1
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Wang J, Duan X, Ren Y. Efficient electrochemical degradation of ceftazidime by Ti 3+ self-doping TiO 2 nanotube-based Sb-SnO 2 nanoflowers as an intermediate layer on a modified PbO 2 electrode. CHEMOSPHERE 2024; 356:141853. [PMID: 38582161 DOI: 10.1016/j.chemosphere.2024.141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Ceftazidime (CAZ) is an emerging organic pollutant with a long-lasting presence in the environment. Although some PbO2 materials exhibit degradation capabilities, inefficient electron transport in the substrate layer and the problem of electrode stability still limit their use. Here, an interfacial design in which TiO2 nanotube arrays generate Ti3+ self-doping oxide substrate layers and highly active 3D Sb-SnO2 nanoflowers-like interlayers was used to prepare PbO2 anodes for efficient degradation of CAZ. Interestingly, after implementing Ti3+ self-doping in the PbO2 anode base layer and introducing 3D nanoflowers-like structures, the capacity for •OH generation increased significantly. The modified electrode exhibited 5-fold greater •OH generation capacity compared to the unmodified electrode, and a 2.7-fold longer accelerated electrode lifetime. The results indicate that interfacial engineering of the base and intermediate layers of the electrodes can improve the electron transfer efficiency, promote the formation of •OH, and extend the anode lifetime of the activated CAZ system.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China
| | - Xiaoxiao Duan
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| | - Yongsheng Ren
- Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Faculty of Frontier Science and Technology, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
3
|
Ni Y, Yue W, Liu F, Bi W, Sun Z, Wu Y. Efficient electrochemical oxidation of cephalosporin antibiotics by a highly active cerium doped PbO2 anode: Parameters optimization, kinetics and degradation pathways. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Sun Z, Ni Y, Wu Y, Yue W, Zhang G, Bai J. Electrocatalytic degradation of methyl orange and 4-nitrophenol on a Ti/TiO 2-NTA/La-PbO 2 electrode: electrode characterization and operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6262-6274. [PMID: 35994150 DOI: 10.1007/s11356-022-22610-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The anode material plays a crucial role in the process of electrochemical oxidation. Herein, a TiO2 nanotube arrays (TiO2-NTA) intermediate layer and La-PbO2 catalytic layer were synthesized on a Ti surface by the electrochemical anodic oxidation and electrochemical deposition technology, respectively. The prepared Ti/TiO2-NTA/La-PbO2 electrode was used as an electrocatalytic oxidation anode for pollutant degradation. Scanning electron microscopy (SEM) analysis showed that the TiO2-NTA layer possessed a highly ordered and well-aligned nanotube array morphology, and the La-PbO2 layer with angular cone cluster was uniform and tightly bonded. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the intermediate layer primarily consisted of the anatase crystal structure of TiO2 and the catalyst layer was made of La-PbO2. Electrochemical analysis revealed that Ti/TiO2-NTA/La-PbO2 electrode exhibited higher oxidation peak current, electrochemical active surface area, and oxygen evolution potential (OEP, 1.64 V). Using methyl orange and 4-nitrophenol as model pollutants, electrocatalytic properties of the prepared Ti/TiO2-NTA/La-PbO2 electrode were systematically investigated under different conditions, and the electrochemical degradation fitted well with the pseudo-first-order kinetics model. Efficient anodic oxidation of model pollutants was mainly attributed to the indirect oxidation mediated by hydroxyl radicals (•OH). The total organic carbon (TOC) removal efficiency of methyl orange and 4-nitrophenol was 70.2 and 72.8%, and low energy consumption (2.50 and 1.89 kWh g-1) was achieved after 240 min of electrolysis under the conditions of initial concentration of model pollutant, electrode spacing, and electrolyte concentration were 50 mg L-1, 2 cm, and 0.1 mol L-1, respectively. This work provided a new strategy to develop the high-efficiency electrode for refractory pollutants degradation.
Collapse
Affiliation(s)
- Zepeng Sun
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Ni
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yuandong Wu
- Shenzhen Institute, Peking University, Shenzhen, 518057, China
| | - Wenqing Yue
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ge Zhang
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmei Bai
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
5
|
Merodio-Morales E, Mendoza-Castillo D, Bonilla-Petriciolet A, Reynel-Avila H, Milella A, di Bitonto L, Pastore C. A novel CO2 activation at room temperature to prepare an engineered lanthanum-based adsorbent for a sustainable arsenic removal from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yang JS, Lai WWP, Lin AYC. New insight into PFOS transformation pathways and the associated competitive inhibition with other perfluoroalkyl acids via photoelectrochemical processes using GOTiO 2 film photoelectrodes. WATER RESEARCH 2021; 207:117805. [PMID: 34736002 DOI: 10.1016/j.watres.2021.117805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The global distribution and environmental persistence of perfluoroalkyl acids (PFAAs) has been considered a critical environmental concern. In this work, we successfully fabricated a graphene oxide-titanium dioxide (GOTiO2) photoelectrode for perfluorooctane sulfonate (PFOS) degradation in a photoelectrochemical (PEC) system. The results reveal that a 5 wt.% GOTiO2 anode possesses the optimal PEC performance, with a band gap (Eg) of 2.42 eV, specific surface area (SBET) of 72.6 m2 g-1 and specific capacitance (Cs) of 4.63 mF cm-2. In the PEC system, PFOS can be efficiently removed within 4 h of reaction time, with a pseudo-first-order rate constant of 0.0124 min-1, under the optimized conditions of current density = 20 mA cm-2, electrode distance = 5 mm, solution pH = 5.64, [PFOS]0= 0.5 µM and NaClO4 electrolyte concentration = 50 mM. The electron transfer pathway, hydroxyl radicals and superoxide radicals are all responsible for PFOS decomposition/transformation. New degradation pathways were identified; a total of 25 PFOS byproducts are reported in this work; and perfluoroalkane sulfonates (PFSAs), perfluorinated aldehydes (PFALs) and hydrofluorocarbons (HFCs) were identified for the first time. PFOS degradation involves the desulfonation pathway as the first step, followed by oxidation and subsequent defluorination, decarboxylation, decarbonylation, sulfonation, defluorination and hydroxylation. The results from this work also show that the reactivity of PFAAs is related to their carbon chain length, with shorter-chain PFAAs exhibiting a lower degradation rate. In a PFAA mixture, a decline in the degradation rate was observed for the shorter-chain-length PFAAs, suggesting stronger competitive inhibition and indicating stronger environmental recalcitrance during the treatment process. Novelty statement: Although many efforts have been made to identify perfluorooctane sulfonate (PFOS) degradation byproducts, previous studies were only able to identify byproducts that are related to perfluorinated carboxylic acids (PFCAs). This is the first study to elucidate the new PFOS degradation pathway; furthermore, this is the first report to identify byproducts containing sulfonate groups (perfluoroalkane sulfonates, PFSAs), aldehyde groups (perfluorinated aldehydes, PFALs), and hydrofluorocarbons (HFCs). This study further systematically explores how perfluoroalkyl acid (PFAA) degradation may be affected in the mixture system: shorter-chain-length PFAAs suffer stronger competitive inhibition in the photoelectrochemical (PEC) system. By utilizing the graphene oxide-titanium dioxide (GOTiO2) photoelectrode fabricated in this work, PFOS can be successfully decomposed during the PEC process for the first time.
Collapse
Affiliation(s)
- Jheng-Sian Yang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Webber Wei-Po Lai
- Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan, ROC
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC.
| |
Collapse
|
7
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
8
|
Huang P, Lei J, Sun Z, Hu X. Fabrication of MOF-derivated CuOx-C electrode for electrochemical degradation of ceftazidime from aqueous solution. CHEMOSPHERE 2021; 268:129157. [PMID: 33360144 DOI: 10.1016/j.chemosphere.2020.129157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic contamination has already been one of hazards to aquatic environment due to the abuse of antibiotics. Metal-organic frameworks (MOFs) are known as a kind of promising porous material for solving the environmental deterioration. In this article, the physicochemical and electrochemical properties of a series of porous copper oxide carbon materials (CuOx-C) synthesized by carbonizing Cu-BTC were compared. Due to the suitable carbonization temperature, CuOx-C-550 N, whose geometric structure was similar to Cu-BTC, possessed a multiscale pore structure containing many mesopores and partial macropores in accordance with the pore size distribution curves. More copper/copper oxides were introduced toimproving the electrochemical ability, evidence by XRD, XPS, CV and EIS characterization. Moreover, the degradation of ceftazidime (CAZ) through anodic oxidation was discussed. In AO/CuOx-C-550 N system, the effects of current, solution pH, initial CAZ concentration and Na2SO4 concentration were analyzed. CAZ removal rate reached 100% within 20 min under the optimal condition and a good electrocatalytic ability with 90% CAZ removal after 20 runs indicated a good electrochemical stability of CuOx-C-550 N. Furthermore, the degradation mechanism and pathway of CAZ were proposed. The Cu(II)/Cu(I) oxidation-reduction couples on the anodic surface contribute to the efficiently selective degradation of cephalosporins for CuOx-C-550 N. Overall, this study shows a good method to design and prepare a new MOF derivative for the remediation of aquatic contamination.
Collapse
Affiliation(s)
- Pengfei Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiawei Lei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zhirong Sun
- College of Environmental & Energy Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
9
|
SIDDIQUI MR, HAKAMI AAH, WABAIDUR SM, ALOTHMAN ZA, KHAN MA, HUSAIN FM. UPLC-MS/MS and Dushman reaction based spectrophotometric method for determination of Ceftazidime, an antibiotic, in medicinal formulation. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.07020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Vidu R, Matei E, Predescu AM, Alhalaili B, Pantilimon C, Tarcea C, Predescu C. Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. TOXICS 2020; 8:E101. [PMID: 33182698 PMCID: PMC7711730 DOI: 10.3390/toxics8040101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/07/2022]
Abstract
Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal ions in the human body have become the driving force for searching new and more efficient water treatment technologies to reduce the concentration of heavy metal in waters. Because the conventional techniques will not be able to keep up with the growing demand for lower heavy metals levels in drinking water and wastewaters, it is becoming increasingly challenging to implement technologically advanced alternative water treatments. Nanotechnology offers a number of advantages compared to other methods. Nanomaterials are more efficient in terms of cost and volume, and many process mechanisms are better and faster at nanoscale. Although nanomaterials have already proved themselves in water technology, there are specific challenges related to their stability, toxicity and recovery, which led to innovations to counteract them. Taking into account the multidisciplinary research of water treatment for the removal of heavy metals, the present review provides an updated report on the main technologies and materials used for the removal of heavy metals with an emphasis on nanoscale materials and processes involved in the heavy metals removal and detection.
Collapse
Affiliation(s)
- Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
- Department of Electrical & Computer Engineering, University of California, Davis, CA 95616, USA
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, Kuwait City 13109, Kuwait;
| | - Cristian Pantilimon
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Claudia Tarcea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest,060042 Bucharest, Romania or (R.V.); (C.P.); (C.T.); (C.P.)
| |
Collapse
|
11
|
Duan P, Jia X, Lin J, Xia R. Electro-oxidation of ceftazidime in real municipal wastewater using PbO2–Ce and SnO2–Sb electrodes: influence of electrolyte and degradation pathway. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01482-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Duan P, Gao S, Lei J, Li X, Hu X. Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO 2-Ce anode: Parameter optimization, toxicity analysis and degradation pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114436. [PMID: 32259720 DOI: 10.1016/j.envpol.2020.114436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/11/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, the electrochemical degradation of antibiotic ceftazidime has been studied using a novel rare earth metal Ce and carbon nanotubes codoped PbO2 electrode. A competitively high oxygen evolution potential (2.4 V) and enhanced catalytic surface area were obtained, evidence by LSV and CV electrochemical characterization. The G/CNT-Ce/PbO2-Ce electrode possessed a more compact structure and a smaller grain size than the other PbO2 and Ce-PbO2 electrodes, exhibiting a prolonged service lifetime, evidence by accelerated lifespan test and recycling degradation experiment. As electrolysis time reached 120 min, the removal efficiency of ceftazidime and TOC arrived at 100.0% and 54.2% respectively in 0.05 M Na2SO4 solution containing 50 mg⋅L-1 ceftazidime. The effect of applied current density, pH value, initial ceftazidime concentration and chloride contents on the degradation performance were systematically evaluated. The results demonstrated that electrochemical oxidation of ceftazidime over the G/CNT-Ce/PbO2-Ce electrode was highly effective, and the mineralization rate was greatly improved, compared with pristine PbO2 electrode. Considering the toxicity was increased after 30 min electrolysis, the intermediates were quantitatively investigated through HPLC-MS, GC-MS and IC technology. According to the identified products, a reaction mechanism has been proposed and pyridine and aminothiazole were detected with concentration from approximately 1 to 3 mg⋅L-1, which were regarded as toxic byproducts during electrooxidation. Further electrocatalyzing by ring cleavage reaction and complete mineralization to CO2, NO3- and NH4+ was proposed, which demonstrated the G/CNT-Ce/PbO2-Ce electrode exhibited high efficiency for ceftazidime removal in mild conditions.
Collapse
Affiliation(s)
- Pingzhou Duan
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shiheng Gao
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiawei Lei
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Li
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Recent Trends in Removal Pharmaceuticals and Personal Care Products by Electrochemical Oxidation and Combined Systems. WATER 2020. [DOI: 10.3390/w12041043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to various potential toxicological threats to living organisms even at low concentrations, pharmaceuticals and personal care products in natural water are seen as an emerging environmental issue. The low efficiency of removal of pharmaceuticals and personal care products by conventional wastewater treatment plants calls for more efficient technology. Research on advanced oxidation processes has recently become a hot topic as it has been shown that these technologies can effectively oxidize most organic contaminants to inorganic carbon through mineralization. Among the advanced oxidation processes, the electrochemical advanced oxidation processes and, in general, electrochemical oxidation or anodic oxidation have shown good prospects at the lab-scale for the elimination of contamination caused by the presence of residual pharmaceuticals and personal care products in aqueous systems. This paper reviewed the effectiveness of electrochemical oxidation in removing pharmaceuticals and personal care products from liquid solutions, alone or in combination with other treatment processes, in the last 10 years. Reactor designs and configurations, electrode materials, operational factors (initial concentration, supporting electrolytes, current density, temperature, pH, stirring rate, electrode spacing, and fluid velocity) were also investigated.
Collapse
|
14
|
Li X, Duan P, Lei J, Sun Z, Hu X. Fabrication of Ti/TiO2/SnO2-Sb-Cu electrode for enhancing electrochemical degradation of ceftazidime in aqueous solution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Preparation of CeO2-ZrO2 and titanium dioxide coated carbon nanotube electrode for electrochemical degradation of ceftazidime from aqueous solution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Duan P, Hu X, Ji Z, Yang X, Sun Z. Enhanced oxidation potential of Ti/SnO 2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: Performance and degradation pathway. CHEMOSPHERE 2018; 212:594-603. [PMID: 30172041 DOI: 10.1016/j.chemosphere.2018.08.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
In order to develop an efficient electrode to remove pharmaceutical and personal care products from wastewater, copper and antimony doped Ti/SnO2 electrode were prepared by thermal decomposition. Electrochemical characterization was undertaken on Ti/SnO2-Cu using cyclic voltammetry and linear sweep voltammetry, indicating an ultra-high 2.1 V of oxygen evolution potential, better stability, and superior corrosion resistance rather than traditional Ti/SnO2-Sb electrode. Competitive degradation experiments showed more efficient removal rate was achieved on Ti/SnO2-Cu electrode, which could remove more than 90% ceftazidime within 60 min. The microstructure and crystal orientation of the modified electrodes were investigated by scanning electron microscopy, which indicated that the crystal of the Ti/SnO2-Cu electrode grew in more porous and uniform condition, covered with closely arranged layers of the coating. X-ray photoelectron spectroscopy and X-ray diffractions suggested that Cu2O was successfully coated on the Ti/SnO2-Cu electrode surface. The operating parameters of electrochemical degradation process were also investigated, including current density, initial concentration, electrode distance, stirring rate and supporting electrolyte. Consequently, the intermediate products of electrochemical degradation were monitored by liquid chromatography-mass spectrometry and a major degradation pathway was proposed.
Collapse
Affiliation(s)
- Pingzhou Duan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029, China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029, China.
| | - Zongyuan Ji
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029, China
| | - Xiaoming Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029, China
| | - Zhirong Sun
- College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Tang B, Du J, Feng Q, Zhang J, Wu D, Jiang X, Dai Y, Zou J. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic. J Colloid Interface Sci 2018; 517:28-39. [DOI: 10.1016/j.jcis.2018.01.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
18
|
Deng D, Deng F, Tang B, Zhang J, Liu J. Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. JOURNAL OF HAZARDOUS MATERIALS 2017; 332:168-175. [PMID: 28314194 DOI: 10.1016/j.jhazmat.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
The electrocatalytic reduction of thiamphenicol (TAP) and florfenicol (FF) was investigated with multi-walled carbon nanotubes (MWCNTs) modified electrode. MWCNTs was dispersed in pure water with the assistance of dihexadecyl phosphate (DHP), and then modified on glassy carbon electrode (GCE). The electrocatalytic reduction conditions, such as bias voltage, supporting electrolyte and its initial pH, and the initial concentrations of TAP and FF, were also optimized. The experimental results indicated that the removal efficiencies of 2mgL-1 TAP and FF in 0.1M NH3·H2O-NH4Cl solution (pH 7.0) reached 87% and 89% at a bias voltage of -1.2V after 24h electrocatalytic reduction, respectively. The removal process could be described by pseudo first-order kinetic model, and the removal rate constants of TAP and FF were obtained as 0.0837 and 0.0915h-1, respectively. The electrocatalytic reduction products of TAP and FF were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the possible reduction mechanisms were preliminarily analyzed. Electrocatalytic reduction is promising to remove low-concentration TAP and FF in wastewater with the MWCNTs modified electrode, and may cut down their toxicity through dehalogenation and carbonyl reduction.
Collapse
Affiliation(s)
- Dongli Deng
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, PR China; Faculty of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, PR China
| | - Fei Deng
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, PR China
| | - Bobin Tang
- Chongqing Entry-Exit Inspection and Quarantine Bureau, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing 400020, PR China
| | - Jinzhong Zhang
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Jiang Liu
- College of Resources and Environment, Southwest University, Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing 400715, PR China
| |
Collapse
|