1
|
Mukhin N, Dietzel A, Issakov V, Bakhchova L. Balancing performance and stability characteristics in organic electrochemical transistor. Biosens Bioelectron 2025; 281:117476. [PMID: 40245610 DOI: 10.1016/j.bios.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Nowadays organic electrochemical transistors (OECTs) are becoming a promising platform for bioelectronics and biosensing due to its biocompatibility, high sensitivity and selectivity, low driving voltages, high transconductance and flexibility. However, the existing problems associated with degradation processes within the OECT during long-term operation hinder their widespread implementation. Moreover, trade-offs often arise between OECT transconductance and speed, fast ion transport and electron mobility, electrochemical stability and sensitivity, cycling stability and signal amplification, and other metrics. Ensuring high performance characteristics and achieving enhanced stability in OECTs are distinct strategies that do not always align, as progress in one aspect often necessitates a trade-off with the other. This dynamic arises from the need to find a balance between reversible and irreversible processes in the behavior of OECT active layers, and providing simultaneously favorable conditions for ion and electron transport and their efficient charge coupling. This review article systematically summarizes the phenomenological and physical-chemical aspects associated with factors and mechanisms that determine both performance and long-term stability of OECT, paying special attention to the consideration of existing and promising approaches to extend the OECT lifespan, while maintaining (or even increasing) high effectiveness of its operation.
Collapse
Affiliation(s)
- Nikolay Mukhin
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Vadim Issakov
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Liubov Bakhchova
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Li P, Galek P, Grothe J, Kaskel S. Carbon-based iontronics - current state and future perspectives. Chem Sci 2025; 16:7130-7154. [PMID: 40201167 PMCID: PMC11974446 DOI: 10.1039/d4sc06817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Over the past few decades, carbon materials, including fullerenes, carbon nanotubes, graphene, and porous carbons, have achieved tremendous success in the fields of energy, environment, medicine, and beyond, through their development and application. Due to their unique physical and chemical characteristics for enabling simultaneous interaction with ions and transport of electrons, carbon materials have been attracting increasing attention in the emerging field of iontronics in recent years. In this review, we first summarize the recent progress and achievements of carbon-based iontronics (ionic sensors, ionic transistors, ionic diodes, ionic pumps, and ionic actuators) for multiple bioinspired applications ranging from information sensing, processing, and actuation, to simple and basic artificial intelligent reflex arc units for the construction of smart and autonomous iontronics. Additionally, the promising potential of carbon materials for smart iontronics is highlighted and prospects are provided in this review, which provide new insights for the further development of nanostructured carbon materials and carbon-based smart iontronics.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Przemyslaw Galek
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
- Fraunhofer IWS Winterbergstrasse 28 01277 Dresden Germany
| |
Collapse
|
3
|
Li Y, Bai N, Chang Y, Liu Z, Liu J, Li X, Yang W, Niu H, Wang W, Wang L, Zhu W, Chen D, Pan T, Guo CF, Shen G. Flexible iontronic sensing. Chem Soc Rev 2025. [PMID: 40165624 DOI: 10.1039/d4cs00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human-machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.
Collapse
Affiliation(s)
- Yang Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yu Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jianwen Liu
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Xiaoqin Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Wenhao Yang
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Hongsen Niu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Wenhao Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Di Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Park B, Kim S. Understanding Intrinsic Electrochemical Properties of NiCo-Metal-Organic Framework-Derived NiCo 2O 4 as a Li-Ion Battery Anode. Molecules 2025; 30:616. [PMID: 39942720 PMCID: PMC11819797 DOI: 10.3390/molecules30030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
This study explores the electrochemical properties of additive-free NiCo₂O₄ derived from NiCo-metal-organic frameworks (MOFs) as a high-performance anode material for lithium-ion batteries (LIBs), excluding the effect of additives. NiCo-MOF was synthesized via an ultrasonic-assisted method and deposited on stainless steel foils using alternating current electrophoretic deposition (AC-EPD). The resulting thin films exhibited outstanding cycling stability and rate performance, maintaining a specific capacity of ~1200 mAh/g over 250 cycles at a high current density of 2.35 A/g, with nearly 100% Coulombic efficiency. Differential capacity analysis revealed enhanced redox activity at 0.8 V and 1.7 V during lithiation and delithiation, attributed to the decomposition of NiCo₂O₄ into metallic Ni and Co, followed by their oxidation to Ni2⁺ and Co3⁺, respectively. The gradual activation of electroactive sites, coupled with improved electrode kinetics and structural adjustments, contributed to the observed capacity increase over cycles. These findings underscore the potential of NiCo₂O₄ as a robust and efficient anode material for next-generation LIBs.
Collapse
Affiliation(s)
- Byoungnam Park
- Department of Materials Science and Engineering, Hongik University, 72-1, Sangsu-dong, Mapo-gu, Seoul 04066, Republic of Korea;
| | | |
Collapse
|
5
|
Essam D, Ahmed AM, Abdel-Khaliek AA, Shaban M, Rabia M. One pot synthesis of poly m-toluidine incorporated silver and silver oxide nanocomposite as a promising electrode for supercapacitor devices. Sci Rep 2025; 15:2698. [PMID: 39837976 PMCID: PMC11750978 DOI: 10.1038/s41598-024-84848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-Ag2O) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials. The resulting structure of Ag-Ag2O minimizes ion diffusion distances, increases active sites, and accelerates redox reactions. The electrochemical response of PMT and PMT/Ag-Ag2O electrodes was evaluated in three different electrolyte solutions (Na2SO4, H2SO4, and HCl). The specific capacitance of PMT/Ag-Ag2O nanocomposite was found to be higher than that of PMT alone. Among the tested electrolytes, HCl exhibited the highest specific capacitance of 443 F g-1 at a gravimetric current density of 0.4 A g-1, surpassing H2SO4 (104 F g-1) and Na2SO4 (32 F g-1). Also, the PMT/Ag-Ag2O nanocomposite has demonstrated good cycling stability. It exhibited a high specific power density of 156 W Kg-1 and a specific energy density of 1.8 Wh Kg-1. These results highlight the potential of the prepared PMT/Ag-Ag2O nanocomposite as a nanoelectrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Abdel-Khaliek
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Al Madinah Al Monawara, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. Proteinoids-Polyaniline Interaction with Stimulated Neurons on Living and Plastic Surfaces. ACS OMEGA 2024; 9:45789-45810. [PMID: 39583677 PMCID: PMC11579727 DOI: 10.1021/acsomega.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Abstract
The integration of proteinoid-polyaniline (PANI) nanofibers with neuromorphic architectures shows potential for developing computer systems that are adaptable, energy-efficient, and have the capacity of tolerating faults. This work examines the capacity of proteinoid-PANI nanofibers to imitate different spiking patterns in stimulated Izhikevich neurons. The proteinoid-PANI nanofibers exhibit diverse spiking behaviors on different substrates, showcasing a broad range of control and programmability, as confirmed by experimental characterization and computational modeling. K-means clustering technique measures the extent and selectivity of the proteinoid-PANI spiking behavior in response to various stimuli and spiking patterns. The presence of strong positive correlations between membrane potential and time suggests that the system is capable of producing reliable and consistent electrical activity patterns. Proteinoid-PANI samples demonstrate enhanced stability and consistency in numerous spiking modes when compared to simulated input neurons. The results emphasize the capability of proteinoid-PANI nanofibers as a bioinspired substance for neuromorphic computing and open up possibilities for their incorporation into neuromorphic structures and bioinspired computer models.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing
Laboratory, UWE, Bristol, BS16 1QY, U.K.
| | - Andrew Adamatzky
- Unconventional Computing
Laboratory, UWE, Bristol, BS16 1QY, U.K.
| |
Collapse
|
7
|
Xu L, Xiao Y, Yu ZX, Yang Y, Yan C, Huang JQ. Revisiting the Electrochemical Impedance Spectroscopy of Porous Electrodes in Li-ion Batteries by Employing Reference Electrode. Angew Chem Int Ed Engl 2024; 63:e202406054. [PMID: 38980317 DOI: 10.1002/anie.202406054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Electrochemical impedance spectroscopy (EIS), characterized by its non-destructive and in situ nature, plays a crucial role in comprehending the thermodynamic and kinetic processes occurring within Li-ion batteries. However, there is a lack of consistent and coherent physical interpretations for the EIS of porous electrodes. Therefore, it is imperative to conduct thorough investigations into the underlying physical mechanisms of EIS. Herein, by employing reference electrode in batteries, we revisit the associated physical interpretation of EIS at different frequencies. Combining different battery configurations, temperature-dependent experiments, and elaborated distribution of relaxation time analysis, we find that the ion transport in porous electrode channels and pseudo-capacitance behavior dominate the high-frequency and mid-frequency impedance arcs, respectively. This work offers a perspective for the physical interpretation of EIS and also sheds light on the understanding of EIS characteristics in other advanced energy storage systems.
Collapse
Affiliation(s)
- Lei Xu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ye Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhi-Xian Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Yan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze River Delta Graduate School, Beijing Institute of Technology, Jiaxing, 314003, China
| | - Jia-Qi Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
Bandpey M, Barz DPJ. Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments. NANOSCALE 2024; 16:15078-15093. [PMID: 39072431 DOI: 10.1039/d4nr01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Two-dimensional MXenes were discovered in 2011 and, because of their outstanding properties, have attracted significant attention as electrode materials for supercapacitors, rechargeable batteries, and hybrid energy storage devices. Numerous studies were dedicated to identifying feasible charge storage mechanisms in MXenes and investigating the effects of structural and superficial properties on the corresponding mechanisms. The results clarify that interlayer distance and surface termination groups in MXenes significantly determine the deliverable energy and power density in respective energy storage devices. Additionally, due to van der Waals interactions, adjacent MXene sheets tend to aggregate and restack during electrode preparation or charge and discharge cycling, reducing the MXene interlayer distance and deteriorating its energy storage ability. In this review, we first summarize the different charge storage mechanisms applicable to MXenes in different energy storage devices and describe the effect of interlayer spacing and surface termination groups. Then, different interlayer space engineering methods are reviewed in terms of materials and procedures, and their impact on the electrochemical behavior and restacking tendency of MXene is described.
Collapse
Affiliation(s)
- Mohammad Bandpey
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Dominik P J Barz
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
9
|
Nigam R, Kar KK. Effect of Mixed Morphology (Simple Cubic, Face-Centered Cubic, and Body-Centered Cubic)-Based Electrodes on the Electric Double Layer Capacitance of Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14266-14280. [PMID: 38941262 DOI: 10.1021/acs.langmuir.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Supercapacitors store energy due to the formation of an electric double layer (EDL) at the interface of the electrodes and electrolyte. The present article deals with the finite element study of equilibrium electric double layer capacitance (EDLC) in the mixed morphology electrodes comprising all three fundamental crystal structures, simple cubic (SC), body-centered cubic (BCC), and face-centered cubic morphologies (FCC). Mesoporous-activated carbon forms the electrode in the supercapacitor with (C2H5)4NBF4/propylene carbonate organic electrolyte. Electrochemical interference is clearly demonstrated in the supercapacitors with the formation of the potential bands, as in the case of interference theory due to the increasing packing factor. The effects of electrode thickness varying from a wide range of 50 nm to 0.04 mm on specific EDLC have been discussed in detail. The interfacial geometry of the unit cell in contact with the electrolyte is the most important parameter determining the properties of the EDL. The critical thickness of the electrodes is 1.71 μm in all the morphologies. Polarization increases the interfacial potential and leads to EDL formation. The Stern layer specific capacitance is 167.6 μF cm-2 in all the morphologies. The maximum capacitance is in the decreasing order of interfacial geometry, as FCC > BCC > SC, dependent on the packing factor. The minimum transmittance in all the morphologies is 98.35%, with the constant figure of merit at higher electrode thickness having applications in the chip interconnects. The transient analysis shows that the interfacial current decreases with increasing polarization in the EDL. The capacitance also decreases with the increase of the scan rate.
Collapse
Affiliation(s)
- Ravi Nigam
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
10
|
Gupta R, Malik A, Kumari K, Singh SK, Vivier V, Mondal PC. Metal-free platforms for molecular thin films as high-performance supercapacitors. Chem Sci 2024; 15:8775-8785. [PMID: 38873075 PMCID: PMC11168099 DOI: 10.1039/d4sc00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Controlling chemical functionalization and achieving stable electrode-molecule interfaces for high-performance electrochemical energy storage applications remain challenging tasks. Herein, we present a simple, controllable, scalable, and versatile electrochemical modification approach of graphite rods (GRs) extracted from low-cost Eveready cells that were covalently modified with anthracene oligomers. The anthracene oligomers with a total layer thickness of ∼24 nm on the GR electrode yield a remarkable specific capacitance of ∼670 F g-1 with good galvanostatic charge-discharge cycling stability (10 000) recorded in 1 M H2SO4 electrolyte. Such a boost in capacitance is attributed mainly to two contributions: (i) an electrical double-layer at the anthracene oligomer/GR/electrolyte interfaces, and (ii) the proton-coupled electron transfer (PCET) reaction, which ensures a substantial faradaic contribution to the total capacitance. Due to the higher conductivity of the anthracene films, it possesses more azo groups (-N[double bond, length as m-dash]N-) during the electrochemical growth of the oligomer films compared to pyrene and naphthalene oligomers, which is key to PCET reactions. AC-based electrical studies unravel the in-depth charge interfacial electrical behavior of anthracene-grafted electrodes. Asymmetrical solid-state supercapacitor devices were made using anthracene-modified biomass-derived porous carbon, which showed improved performance with a specific capacitance of ∼155 F g-1 at 2 A g-1 with an energy density of 5.8 W h kg-1 at a high-power density of 2010 W kg-1 and powered LED lighting for a longer period. The present work provides a promising metal-free approach in developing organic thin-film hybrid capacitors.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Ankur Malik
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana 502285 India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana 502285 India
| | - Vincent Vivier
- CNRS, Laboratoire de Réactivité de Surface, Sorbonne Université 4 place Jussieu Paris 75005 Cedex 05 France
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
11
|
Tang B, Fang Y, Zhu S, Bai Q, Li X, Wei L, Li Z, Zhu C. Tuning hydrogen bond network connectivity in the electric double layer with cations. Chem Sci 2024; 15:7111-7120. [PMID: 38756806 PMCID: PMC11095383 DOI: 10.1039/d3sc06904d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hydrogen bond (H-bond) network connectivity in electric double layers (EDLs) is of paramount importance for interfacial HER/HOR electrocatalytic processes. However, it remains unclear whether the cation-specific effect on H-bond network connectivity in EDLs exists. Herein, we report simulation evidence from ab initio molecular dynamics that cations at Pt(111)/water interfaces can tune the structure and the connectivity of H-bond networks in EDLs. As the surface charge density σ becomes more negative, we show that the connectivity of the H-bond networks in EDLs of the Na+ and Ca2+ systems decreases markedly; in stark contrast, the connectivity of the H-bond networks in EDLs of the Mg2+ system increases slightly. Further analysis revealed that the interplay between the hydration of cations and the interfacial water structure plays a key role in the connectivity of H-bond networks in EDLs. These findings highlight the key roles of cations in EDLs and electrocatalysis.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yeguang Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shuang Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Bai
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaojiao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Laiyang Wei
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
12
|
Zhao P, Liu Q, Yang X, Zhu J, Yang S, Chen L, Zhang Q. High-performance flexible asymmetric supercapacitor based on hierarchical MnO 2/PPy nanocomposites covered MnOOH nanowire arrays cathode and 3D network-like Fe 2O 3/PPy hybrid nanosheets anode. J Colloid Interface Sci 2024; 662:322-332. [PMID: 38354559 DOI: 10.1016/j.jcis.2024.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
13
|
Bakola V, Kotrotsiou O, Ntziouni A, Dragatogiannis D, Plakantonaki N, Trapalis C, Charitidis C, Kiparissides C. Development of Composite Nanostructured Electrodes for Water Desalination via Membrane Capacitive Deionization. Macromol Rapid Commun 2024; 45:e2300640. [PMID: 38184786 DOI: 10.1002/marc.202300640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Novel two-layer nanostructured electrodes are successfully prepared for their application in membrane capacitive deionization (MCDI) processes. Nanostructured carbonaceous materials such as graphene oxide (GO) and carbon nanotubes (CNTs), as well as activated carbon (AC) are dispersed in a solution of poly(vinyl alcohol) (PVA), mixed with polyacrylic acid (PAA) or polydimethyldiallylammonium chloride (PDMDAAC), and subsequently cast on the top surface of an AC-based modified graphite electrode to form a thin composite layer that is cross-linked with glutaraldehyde (GA). Cyclic voltammetry (CV) is performed to investigate the electrochemical properties of the composite electrodes and desalination experiments are conducted in batch mode using a MCDI unit cell to investigate the effects of i) the nanostructured carbonaceous material, ii) its concentration in the polymer blend, and iii) the molecular weight of the polymers on the desalination efficiency of the system. Comparative studies with commercial membranes are performed proving that the composite nanostructured electrodes are more efficient in salt removal. The improved performance of the composite electrodes is attributed to the ion exchange properties of the selected polymers and the increased specific capacitance of the nanostructured carbonaceous materials. This research paves the way for wider application of MCDI in water desalination.
Collapse
Affiliation(s)
- Veroniki Bakola
- Centre for Research and Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI), 6th km Charilaou-Thermi Rd, Thermi, Thessaloniki, 57001, Greece
- Aristotle University of Thessaloniki (AUTH), Department of Chemical Engineering, University Campus, Thessaloniki, 54124, Greece
| | - Olympia Kotrotsiou
- Centre for Research and Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI), 6th km Charilaou-Thermi Rd, Thermi, Thessaloniki, 57001, Greece
| | - Afroditi Ntziouni
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens, 15780, Greece
| | - Dimitris Dragatogiannis
- DELTA-MPIS, Technological Park of Lefkippos, Neapoleos and Patriarchou Grigoriou St, Agia Paraskevi, Attikis, Athens, 15341, Greece
| | - Niki Plakantonaki
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi, Attikis, Athens, 15341, Greece
| | - Christos Trapalis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi, Attikis, Athens, 15341, Greece
| | - Costas Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens, 15780, Greece
| | - Costas Kiparissides
- Centre for Research and Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI), 6th km Charilaou-Thermi Rd, Thermi, Thessaloniki, 57001, Greece
- Aristotle University of Thessaloniki (AUTH), Department of Chemical Engineering, University Campus, Thessaloniki, 54124, Greece
| |
Collapse
|
14
|
Vikraman HK, George J, Reji RP, Kuppuswamy GP, Sutar SD, Swami A, Ramamoorthy S, Sundaramurthy A, Pramanik S, Velappa Jayaraman S, Perumal S, Sivalingam Y, Mangalampalli SRNK. Unprecedented Multifunctionality in Novel Monophase Micro/Nanostructured Ti-Zn Alloy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305126. [PMID: 37735144 DOI: 10.1002/smll.202305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Indexed: 09/23/2023]
Abstract
It is always challenging to integrate multiple functions into one material system. However, those materials/devices will address society's critical global challenges and technological demands if achieved with innovative design strategies and engineering. Here, one such material with a broader spectrum of desired properties appropriate for seven applications is identified and explored, and a glucose-sensing-triggered energy-storage mechanism is demonstrated. To date, the Titanium (Ti)-Zinc (Zn) binary alloys are investigated only as mixed phases and for a maximum of three applications. In contrast, the novel single phase of structurally stable 50 Ti-50 Zn (Ti0.5 Zn0.5 ) is synthesized and proven suitable for seven emerging applications. Interestingly, it is thermally stable up to 750 °C and possesses excellent mechanical, tribological properties and corrosion resistance. While exceptional biocompatibility is evident even up to a concentration of 500 µg mL-1 , the antibacterial activity against E. coli is also seen. Further, rapid detection and superior selectivity for glucose, along with supercabattery behavior, unambiguously demonstrate that this novel monophase is a remarkable multifunctional material than the existing mixed-phase Ti-Zn compounds. The coin-cell supercapacitor shows outstanding stability up to 30 000 cycles with >100% retention capacity. This allows us to prototype a glucose-sensing-triggered energy-storage-device system for wearable point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Hajeesh Kumar Vikraman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Jeena George
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Rence P Reji
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Guru Prasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sanjay D Sutar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Anita Swami
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Anandhakumar Sundaramurthy
- Department of Chemical Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Sumit Pramanik
- Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Surya Velappa Jayaraman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Suresh Perumal
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - S R N Kiran Mangalampalli
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
15
|
Rudra S, Seo HW, Sarker S, Kim DM. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects. Molecules 2024; 29:243. [PMID: 38202828 PMCID: PMC10780446 DOI: 10.3390/molecules29010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Among electrochemical energy storage (EES) technologies, rechargeable batteries (RBs) and supercapacitors (SCs) are the two most desired candidates for powering a range of electrical and electronic devices. The RB operates on Faradaic processes, whereas the underlying mechanisms of SCs vary, as non-Faradaic in electrical double-layer capacitors (EDLCs), Faradaic at the surface of the electrodes in pseudo-capacitors (PCs), and a combination of both non-Faradaic and Faradaic in hybrid supercapacitors (HSCs). EDLCs offer high power density but low energy density. HSCs take advantage of the Faradaic process without compromising their capacitive nature. Unlike batteries, supercapacitors provide high power density and numerous charge-discharge cycles; however, their energy density lags that of batteries. Supercapatteries, a generic term that refers to hybrid EES devices that combine the merits of EDLCs and RBs, have emerged, bridging the gap between SCs and RBs. There are numerous articles and reviews on EES, and many of those articles have emphasized various aspects of HSCs and supercapatteries. However, there are no recent reviews that dealt with supercapatteries in general. Here, we review recently published critically selected articles on supercapatteries. The review discusses different EES devices and how supercapatteries are different from others. Also discussed are properties, design strategies, and future perspectives on supercapatteries.
Collapse
Affiliation(s)
| | | | - Subrata Sarker
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| | - Dong Min Kim
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| |
Collapse
|
16
|
Minyawi BA, Vaseem M, Alhebshi NA, Al-Amri AM, Shamim A. Printed Electrodes Based on Vanadium Dioxide and Gold Nanoparticles for Asymmetric Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2567. [PMID: 37764596 PMCID: PMC10535297 DOI: 10.3390/nano13182567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Printed energy storage components attracted attention for being incorporated into bendable electronics. In this research, a homogeneous and stable ink based on vanadium dioxide (VO2) is hydrothermally synthesized with a non-toxic solvent. The structural and morphological properties of the synthesized material are determined to be well-crystalline monoclinic-phase nanoparticles. The charge storage mechanisms and evaluations are specified for VO2 electrodes, gold (Au) electrodes, and VO2/Au electrodes using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The VO2 electrode shows an electrical double layer and a redox reaction in the positive and negative voltage ranges with a slightly higher areal capacitance of 9 mF cm-2. The VO2/Au electrode exhibits an areal capacitance of 16 mF cm-2, which is double that of the VO2 electrode. Due to the excellent electrical conductivity of gold, the areal capacitance 18 mF cm-2 of the Au electrode is the highest among them. Based on that, Au positive electrodes and VO2 negative electrodes are used to build an asymmetric supercapacitor. The device delivers an areal energy density of 0.45 μWh cm-2 at an areal power density of 70 μW cm-2 at 1.4 V in the aqueous electrolyte of potassium hydroxide. We provide a promising electrode candidate for cost-effective, lightweight, environmentally friendly printed supercapacitors.
Collapse
Affiliation(s)
- Bashaer A. Minyawi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Vaseem
- Integrated Microwave Packaging Antennas and Circuit Technology (IMPACT) Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nuha A. Alhebshi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal M. Al-Amri
- Department of Physics, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Atif Shamim
- Integrated Microwave Packaging Antennas and Circuit Technology (IMPACT) Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Muungani G, Pillay MN, van Zyl WE. The mineral manaksite, KNaMnSi 4O 10, as a supercapattery-type electrochemical energy storage material. RSC Adv 2023; 13:26732-26743. [PMID: 37681039 PMCID: PMC10481385 DOI: 10.1039/d3ra03629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The manaksite mineral KNaMnSi4O10 was synthesized and used to fabricate electrodes, which were investigated for electrochemical energy storage (EES) application using cyclic voltammetry (CV), galvanostatic charge and discharge (GCD), and electrochemical impedance spectroscopy (EIS). Optimum weight percentages (wt%) of electrode components were established as 10 wt% polytetrafluoroethylene (PTFE) binder, 15 wt% RuO2 and 5 wt% carbon black. RuO2 was added to improve electrical conductivity. A ratio of 13 : 3 for KNaMnSi4O10 : RuO2 was used in the fabrication of the electrode. A study of the suitable electrolyte and corresponding concentration to use was done using NaOH and KOH, both at concentrations of 1 M, 3 M and 6 M, with 3 M NaOH as the optimum electrolyte and concentration. The KNaMnSi4O10 yielded a specific capacity of 106 mA h g-1. An investigation into the energy storage mechanism from a plot of log I(ν) vs. log ν, where I is current and ν is the scan rate gave a b value parameter of 0.8; that is, in-between 0.5 obtained for a pure battery material and 1.0 for a pure capacitor material. Accordingly, KNaMnSi4O10 exhibited a battery-supercapacitor duality phenomenon consistent with supercapattery materials. The KNaMnSi4O10 electrochemical system involved both capacitive and diffusion-controlled processes and was found to have good cyclic stability. It is concluded that KNaMnSi4O10 is a potential electrochemical energy storage material.
Collapse
Affiliation(s)
- Gregarious Muungani
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa +27 31 260 3199
| | - Michael N Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa +27 31 260 3199
| | - Werner E van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa +27 31 260 3199
| |
Collapse
|
18
|
Ryan S, Browne MP, Zhussupbekova A, Spurling D, McKeown L, Douglas-Henry D, Prendeville L, Vaesen S, Schmitt W, Shvets I, Nicolosi V. Single walled carbon nanotube functionalisation in printed supercapacitor devices and shielding effect of Tin(II) Oxide. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
19
|
Rajesh JA, Park JY, Manikandan R, Ahn KS. Rationally Designed Bimetallic Co-Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4435. [PMID: 36558288 PMCID: PMC9784776 DOI: 10.3390/nano12244435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Rational designing of electrode materials is of great interest for improving the performance of battery-type supercapacitors. The bimetallic NiCo2S4 (NCS) and CoNi2S4 (CNS) electrode materials have received much attention for supercapacitors due to their rich electrochemical characteristics. However, the comparative electrochemical performances of NCS and CNS electrodes were never studied for supercapacitor application. In this work, microsphere-like bimetallic NCS and CNS structures were synthesized via a facile one-step hydrothermal method by controlling the molar ratio of Ni and Co precursors. The physico-chemical results confirmed that microsphere-like structures with cubic spinel-type NCS and CNS materials were successfully fabricated by this method. When tested as the supercapacitor electrode materials, both NCS and CNS electrodes exhibited battery-type behavior in a three-electrode configuration with outstanding electrochemical performances such as specific capacity, rate performance and cycle stability. Impressively, the CNS electrode delivered a high specific capacity of 430.1 C g-1 at 1 A g-1, which is higher than 345.9 C g-1 of the NCS electrode. Furthermore, the NCS and CNS electrodes showed a decent cycling stability with 75.70 and 84.70% capacity retention after 10,000 cycles. Benefiting from the electrochemical advantage of CNS microspheres, we fabricated a hybrid supercapacitor (HSC) device based on CNS microspheres (positive electrode) and activated carbon (AC, negative electrode), which is named as CNS//AC. The assembled CNS//AC HSC device showed a large energy density of 41.98 Wh kg-1 at a power density of 800.04 W kg-1 and displayed a remarkable cycling stability with a capacity retention of 91.79% after 15,000 cycles. These excellent electrochemical performances demonstrate that both bimetallic NCS and CNS microspheres may provide potential electrode materials for high performance battery-type supercapacitors.
Collapse
Affiliation(s)
- John Anthuvan Rajesh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Jong-Young Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ramu Manikandan
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kwang-Soon Ahn
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
20
|
Xu A, Yu Y, Li W, Zhang Y, Ye S, Zhao Z, Qin Y. Sequential electrodeposition fabrication of graphene/polyaniline/MnO2 ternary supercapacitor electrodes with high rate capability and cyclic stability. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Compañ V, Andrio A, Escorihuela J, Velasco J, Porras-Vazquez A, Gamez-Perez J. Electric Conductivity Study of Porous Polyvinyl Alcohol/Graphene/Clay Aerogels: Effect of Compression. ACS OMEGA 2022; 7:37954-37963. [PMID: 36312350 PMCID: PMC9607684 DOI: 10.1021/acsomega.2c05123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 06/12/2023]
Abstract
In this work, poly(vinyl alcohol) (PVOH)/graphene (GN) oxide/clay aerogels were prepared using montmorillonite (MMT) and kaolinite (KLT) as fillers. This work paves the way for the development of aerogels filled with MMT or KLT with high conductivity. The mechanical properties of the polymer/clay aerogels are enhanced by incorporating GN into these systems. These composite materials have an enhanced thermal stability, and the combination of PVOH and GN leads to interconnected channels which favored the conductivity when a clay (MMT or KLT) is added to the mixed PVOH/GN matrix. However, after compressing the samples, the conductivities drastically decreased. These results show that the design of solid MMT/GN and KLT/GN composites as aerogels allows maximizing the space utilization of the electrode volume to achieve unhindered ion transport, which seems contrary to the general design principle of electrode materials where a suitable porous structure is desired, such as in our uncompressed samples. These findings also demonstrate the potential of these materials in electrodes, sensors, batteries, pressure-sensing applications, and supercapacitors.
Collapse
Affiliation(s)
- Vicente Compañ
- Departamento
de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Campus de Vera s/n, 46022Valencia, Spain
| | - Andreu Andrio
- Departamento
de Física, Universitat Jaume I, Castellón de la Plana12071, Spain
| | - Jorge Escorihuela
- Departamento
de Química Orgánica, Universitat
de València, Av.
Vicente Andrés Estellés s/n, Burjassot, 46100Valencia, Spain
| | - Josua Velasco
- Departamento
de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón de la Plana12071, Spain
| | - Alejandro Porras-Vazquez
- Departamento
de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón de la Plana12071, Spain
| | - Jose Gamez-Perez
- Departamento
de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón de la Plana12071, Spain
| |
Collapse
|
22
|
High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Zn–Co–S coatings with a rough and porous nano-dendrite structure for high-performance asymmetric supercapacitors without binder. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Effects of Incorporating Titanium Dioxide with Titanium Carbide on Hybrid Materials Reinforced with Polyaniline: Synthesis, Characterization, Electrochemical and Supercapacitive Properties. FIBERS 2022. [DOI: 10.3390/fib10050046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report on the synthesis of titanium dioxide by titanium carbide for the preparation of hybrid material reinforced with polyaniline (PANI@TiO2–TiC) using the in situ polymerization technique. The effectiveness of the samples on the thermal, optical and electrochemical properties was investigated. The XRD, XPS, FTIR, SEM and TEM results confirm the successful synthesis of the PANI, PANI@TiC and PANI@TiO2–TiC samples. Through this, a good connection, an excellent relationship between the structures and the properties of the synthesized hybrid materials were obtained. Moreover, the electrical conductivity and optical bandgap were also tested. Remarkably good electrochemical characteristics were identified by cyclic voltammetry. Moreover, the galvanostatic charge–discharge (GCD) of the supercapacitor was remarkably high. Cyclic stability showed good retention after 1500 cycles at 1.5 A·g−1.
Collapse
|
25
|
Rajesh JA, Park J, Kang S, Ahn KS. Effect of molar concentration on the crystallite structures and electrochemical properties of cobalt fluoride hydroxide for hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Ndipingwi MM, Ikpo CO, Nwanya AC, Januarie KC, Ramoroka ME, Uhuo OV, Nwambaekwe K, Yussuf ST, Iwuoha EI. Engineering the chemical environment of lithium manganese silicate by Mn ion substitution to boost the charge storage capacity for application in high efficiency supercapattery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Hao C, Guo Y, Ren W, Wang X, Zhu L, Wang X, Wu J. Ternary Ni(OH)2/Co(OH)2/Mg(OH)2 derived from MOF-74 as a positive material for the determination of high performance supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Schalenbach M, Durmus YE, Tempel H, Kungl H, Eichel RA. The role of the double layer for the pseudocapacitance of the hydrogen adsorption on platinum. Sci Rep 2022; 12:3375. [PMID: 35233048 PMCID: PMC8888654 DOI: 10.1038/s41598-022-07411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudocapacitances such as the hydrogen adsorption on platinum (HAoPt) are associated with faradaic chemical processes that appear as capacitive in their potentiodynamic response, which was reported to result from the kinetics of adsorption processes. This study discusses an alternative interpretation of the partly capacitive response of the HAoPt that is based on the proton transport of ad- or desorbed hydrogen in the double layer. Potentiodynamic perturbations of equilibrated surface states of the HAoPt lead to typical double layer responses with the characteristic resistive–capacitive relaxations that overshadow the fast adsorption kinetics. A potential-dependent double layer representation by a dynamic transmission line model incorporates the HAoPt in terms of capacitive contributions and can computationally reconstruct the charge exchanged in full range cyclic voltammetry data. The coupling of charge transfer with double layer dynamics displays a novel physicochemical theory to explain the phenomenon of pseudocapacitance and the mechanisms in thereon based supercapacitors.
Collapse
Affiliation(s)
- Maximilian Schalenbach
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Y Emre Durmus
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Hermann Tempel
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Hans Kungl
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rüdiger-A Eichel
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
29
|
Gamal A, Shaban M, BinSabt M, Moussa M, Ahmed AM, Rabia M, Hamdy H. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:817. [PMID: 35269305 PMCID: PMC8912390 DOI: 10.3390/nano12050817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
In this work, a polyaniline/lead sulfide (PANI/PbS) nanocomposite was prepared by combining the in situ oxidation polymerization method and the surface adsorption process. This nanocomposite was applied as a supercapacitor electrode. The crystal structure, nanomorphology, and optical analysis of PANI and PANI/PbS were investigated. The electrochemical performance of the designed PANI/PbS electrode-based supercapacitor was tested by using cyclic voltammetry (CV), chronopotentiometry (CP), and AC impedance techniques in HCl and Na2SO4 electrolytes. The average crystallite size of the PANI/PbS nanocomposite is about 43 nm. PANI/PbS possesses an agglomerated network related to PANI with additional spherical shapes from PbS nanoparticles. After the PANI/PbS nanocomposite formation, there are enhancements in their absorption intensities. At a current density of 0.4 A g-1, the specific capacitance of PANI/PbS in Na2SO4 and HCl was found to be 303 and 625 F g-1, respectively. In HCl (625 F g-1 and 1500 mF cm-2), the gravimetric and areal capacitances of the PANI/PbS electrode are nearly double those of the Na2SO4 electrolyte. Also, the average specific energy and specific power density values for the PANI/PbS electrode in HCl are 4.168 Wh kg-1 and 196.03 W kg-1, respectively. After 5000 cycles, the capacitance loses only 4.5% of its initial value. The results refer to the high stability and good performance of the designed PANI/PbS as a supercapacitor electrode.
Collapse
Affiliation(s)
- Ahmed Gamal
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Shaban
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Al-Madinah Almonawara 42351, Saudi Arabia
| | - Mohammad BinSabt
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Mahmoud Moussa
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ashour M. Ahmed
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Rabia
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hany Hamdy
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.); (M.R.); (H.H.)
| |
Collapse
|
30
|
Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01571-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Haque M, Abdurrokhman I, Idström A, Li Q, Rajaras A, Martinelli A, Evenäs L, Lundgren P, Enoksson P. Exploiting low-grade waste heat to produce electricity through supercapacitor containing carbon electrodes and ionic liquid electrolytes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Zhang Q, Zhu J, Yang S, Chen L, Sun M, Yang X, Wang P, Li K, Zhao P. Co 2P decorated Co 3O 4 nanocomposites supported on carbon cloth with enhanced electrochemical performance for asymmetric supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00276k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective strategy is demonstrated to promote electrochemical performance by the combination of Co3O4 with Co2P to form a composite electrode.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Jie Zhu
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Sudong Yang
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| | - Maosong Sun
- Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning 530004, China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Peng Zhao
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo 12 Avenue, Chengdu, 610106, P. R. China
| |
Collapse
|
33
|
Das K, Majumdar D. Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Mule AR, Ramulu B, Yu JS. Designing of hierarchical lychee fruit-like cobalt-selenide heterostructures with enhanced performance for hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Li B, Liu S, Yang H, Xu X, Zhou Y, Yang R, Zhang Y, Li J. Continuously Reinforced Carbon Nanotube Film Sea-Cucumber-like Polyaniline Nanocomposites for Flexible Self-Supporting Energy-Storage Electrode Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:8. [PMID: 35009957 PMCID: PMC8746542 DOI: 10.3390/nano12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022]
Abstract
The charge storage mechanism and capacity of supercapacitors completely depend on the electrochemical and mechanical properties of electrode materials. Herein, continuously reinforced carbon nanotube film (CNTF), as the flexible support layer and the conductive skeleton, was prepared via the floating catalytic chemical vapor deposition (FCCVD) method. Furthermore, a series of novel flexible self-supporting CNTF/polyaniline (PANI) nanocomposite electrode materials were prepared by cyclic voltammetry electrochemical polymerization (CVEP), with aniline and mixed-acid-treated CNTF film. By controlling the different polymerization cycles, it was found that the growth model, morphology, apparent color, and loading amount of the PANI on the CNTF surface were different. The CNTF/PANI-15C composite electrode, prepared by 15 cycles of electrochemical polymerization, has a unique surface, with a "sea-cucumber-like" 3D nanoprotrusion structure and microporous channels formed via the stacking of the PANI nanowires. A CNTF/PANI-15C flexible electrode exhibited the highest specific capacitance, 903.6 F/g, and the highest energy density, 45.2 Wh/kg, at the current density of 1 A/g and the voltage window of 0 to 0.6 V. It could maintain 73.9% of the initial value at a high current density of 10 A/g. The excellent electrochemical cycle and structural stabilities were confirmed on the condition of the higher capacitance retention of 95.1% after 2000 cycles of galvanostatic charge/discharge, and on the almost unchanged electrochemical performances after 500 cycles of bending. The tensile strength of the composite electrode was 124.5 MPa, and the elongation at break was 18.9%.
Collapse
Affiliation(s)
- Bingjian Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
| | - Shi Liu
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
| | - Haicun Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
| | - Xixi Xu
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
| | - Yinjie Zhou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
| | - Rong Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou 213164, China
| | - Yun Zhang
- Changzhou Key Laboratory of Functional Film Materials, Changzhou 213164, China;
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; (B.L.); (S.L.); (H.Y.); (X.X.); (Y.Z.); (R.Y.)
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou 213164, China
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou 213164, China
| |
Collapse
|
36
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
37
|
Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires. Catalysts 2021. [DOI: 10.3390/catal11121516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, mesoporous ZnCo2O4 electrode material with necklace-type nanowires was synthesized by a simple hydrothermal method using water/ethylene glycol mixed solvent and subsequent calcination treatment. The ZnCo2O4 nanowires were assembled by several tiny building blocks of nanoparticles which led to the growth of necklace-type nanowires. The as-synthesized ZnCo2O4 nanowires had porous structures with a high surface area of 25.33 m2 g−1 and with an average mesopore of 23.13 nm. Due to the higher surface area and mesopores, the as-prepared necklace-type ZnCo2O4 nanowires delivered a high specific capacity of 439.6 C g−1 (1099 F g−1) at a current density of 1 A g−1, decent rate performance (47.31% retention at 20 A g−1), and good cyclic stability (84.82 % capacity retention after 5000 cycles). Moreover, a hybrid supercapacitor was fabricated with ZnCo2O4 nanowires as a positive electrode and activated carbon (AC) as a negative electrode (ZnCo2O4 nanowires//AC), which delivered an energy density of 41.87 Wh kg−1 at a power density of 800 W kg−1. The high electrochemical performance and excellent stability of the necklace-type ZnCo2O4 nanowires relate to their unique architecture, high surface area, mesoporous nature, and the synergistic effect between Zn and Co metals.
Collapse
|
38
|
NiO nanofibers clad nickel foam as binder-free electrode with ultrahigh mass loading: boosting performance of hybrid supercapacitor and overall water-splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Synthesis and characterization of 3-(4-fluorophenyl)thieno[3,2-b]thiophene and 3,3’-(4- fluorophenyl)dithieno[3,2-b;2’,3’-d]thiophene molecules. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Breczko J, Grzeskiewicz B, Gradzka E, Bobrowska DM, Basa A, Goclon J, Winkler K. Synthesis of polyaniline nanotubes decorated with graphene quantum dots: Structural & electrochemical studies. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Metal-organic frameworks based on Schiff base condensation reaction as battery-type electrodes for supercapattery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Santhosh N, Upadhyay KK, Stražar P, Filipič G, Zavašnik J, Mão de Ferro A, Silva RP, Tatarova E, Montemor MDF, Cvelbar U. Advanced Carbon-Nickel Sulfide Hybrid Nanostructures: Extending the Limits of Battery-Type Electrodes for Redox-Based Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20559-20572. [PMID: 33881814 PMCID: PMC8289178 DOI: 10.1021/acsami.1c03053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides combined with conductive carbon nanostructures are considered promising electrode materials for redox-based supercapacitors due to their high specific capacity. However, the low rate capability of these electrodes, still considered "battery-type" electrodes, presents an obstacle for general use. In this work, we demonstrate a successful and fast fabrication process of metal sulfide-carbon nanostructures ideal for charge-storage electrodes with ultra-high capacity and outstanding rate capability. The novel hybrid binder-free electrode material consists of a vertically aligned carbon nanotube (VCN), terminated by a nanosized single-crystal metallic Ni grain; Ni is covered by a nickel nitride (Ni3N) interlayer and topped by trinickel disulfide (Ni3S2, heazlewoodite). Thus, the electrode is formed by a Ni3S2/Ni3N/Ni@NVCN architecture with a unique broccoli-like morphology. Electrochemical measurements show that these hybrid binder-free electrodes exhibit one of the best electrochemical performances compared to the other reported Ni3S2-based electrodes, evidencing an ultra-high specific capacity (856.3 C g-1 at 3 A g-1), outstanding rate capability (77.2% retention at 13 A g-1), and excellent cycling stability (83% retention after 4000 cycles at 13 A g-1). The remarkable electrochemical performance of the binder-free Ni3S2/Ni3N/Ni@NVCN electrodes is a significant step forward, improving rate capability and capacity for redox-based supercapacitor applications.
Collapse
Affiliation(s)
- Neelakandan
M. Santhosh
- Department
of Gaseous Electronics, Jožef Stefan
Institute, Jamova Cesta
39, Ljubljana SI-1000, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova Cesta 39, Ljubljana SI-1000, Slovenia
| | - Kush K. Upadhyay
- Charge2C-NewCap, Av. José Francisco Guerreiro,
No 28 Paiã Park, Armazém A2.12, Pontinha, Odivelas 1675-078, Portugal
- Centro
de Química Estrutural-CQE, Departamento de Engenharia Química,
Instituto Superior Técnico, Universidade
de Lisboa, Lisboa 1049-001, Portugal
| | - Petra Stražar
- Department
of Gaseous Electronics, Jožef Stefan
Institute, Jamova Cesta
39, Ljubljana SI-1000, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova Cesta 39, Ljubljana SI-1000, Slovenia
| | - Gregor Filipič
- Department
of Gaseous Electronics, Jožef Stefan
Institute, Jamova Cesta
39, Ljubljana SI-1000, Slovenia
| | - Janez Zavašnik
- Department
of Gaseous Electronics, Jožef Stefan
Institute, Jamova Cesta
39, Ljubljana SI-1000, Slovenia
| | - André Mão de Ferro
- Charge2C-NewCap, Av. José Francisco Guerreiro,
No 28 Paiã Park, Armazém A2.12, Pontinha, Odivelas 1675-078, Portugal
| | - Rui Pedro Silva
- Charge2C-NewCap, Av. José Francisco Guerreiro,
No 28 Paiã Park, Armazém A2.12, Pontinha, Odivelas 1675-078, Portugal
| | - Elena Tatarova
- Instituto
de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049, Portugal
| | - Maria de Fátima Montemor
- Centro
de Química Estrutural-CQE, Departamento de Engenharia Química,
Instituto Superior Técnico, Universidade
de Lisboa, Lisboa 1049-001, Portugal
| | - Uroš Cvelbar
- Department
of Gaseous Electronics, Jožef Stefan
Institute, Jamova Cesta
39, Ljubljana SI-1000, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova Cesta 39, Ljubljana SI-1000, Slovenia
| |
Collapse
|
43
|
Zhu M, Jia X, Li Y, Zhao C, Chao D, Wang C. A cytocompatible conductive polydopamine towards electrochromic energy storage device. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137961] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Polyaniline and rare earth metal oxide composition: A distinctive design approach for supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Majumdar D. Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Ju H, Liu XD, Tao CY, Yang F, Liu XL, Luo X, Zhang L. A novel edge-rich structure of CuO/Co3O4 derived from Prussian blue analogue as a high-rate and ultra-stable electrode for efficient capacitive storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Divya S, Nann T. High Voltage Carbon‐Based Cathodes for Non‐Aqueous Aluminium‐Ion Batteries**. ChemElectroChem 2020. [DOI: 10.1002/celc.202001490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shalini Divya
- School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6140 New Zealand
| | - Thomas Nann
- School of Mathematical and Physical Sciences, The University of Newcastle Newcastle NSW 2308 Australia
| |
Collapse
|
48
|
Majumdar D. Review on Current Progress of MnO
2
‐Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem 2020. [DOI: 10.1002/celc.202001371] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dipanwita Majumdar
- Department of Chemistry Chandernagore College Chandannagar Hooghly, West Bengal India Pin-712136
| |
Collapse
|
49
|
Liu S, Sarwar S, Zhang H, Guo Q, Luo J, Zhang X. One-step microwave-controlled synthesis of CoV2O6•2H2O nanosheet for super long cycle-life battery-type supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Oloore LE, Gondal MA, Popoola A, Popoola I. Pseudocapacitive contributions to enhanced electrochemical energy storage in hybrid perovskite-nickel oxide nanoparticles composites electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|