Luo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Gang Guo
- School of Science, Hunan Institute of Technology, Hengyang 421002, China
| | - Chaoyu He
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Chao Tang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| | - Jianxin Zhong
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
| |
Collapse
|
2
|
Becker JM, Lielpetere A, Szczesny J, Bichon S, Gounel S, Mano N, Schuhmann W. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing. Bioelectrochemistry 2023; 149:108314. [PMID: 36335789 DOI: 10.1016/j.bioelechem.2022.108314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P(VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.
Collapse
Affiliation(s)
- Jana M Becker
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Anna Lielpetere
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Julian Szczesny
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Sébastien Gounel
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.
| |
Collapse
|
3
|
Shi Y, Li L, Zhang L. Enhanced Power Density of Alcohol Biofuel Cell by Polymer‐assisted Crosslinks of 3D Graphene on Carbon Paper as the Bioanode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuhe Shi
- School of Science Harbin Institute of Technology Shenzhen 518055 China
| | - Lin Li
- School of Science Harbin Institute of Technology Shenzhen 518055 China
| | - Ling Zhang
- School of Science Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
4
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Tang J, Yan X, Huang W, Engelbrekt C, Duus JØ, Ulstrup J, Xiao X, Zhang J. Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode. Biosens Bioelectron 2020; 167:112500. [PMID: 32829175 DOI: 10.1016/j.bios.2020.112500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Aggregation of reduced graphene oxide (RGO) due to π-π stacking is a recurrent problem in graphene-based electrochemistry, decreasing the effective working area and therefore the performance of the RGO electrodes. Dispersing RGO on three-dimensional (3D) carbon paper electrodes is one strategy towards overcoming this challenge, with partial relief aggregation. In this report, we describe the grafting of negatively charged 4-aminobenzoic acid (4-ABA) onto a graphene functionalized carbon paper electrode surface. 4-ABA functionalization induces separation of the RGO layers, at the same time leading to favorable orientation of the blue multi-copper enzyme Myrothecium verrucaria bilirubin oxidase (MvBOD) for direct electron transfer (DET) in the dioxygen reduction reaction (ORR) at neutral pH. Simultaneous electroreduction of graphene oxide to RGO and covalent attachment of 4-ABA are achieved by applying alternating cathodic and anodic electrochemical potential pulses, leading to a high catalytic current density (Δjcat:193 ± 4 μA cm-2) under static conditions. Electrochemically grafted 4-ABA not only leads to a favorable orientation of BOD as validated by fitting a kinetic model to the electrocatalytic data, but also acts to alleviate RGO aggregation as disclosed by scanning electron microscopy, most likely due to the electrostatic repulsion between 4-ABA-grafted graphene layers. With a half-lifetime of 55 h, the bioelectrode also shows the highest operational stability for DET-type MvBOD-based bioelectrodes reported to date. The bioelectrode was finally shown to work well as a biocathode of a membrane-less glucose/O2 enzymatic biofuel cell with a maximum power density of 22 μW cm-2 and an open circuit voltage of 0.51 V.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Wei Huang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jens Øllgaard Duus
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; Kazan National Research Technological University, K. Marx Str., 68, 420015, Kazan, Republic of Tatarstan, Russia
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
6
|
Wu R, Song H, Wang Y, Wang L, Zhu Z. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tang J, Yan X, Engelbrekt C, Ulstrup J, Magner E, Xiao X, Zhang J. Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry 2020; 134:107537. [PMID: 32361268 DOI: 10.1016/j.bioelechem.2020.107537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
8
|
Zheng T, Li J, Ji Y, Zhang W, Fang Y, Xin F, Dong W, Wei P, Ma J, Jiang M. Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism. Front Bioeng Biotechnol 2020; 8:10. [PMID: 32083069 PMCID: PMC7004955 DOI: 10.3389/fbioe.2020.00010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
Bioelectrochemical systems are revolutionary new bioengineering technologies which integrate microorganisms or enzymes with the electrochemical method to improve the reducing or oxidizing metabolism. Generally, the bioelectrochemical systems show the processes referring to electrical power generation or achieving the reducing reaction with a certain potential poised by means of electron transfer between the electron acceptor and electron donor. Researchers have focused on the selection and optimization of the electrode materials, design of electrochemical device, and screening of electrochemically active or inactive model microorganisms. Notably, all these means and studies are related to electron transfer: efflux and consumption. Thus, here we introduce the basic concepts of bioelectrochemical systems, and elaborate on the extracellular and intracellular electron transfer, and the hypothetical electron transfer mechanism. Also, intracellular energy generation and coenzyme metabolism along with electron transfer are analyzed. Finally, the applications of bioelectrochemical systems and the prospect of microbial electrochemical technologies are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
9
|
Vagin MY, Sekretaryova AN, Håkansson A, Iakimov T, Ivanov IG, Syväjärvi M, Yakimova R, Lundström I, Eriksson M. Bioelectrocatalysis on Anodized Epitaxial Graphene and Conventional Graphitic Interfaces. ChemElectroChem 2019. [DOI: 10.1002/celc.201900587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mikhail Yu. Vagin
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Laboratory of Organic Electronics, Department of Science and TechnologyLinköping University 60174 Norrköping Sweden
| | - Alina N. Sekretaryova
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Department of ChemistryStanford University Stanford CA 94305-5080 USA
- Department of Chemistry'Ångström'Uppsala University Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Anna Håkansson
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Laboratory of Organic Electronics, Department of Science and TechnologyLinköping University 60174 Norrköping Sweden
| | - Tihomir Iakimov
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Graphensic AB Teknikringen 1F SE-58330 Linköping Sweden
| | - Ivan G. Ivanov
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
| | - Mikael Syväjärvi
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Graphensic AB Teknikringen 1F SE-58330 Linköping Sweden
| | - Rositsa Yakimova
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
- Graphensic AB Teknikringen 1F SE-58330 Linköping Sweden
| | - Ingemar Lundström
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
| | - Mats Eriksson
- Department of Physics, Chemistry and BiologyLinköping University 58183 Linköping Sweden
| |
Collapse
|
10
|
Shen F, Pankratov D, Halder A, Xiao X, Toscano MD, Zhang J, Ulstrup J, Gorton L, Chi Q. Two-dimensional graphene paper supported flexible enzymatic fuel cells. NANOSCALE ADVANCES 2019; 1:2562-2570. [PMID: 36132730 PMCID: PMC9416935 DOI: 10.1039/c9na00178f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Application of enzymatic biofuel cells (EBFCs) in wearable or implantable biomedical devices requires flexible and biocompatible electrode materials. To this end, freestanding and low-cost graphene paper is emerging among the most promising support materials. In this work, we have exploited the potential of using graphene paper with a two-dimensional active surface (2D-GP) as a carrier for enzyme immobilization to fabricate EBFCs, representing the first case of flexible graphene papers directly used in EBFCs. The 2D-GP electrodes were prepared via the assembly of graphene oxide (GO) nanosheets into a paper-like architecture, followed by reduction to form layered and cross-linked networks with good mechanical strength, high conductivity and little dependence on the degree of mechanical bending. 2D-GP electrodes served as both a current collector and an enzyme loading substrate that can be used directly as a bioanode and biocathode. Pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOx) adsorbed on the 2D-GP electrodes both retain their biocatalytic activities. Electron transfer (ET) at the bioanode required Meldola blue (MB) as an ET mediator to shuttle electrons between PQQ-GDH and the electrode, but direct electron transfer (DET) at the biocathode was achieved. The resulting glucose/oxygen EBFC displayed a notable mechanical flexibility, with a wide open circuit voltage range up to 0.665 V and a maximum power density of approximately 4 μW cm-2 both fully competitive with reported values for related EBFCs, and with mechanical flexibility and facile enzyme immobilization as novel merits.
Collapse
Affiliation(s)
- Fei Shen
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Dmitry Pankratov
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Arnab Halder
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | | | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| |
Collapse
|
11
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
12
|
An Electrochemical Enzyme Biosensor for 3-Hydroxybutyrate Detection Using Screen-Printed Electrodes Modified by Reduced Graphene Oxide and Thionine. BIOSENSORS-BASEL 2017; 7:bios7040050. [PMID: 29137135 PMCID: PMC5746773 DOI: 10.3390/bios7040050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023]
Abstract
A biosensor for 3-hydroxybutyrate (3-HB) involving immobilization of the enzyme 3-hydroxybutyrate dehydrogenase onto a screen-printed carbon electrode modified with reduced graphene oxide (GO) and thionine (THI) is reported here. After addition of 3-hydroxybutyrate or the sample in the presence of NAD+ cofactor, the generated NADH could be detected amperometrically at 0.0 V vs. Ag pseudo reference electrode. Under the optimized experimental conditions, a calibration plot for 3-HB was constructed showing a wide linear range between 0.010 and 0.400 mM 3-HB which covers the clinically relevant levels for diluted serum samples. In addition, a limit of detection of 1.0 µM, much lower than that reported using other biosensors, was achieved. The analytical usefulness of the developed biosensor was demonstrated via application to spiked serum samples.
Collapse
|
13
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
14
|
Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing. Biosens Bioelectron 2017; 95:1-7. [DOI: 10.1016/j.bios.2017.03.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
|
15
|
Tapia C, Shleev S, Conesa JC, De Lacey AL, Pita M. Laccase-Catalyzed Bioelectrochemical Oxidation of Water Assisted with Visible Light. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cristina Tapia
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie,
2, L10 28049 Madrid, Spain
| | - Sergey Shleev
- Biomedical
Sciences, Faculty of Health and Society, Malmo University, SE-0205
06 Malmo, Sweden
| | - José Carlos Conesa
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie,
2, L10 28049 Madrid, Spain
| | - Antonio L. De Lacey
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie,
2, L10 28049 Madrid, Spain
| | - Marcos Pita
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie,
2, L10 28049 Madrid, Spain
| |
Collapse
|
16
|
Siepenkoetter T, Salaj-Kosla U, Magner E. The Immobilization of Fructose Dehydrogenase on Nanoporous Gold Electrodes for the Detection of Fructose. ChemElectroChem 2017. [DOI: 10.1002/celc.201600842] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Till Siepenkoetter
- Department of Chemical Sciences, Bernal Institute; University of Limerick; Limerick Ireland
| | - Urszula Salaj-Kosla
- Department of Chemical Sciences, Bernal Institute; University of Limerick; Limerick Ireland
| | - Edmond Magner
- Department of Chemical Sciences, Bernal Institute; University of Limerick; Limerick Ireland
| |
Collapse
|
17
|
Siepenkoetter T, Salaj-Kosla U, Xiao X, Conghaile PÓ, Pita M, Ludwig R, Magner E. Immobilization of Redox Enzymes on Nanoporous Gold Electrodes: Applications in Biofuel Cells. Chempluschem 2016; 82:553-560. [DOI: 10.1002/cplu.201600455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Till Siepenkoetter
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Urszula Salaj-Kosla
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Xinxin Xiao
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Peter Ó Conghaile
- School of Chemistry; Ryan Institute; National University of Ireland; Galway Ireland
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica; Consejo Superior de Investigaciones Científicas; c/Marie Curie 2, L10 28049 Madrid Spain
| | - Roland Ludwig
- Department of Food Science and Technology; BOKU-University of Natural Resources and Life Sciences; Muthgasse18 1190 Vienna Austria
| | - Edmond Magner
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| |
Collapse
|
18
|
Yang Y, Zeng H, Huo WS, Zhang YH. Direct Electrochemistry and Catalytic Function on Oxygen Reduction Reaction of Electrodes Based on Two Kinds of Magnetic Nano-particles with Immobilized Laccase Molecules. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0464-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni MT, Mano N, Lojou E. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23074-23085. [PMID: 27533778 DOI: 10.1021/acsami.6b07355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production.
Collapse
Affiliation(s)
- Ievgen Mazurenko
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Karen Monsalve
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Jad Rouhana
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Philippe Parent
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Carine Laffon
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Alan Le Goff
- Université Grenoble Alpes , DCM UMR 5250, 38000 Grenoble, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Marie-Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| |
Collapse
|
20
|
Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 2016; 89:384-389. [PMID: 27297188 DOI: 10.1016/j.bios.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/16/2023]
Abstract
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm-2 and the highest Γ of (23.6±0.9)pmolcm-2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s-1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.
Collapse
|