1
|
Hussain H, Jilani A, Salah N, Memić A, Omaish Ansari M, Alshahrie A. Free standing electrodes of carbon di oxide activated carbonized date palm fronds for highly efficient capacitive deionization of water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
2
|
Liu Y, Tian Y, Xu J, Wang C, Wang Y, Yuan D, Chew JW. Electrosorption performance on graphene-based materials: a review. RSC Adv 2023; 13:6518-6529. [PMID: 36845580 PMCID: PMC9950858 DOI: 10.1039/d2ra08252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/19/2023] [Indexed: 02/28/2023] Open
Abstract
Due to its unique advantages such as flexible planar structure, ultrahigh specific surface area, superior electrical conductivity and electrical double-layer capacitance in theory, graphene has unparalleled virtues compared with other carbon materials. This review summarizes the recent research progress of various graphene-based electrodes on ion electrosorption fields, especially for water desalination utilizing capacitive deionization (CDI) technology. We present the latest advances of graphene-based electrodes, such as 3D graphene, graphene/metal oxide (MO) composites, graphene/carbon composites, heteroatom-doped graphene and graphene/polymer composites. Furthermore, a brief outlook on the challenges and future possible developments in the electrosorption area are also addressed for researchers to design graphene-based electrodes towards practical application.
Collapse
Affiliation(s)
- Yan Liu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Tian
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jianda Xu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Changfu Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Dingzhong Yuan
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
3
|
Wang R, Xu B, Chen Y, Yin X, Liu Y, Yang W. Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Liu C, Ma L, Xu Y, Wang F, Tan Y, Huang L, Ma S. Experimental and theoretical study of a new CDI device for the treatment of desulfurization wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:518-530. [PMID: 34331231 DOI: 10.1007/s11356-021-15651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
According to the characteristics of desulfurization wastewater, A new capacitive deionization (CDI) device was designed to study the desalination characteristics of desulfurization wastewater in this paper. The experiments investigated the desalination efficiency under different conditions which find that the best desalination efficiency is achieved at a voltage of 1.2V, pH=11 and 50°C. Besides, ion adsorption is more favorable under acidic and alkaline conditions. The anion and cation removal performance experiments showed that the order of cation removal is Mg2+>Na+>Ca2+>K+ and the order of anion removal is Cl->CO32->NO3->SO42->HCO3-. The mechanism of CDI was studied and analyzed by the isothermal adsorption model and COMSOL simulation software. It was found that the Freundlich model and Redlich-Peterson model have a good fit with the experimental results. The experiments show that the CDI device has excellent stability. CDI device was used to treat actual desulfurization wastewater. Furthermore, the study provides theoretical support for the industrial application of CDI for desulfurization wastewater treatment in the future. Graphical abstract.
Collapse
Affiliation(s)
- Chang Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China
| | - Lan Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China
| | - Yongyi Xu
- China Power Hua Chuang Electricity Technology Research Company Ltd., Beijing, China
| | - Feng Wang
- China Power Hua Chuang Electricity Technology Research Company Ltd., Beijing, China
| | - Yu Tan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Luyue Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Shuangchen Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Beijing, 102206, China.
| |
Collapse
|
5
|
Liu Y, Du X, Wang Z, Wang L, Liu Z, Shi W, Zheng R, Dou X, Zhu H, Yuan X. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization. J Colloid Interface Sci 2021; 609:289-296. [PMID: 34896829 DOI: 10.1016/j.jcis.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Slow desalination kinetics and poor durability of the electrodes are two key limitations of electrochemical deionization (EDI) that are considered to be the next generation of capacitive desalination (CDI). Herein, we report the design of a high-efficiency chloride removal electrode material for accelerating the desalination kinetics and concurrently improving the durability of EDI, which is based on coating NiMn-Cl layered double hydroxides (LDHs) on the surface of electrospun carbon nanofibers (CNFs@LDHs). The salient features of the as-developed CNFs@LDHs are that applying layer-structured LDHs with abundant redox-active sites to accelerate the pseudo-capacitive ion storage via fast ion intercalation/deintercalation, and leveraging the rigid CNF backbone to strengthen its durability by preventing the potential aggregation of LDHs. As expected, the CNFs@LDH based EDI system displays an ultrafast desalination rate of 0.51 mg g-1 s-1 and outstanding long-term stability (only 10.66 % desalination capacity reduction after 35 cycles), which is achieved without sacrificing its excellent desalination capacity (72.04 mg g-1). This work could be inspirational for the future design of ultrafast yet durable EDI approaching industrial desalination applications.
Collapse
Affiliation(s)
- Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Lihao Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Runzhe Zheng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
6
|
Wang K, Du X, Liu Z, Geng B, Shi W, Liu Y, Dou X, Zhu H, Pan L, Yuan X. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. J Colloid Interface Sci 2021; 608:2752-2759. [PMID: 34785052 DOI: 10.1016/j.jcis.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Rocking-chair capacitive deionization (RCDI), as the next generation technique of capacitive deionization, has thrived to be one of the most promising strategies in the desalination community, yet was hindered mostly by its relatively low desalination rate and stability. Motivated by the goal of simultaneously enhancing the desalination rate and structural stability of the electrode, this paper reports an anion-driven flow-through RCDI (AFT-RCDI) system equipped with BiOCl nanostructure coated carbon sponge (CS@BiOCl for short; its backbone is derived from commercially available melamine foam with minimum capital cost) as the flow-through electrode. Owning to the rational design of the composite electrode material with minimum charge transfer resistance and ultrahigh structure stability as well as the superior flow-through cell architecture, the AFT-RCDI displays excellent desalination performance (desalination capacity up to 107.33 mg g-1; desalination rate up to 0.53 mg g-1s-1) with superior long-term stability (91.75% desalination capacity remained after 30 cycles). This work provides a new thought of coupling anion capturing electrode with flow-through cell architecture and employing a low-cost CS@BiOCl electrode with commercially available backbone material, which could shed light on the further development of low-cost electrochemical desalination systems.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Bo Geng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
7
|
Liu Y, Wang K, Xu X, Eid K, Abdullah AM, Pan L, Yamauchi Y. Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. ACS NANO 2021; 15:13924-13942. [PMID: 34498859 DOI: 10.1021/acsnano.1c03417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capacitive deionization (CDI) is an energy-efficient desalination technique. However, the maximum desalination capacity of conventional carbon-based CDI systems is approximately 20 mg g-1, which is too low for practical applications. Therefore, the focus of research on CDI has shifted to the development of faradic electrochemical deionization systems using electrodes based on faradic materials which have a significantly higher ion-storage capacity than carbon-based electrodes. In addition to the common symmetrical CDI system, there has also been extensive research on innovative systems to maximize the performance of faradic electrode materials. Research has focused primarily on faradic reactions and faradic electrode materials. However, the correlation between faradic electrode materials and the various electrochemical deionization system architectures, i.e., hybrid capacitive deionization, rocking-chair capacitive deionization, and dual-ion intercalation electrochemical desalination, remains relatively unexplored. This has inhibited the design of specific faradic electrode materials based on the characteristics of individual faradic electrochemical desalination systems. In this review, we have characterized faradic electrode materials based on both their material category and the electrochemical desalination system in which they were utilized. We expect that the detailed analysis of the properties, advantages, and challenges of the individual systems will establish a fundamental correlation between CDI systems and electrode materials that will facilitate future developments in this field.
Collapse
Affiliation(s)
- Yong Liu
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Zhang M, Kong W. Recent progress in graphene-based and ion-intercalation electrode materials for capacitive deionization. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Toledo-Carrillo E, Zhang X, Laxman K, Dutta J. Asymmetric electrode capacitive deionization for energy efficient desalination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Pan SY, Haddad AZ, Kumar A, Wang SW. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. WATER RESEARCH 2020; 183:116064. [PMID: 32745671 DOI: 10.1016/j.watres.2020.116064] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
In this article, we present a critical review of the reported performance of reverse osmosis (RO) and capacitive deionization (CDI) for brackish water (salinity < 5.0 g/L) desalination from the aspects of engineering, energy, economy and environment. We first illustrate the criteria and the key performance indicators to evaluate the performance of brackish water desalination. We then systematically summarize technological information of RO and CDI, focusing on the effect of key parameters on desalination performance, as well as energy-water efficiency, economic costs and environmental impacts (including carbon footprint). We provide in-depth discussion on the interconnectivity between desalination and energy, and the trade-off between kinetics and energetics for RO and CDI as critical factors for comparison. We also critique the results of technical-economic assessment for RO and CDI plants in the context of large-scale deployment, with focus on lifetime-oriented consideration to total costs, balance between energy efficiency and clean water production, and pretreatment/post-treatment requirements. Finally, we illustrate the challenges and opportunities for future brackish water desalination, including hybridization for energy-efficient brackish water desalination, co-removal of specific components in brackish water, and sustainable brine management with innovative utilization. Our study reveals that both RO and CDI should play important roles in water reclamation and resource recovery from brackish water, especially for inland cities or rural regions.
Collapse
Affiliation(s)
- Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City, 10617, Taiwan, ROC.
| | - Andrew Z Haddad
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Arkadeep Kumar
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sheng-Wei Wang
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 251301, Taiwan, ROC
| |
Collapse
|
11
|
Highly Selective Electrochemiluminescence Sensor Based on Molecularly Imprinted-quantum Dots for the Sensitive Detection of Cyfluthrin. SENSORS 2020; 20:s20030884. [PMID: 32046019 PMCID: PMC7038674 DOI: 10.3390/s20030884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
A highly selective and sensitive molecularly imprinted electrochemiluminescence (MIECL) sensor was developed based on the multiwall carbon nanotube (MWCNT)-enhanced molecularly imprinted quantum dots (MIP-QDs) for the rapid determination of cyfluthrin (CYF). The MIP-QDs fabricated by surface grafting technique exhibited excellent selective recognition to CYF, resulting in a specific decrease of ECL signal at the MWCNT/MIP-QD modified electrode. Under optimal conditions, the MIECL signal was proportional to the logarithm of the CYF concentration in the range of 0.2 µg/L to 1.0 × 103 µg/L with a determination coefficient of 0.9983. The detection limit of CYF was 0.05 µg/L, and good recoveries ranging from 86.0% to 98.6% were obtained in practical samples. The proposed MIECL sensor provides a novel, rapid, high sensitivity detection strategy for successfully analyzing CYF in fish and seawater samples.
Collapse
|
12
|
A novel asymmetric activated carbon electrode doped with metal-organic frameworks for high desalination performance. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04510-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Ma D, Wang Y, Cai Y, Xu S, Wang J. Multifunctional group sulfobutyl ether β-cyclodextrin polymer treated CNT as the cathode for enhanced performance in asymmetric capacitive deionization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
López-Cázares MI, Pérez-Rodríguez F, Rangel-Méndez JR, Centeno-Sánchez M, Cházaro-Ruiz LF. Improved conductivity and anti(bio)fouling of cation exchange membranes by AgNPs-GO nanocomposites. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Jung Y, Yang Y, Kim T, Shin HS, Hong S, Cha S, Kwon S. Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6207-6217. [PMID: 29384362 DOI: 10.1021/acsami.7b14609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In capacitive deionization, the salt-adsorption capacity of the electrode is critical for the efficient softening of brackish water. To improve the water-deionization capacity, the carbon electrode surface is modified with ion-exchange resins. Herein, we introduce the encapsulation of zwitterionic polymers over activated carbon to provide a resistant barrier that stabilizes the structure of electrode during electrochemical performance and enhances the capacitive deionization efficiency. Compared to conventional activated carbon, the surface-modified activated carbon exhibits significantly enhanced capacitive deionization, with a salt adsorption capacity of ∼2.0 × 10-4 mg/mL and a minimum conductivity of ∼43 μS/cm in the alkali-metal ions solution. Encapsulating the activated-carbon surface increased the number of ions adsorption sites and the surface area of the electrode, which improved the charge separation and deionization efficiency. In addition, the coating layer suppresses side reactions between the electrode and electrolyte, thus providing a stable cyclability. Our experimental findings suggest that the well-distributed coating layer leads to a synergistic effect on the enhanced electrochemical performance. In addition, density functional theory calculation reveals that a favorable binding affinity exists between the alkali-metal ion and zwitterionic polymer, which supports the preferable salt ions adsorption on the coating layer. The results provide useful information for designing more efficient capacitive-deionization electrodes that require high electrochemical stability.
Collapse
Affiliation(s)
- Youngsuk Jung
- Analytical Science Group, Samsung Advanced Institute of Technology , Suwon, Gyeonggi 16678, Korea
| | - Yooseong Yang
- Energy Lab, Samsung Advanced Institute of Technology , Suwon, Gyeonggi 16678, Korea
| | - Taeyoon Kim
- Department of Civil and Environmental Engineering, Pusan National University , Busan 46241, Korea
| | - Hyun Suk Shin
- Department of Civil and Environmental Engineering, Pusan National University , Busan 46241, Korea
| | - Sunghoon Hong
- Department of Civil and Environmental Engineering, Pusan National University , Busan 46241, Korea
| | - Sungmin Cha
- Jeolla Namdo Environmental Industries Promotion Institute , Gangjin-gun, Jeollanam-do 527-881, Korea
| | - Soonchul Kwon
- Department of Civil and Environmental Engineering, Pusan National University , Busan 46241, Korea
| |
Collapse
|
18
|
Hawks SA, Knipe JM, Campbell PG, Loeb CK, Hubert MA, Santiago JG, Stadermann M. Quantifying the flow efficiency in constant-current capacitive deionization. WATER RESEARCH 2018; 129:327-336. [PMID: 29161663 DOI: 10.1016/j.watres.2017.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation.
Collapse
Affiliation(s)
- Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Jennifer M Knipe
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Colin K Loeb
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - McKenzie A Hubert
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.
| |
Collapse
|
19
|
Li M, Park HG. Pseudocapacitive Coating for Effective Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2442-2450. [PMID: 29272105 DOI: 10.1021/acsami.7b14643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Capacitive deionization (CDI) features a low-cost and energy-efficient desalination approach based on electrosorption of saline ions. To enhance the salt electrosorption capacity of CDI electrodes, we coat ion-selective pseudocapacitive layers (MnO2 and Ag) onto porous carbon electrodes (activated carbon cloth) with only minimal use of a conductive additive and a polymer binder (<1 wt % in total). Optimized pseudocapacitive electrodes result in excellent single-electrode specific capacitance (>300 F/g) and great cell stability (70% retention after 500 cycles). A CDI cell out of these pseudocapacitive electrodes yields as high charge efficiency as 83% and a remarkable salt adsorption capacity up to 17.8 mg/g. Our finding of outstanding CDI performance of the pseudocapacitive electrodes with no use of costly ion-exchange membranes highlights the significant role of a pseudocapacitive layer in the electrosorption process.
Collapse
Affiliation(s)
- Meng Li
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3, Zürich CH-8092, Switzerland
| | - Hyung Gyu Park
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3, Zürich CH-8092, Switzerland
| |
Collapse
|
20
|
Yan T, Xu B, Zhang J, Shi L, Zhang D. Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Adv 2018; 8:2490-2497. [PMID: 35541459 PMCID: PMC9077380 DOI: 10.1039/c7ra10443j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022] Open
Abstract
With the development of capacitive deionization technology, charge efficiency and electrosorption capacity have become some of the biggest technical bottlenecks. Asymmetric activated carbon electrodes with ion-selective functional groups inspired by membrane capacitive deionization were developed to conquer these issues. The deionization capacity increased from 11.0 mg g-1 to 23.2 mg g-1, and the charge efficiency increased from 0.54 to 0.84, due to ion-selective functional groups minimizing the co-ion effect. The charge efficiency and electrosorption capacity resulting from better wettability of these electrodes are effectively enhanced by grafting ion-selective functional groups, which are propitious to ion movement. In addition, asymmetric deionization capacitors show better cycling stability and higher desalination rates. These experimental results have demonstrated that the modification of the ion-selective (oxygen-containing) functional groups on the surfaces of activated carbon could greatly minimize the co-ion effects and increase the salt removal from the solution. These results have indicated that the ion-selective asymmetric carbon electrodes can promote well the development of deionization capacitors for practical desalination.
Collapse
Affiliation(s)
- Tingting Yan
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 China +86 21 66136079
| | - Baoxia Xu
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 China +86 21 66136079
| | - Jianping Zhang
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 China +86 21 66136079
| | - Liyi Shi
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 China +86 21 66136079
| | - Dengsong Zhang
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 China +86 21 66136079
| |
Collapse
|
21
|
Su X, Hatton TA. Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design. Phys Chem Chem Phys 2017; 19:23570-23584. [DOI: 10.1039/c7cp02822a] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This perspective discusses the fundamental processes behind electrosorption at charged interfaces, and highlights advances in electrode design for sustainable technologies in water purification and ion-selective separations.
Collapse
Affiliation(s)
- Xiao Su
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- United States
| | - T. Alan Hatton
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- United States
| |
Collapse
|