1
|
Dai S, Harnisch F, Morejón MC, Keller NS, Korth B, Vogt C. Microbial electricity-driven anaerobic phenol degradation in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100307. [PMID: 37593528 PMCID: PMC10432169 DOI: 10.1016/j.ese.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023]
Abstract
Microbial electrochemical technologies have been extensively employed for phenol removal. Yet, previous research has yielded inconsistent results, leaving uncertainties regarding the feasibility of phenol degradation under strictly anaerobic conditions using anodes as sole terminal electron acceptors. In this study, we employed high-performance liquid chromatography and gas chromatography-mass spectrometry to investigate the anaerobic phenol degradation pathway. Our findings provide robust evidence for the purely anaerobic degradation of phenol, as we identified benzoic acid, 4-hydroxybenzoic acid, glutaric acid, and other metabolites of this pathway. Notably, no typical intermediates of the aerobic phenol degradation pathway were detected. One-chamber reactors (+0.4 V vs. SHE) exhibited a phenol removal rate of 3.5 ± 0.2 mg L-1 d-1, while two-chamber reactors showed 3.6 ± 0.1 and 2.6 ± 0.9 mg L-1 d-1 at anode potentials of +0.4 and + 0.2 V, respectively. Our results also suggest that the reactor configuration certainly influenced the microbial community, presumably leading to different ratios of phenol consumers and microorganisms feeding on degradation products.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Micjel Chávez Morejón
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Behera L, Pati D, Sahu BB, Mohapatra S. One-step synthesis of Mn-carbon dot nanoprobe for signal-on detection of arsenic and reversible temperature sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Chung TH, Zakaria BS, Meshref MNA, Dhar BR. Enhancing quorum sensing in biofilm anode to improve biosensing of naphthenic acids. Biosens Bioelectron 2022; 210:114275. [PMID: 35447397 DOI: 10.1016/j.bios.2022.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
The feasibility of enhancing quorum sensing (QS) in anode biofilm to improve the quantifications of commercial naphthenic acid concentrations (9.4-94 mg/L) in a microbial electrochemical cell (MXC) based biosensor was demonstrated in this study. First, three calibration methods were systematically compared, and the charging-discharging operation was selected for further experiments due to its 71-227 folds higher electrical signal outputs than the continuous closed-circuit operation and cyclic voltammetry modes. Then, the addition of acylase (5 μg/L) as an exogenous QS autoinducer (acylase) was investigated, which further improved the biosensor's electrical signal output by ∼70%, as compared to the control (without acylase). The addition of acylase increased the relative expression of QS-associated genes (lasR, lasI, rhlR, rhlI, lasA, and luxR) by 7-100%, along with increased abundances of known electroactive bacterial genera, such as Geobacter (from 42% to 47%) and Desulfovibrio (from 6% to 11%). Furthermore, toxicities of different NAs concentrations measured with the Microtox bioassay test were correlated with corresponding electrical signals, indicating that MXC-biosensor can provide a dual platform for rapid assessment of both NA concentrations and NA-associated toxicity.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Mohamed N A Meshref
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada; Public Works Department, Faculty of Engineering, Ain Shams University, 1 El Sarayat St., Abbassia, Cairo, 11517, Egypt
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116, Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
4
|
Shi H, Jiang X, Li Y, Chen D, Hou C, Zhang Z, Zhang Q, Shen J. Enhanced bio-photodegradation of p-chlorophenol by CdS/g-C 3N 4 3D semiconductor-microbe interfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151006. [PMID: 34662615 DOI: 10.1016/j.scitotenv.2021.151006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
p-chlorophenol (p-CP), one of the highly toxic chlorinated organic compounds, is recalcitrant in conventional biodegradation process. This study reported a synergistic degradation protocol of 3D semiconductor-microbe interfaces, in which graphite felts (GF) and CdS/g-C3N4 nanocomposites were chosen as the carrier and semiconductor for enhanced p-CP degradation. Based on microstructure, photoelectrochemical and degradation performance analysis, the optimal CdS content in CdS/g-C3N4 nanocomposites was 10 wt%. The efficiencies of p-CP and TOC removal in bio-photodegradation system were as high as 95% and 77% without extra electron acceptors/donors, which were far better than those in traditional photodegradation and biodegradation system. High-throughput sequencing analysis suggested that p-CP degradation related species (Chryseobacterium, Stenotrophomonas and Rhodopseudomonas), electroactive species (Chryseobacterium, Stenotrophomonas, Hydrogenophaga and Cupriavidus) and hydrogen-utilizing species (Hydrogenophaga and Cupriavidus) were enriched at 3D semiconductor-microbe interfaces. The enrichment of functional species played a crucial role for p-CP removal and mineralization at 3D semiconductor-microbe interfaces. Moreover, the mechanism of enhanced p-CP bio-photodegradation at 3D semiconductor-microbe interfaces was investigated by utilizing Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2). The results showed that the genes involved in p-CP biodegradation, hydrogen metabolism and extracellular electron transfer were remarkably enriched. Possible mechanism for enhancement of p-CP degradation in bio-photodegradation system was proposed, in which photocatalytic H2 and photoelectron transfer played an important role for enhancing p-CP mineralization by microbes. 3D semiconductor-microbe interfaces could maintain excellent performance for p-CP degradation after long-term operation, which provide a potential alternative for the enhanced treatment of wastewater containing p-CP.
Collapse
Affiliation(s)
- Hefei Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zhenhua Zhang
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Chemical Pollution Control Engineering Research Center of Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Seid L, Lakhdari D, Berkani M, Belgherbi O, Chouder D, Vasseghian Y, Lakhdari N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126986. [PMID: 34461534 DOI: 10.1016/j.jhazmat.2021.126986] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Conductive crystalline polypyrrole (Cryst-PPy), Nickel-polypyrrole (Ni-PPy), and copper- polypyrole (Cu-PPy) hybrid materials were prepared using a chemical polymerization method in an aqueous solution. Part I was focused on the Chemical synthesis of Cryst-PPy powder from an organic medium. Cryst-PPy powder was successfully synthesized by chemical route from an organic medium of acetonitrile with polyethylene oxide as a stabilizing agent and oxidizing agent like potassium peroxydisulfate. The morphological study was showed the presence of spherical nanoparticles and cubic microparticles giving rise to a denser structure of PPy. In the second part, the based electrodes composites were examined in the oxidation of phenol by an electrochemical process in an alkaline medium. To follow the yield of phenol degradation at the alkaline solution, UV-visible analysis was performed at the following operating conditions: current density of 0.58 mA cm-2, phenol initial concentration of 0.150 M and for 3 h processing; the rate of phenol elimination was 56%, 38% and 28% for Cu-PPy, Ni-PPy, and pure PPy electrodes respectively. Thus, can be found that the doped Cu-PPy electrodes electrode is a new material with high electrochemical oxidation ability for phenol degradation in aqueous solutions.
Collapse
Affiliation(s)
- Lamria Seid
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria
| | - Dalila Chouder
- Laboratoire d'Energétique et d'Electrochimie du Solide (LEES), Département de Génie Des Procédés, Faculté de Technologie, Université Sétif-1, Sétif, Alegria
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
6
|
Chen D, Zhang Y, Mao P, Jiang X, Li J, Sun A, Shen J. Carbon black supported on a Mn-MIL-100 framework as high-efficiency electrocatalysts for nitrophenol reduction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Yang K, Zhao Y, Zhou X, Wang Q, Pedersen TH, Jia Z, Cabrera J, Ji M. "Self-degradation" of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system. WATER RESEARCH 2021; 206:117740. [PMID: 34688096 DOI: 10.1016/j.watres.2021.117740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
A sequential cathode-anode cascade mode bioelectrochemical system (BES) was designed and developed to achieve the "self-degradation" of 2-chlorophenol (2-CP). With the cooperation of cathode and anode, the electrons supplied for the cathode 2-CP dechlorination come from its own dechlorinated product in the anode, phenol. Separate degradation experiments of cathode 2-CP and anode phenol were firstly conducted. The optimum concentration ratio of anode acetate to phenolic compound (3.66/1.56) and the phenolic compound degradation ability of BES were investigated. With the formation of the bioanode able to degrade phenol, the sequential cathode-anode cascade mode BES was further developed, where 2-CP could achieve sequential dechlorination and ring-cleavage degradation. When applied voltage was 0.6 V and cathode influent pH was 7, 1.56 mM 2-CP reached 80.15% cathode dechlorination efficiency and 58.91% total cathode-anode phenolic compounds degradation efficiency. The bioanodes played a decisive role in BES. Different operating conditions would affect the overall performance of BES by changing the electrochemical activity and microbial community structure of the bioanodes. This study demonstrated the feasibility of the sequential cathode-anode cascade mode BES to degrade 2-CP wastewater and provided perspectives for the cooperation of cathode and anode, aiming to explore more potential of BES in wastewater treatment field.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Thomas Helmer Pedersen
- Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark
| | - Zhichao Jia
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
8
|
Ding P, Meng C, Liang J, Li T, Wang Y, Liu Q, Luo Y, Cui G, Asiri AM, Lu S, Sun X. NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. Inorg Chem 2021; 60:12703-12708. [PMID: 34357774 DOI: 10.1021/acs.inorgchem.1c01783] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of great importance to rationally design and develop earth-abundant nanocatalysts for high-efficiency water electrolysis. Herein, NiFe layered double hydroxide was in situ grown hydrothermally on a 3D graphite felt (NiFe LDH/GF) as a high-efficiency catalyst in facilitating the oxygen evolution reaction (OER). In 1.0 M KOH, NiFe LDH/GF requires a low overpotential of 214 mV to deliver a geometric current density of 50 mA cm-2 (η50 mA cm-2 = 214 mV), surpassing that NiFe LDH supported on a 2D graphite paper (NiFe LDH/GP; η50 mA cm-2 = 301 mV). More importantly, NiFe LDH/GF shows good durability at 50 mA cm-2 within 50 h of OER catalysis testing and delivers a faradaic efficiency of nearly 100% in the electrocatalysis of OER.
Collapse
Affiliation(s)
- Peng Ding
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuqian Meng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Qi X, Wang S, Jiang Y, Liu P, Hao W, Han J, Zhou Y, Huang X, Liang P. Additional polypyrrole as conductive medium in artificial electrochemically active biofilm (EAB) to increase the sensitivity of EAB based biosensor in water quality early-warning. Biosens Bioelectron 2021; 190:113453. [PMID: 34174528 DOI: 10.1016/j.bios.2021.113453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Researchers believe that adding conductive mediums in electrochemically active biofilms (EABs) would improve the sensitivity of EAB-based biosensor for real-time water quality early-warning through facilitating the extracellular electron transfer (EET), which has been hardly evidenced mostly because naturally formed EABs employed in previous biosensor studies were recognized distinct and incapable of delivering comparable electrical signals. By preparing artificial EABs where Shewanella oneidensis MR-1 was encapsulated in sodium alginate (SA), this study solved how polypyrrole (PPy) as conductive medium would affect the sensitivity of EAB-based biosensor, as well as mass transfer of toxicant during this process. Different mass ratios (0.125:1, 0.25:1 and 1:1) of PPy over SA were tested, and the sensitivity promoted by 20%, 15% and 6%, respectively. Results indicated that a small amount of PPy addition (PPy: SA = 0.125: 1 in mass ratio) was more effective to increase the biosensor's sensitivity compared to larger amount of PPy employed in EAB. This was when improved conductivity introduced by PPy would dominate in affecting the sensitivity over contrarily weakened mass transfer in the meantime.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
10
|
Candan Eryılmaz, Ayten Genç. Review of Treatment Technologies for the Removal of Phenol from Wastewaters. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21020065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Wang W, Ma Y, Zhuang Z, Zhou S, Ma M, Wu Q, Bai R, Li T. Synthesis of walnut‐like polyaniline by using polyvinyl alcohol micellar template with excellent film transmission. J Appl Polym Sci 2021. [DOI: 10.1002/app.50701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenjiao Wang
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Yong Ma
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Zhao Zhuang
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Shujie Zhou
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Mingliang Ma
- School of Civil Engineering Qingdao University of Technology Qingdao P. R. China
| | - Qi Wu
- Sino‐German Institute of Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Ruiqin Bai
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| | - Tingxi Li
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao P. R. China
| |
Collapse
|
13
|
Chen D, Zhang X, Chen H, Shi H, Jiang X, Mu Y, Pant D, Han W, Sun X, Li J, Shen J, Wang L. Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic system utilizing N-doped graphene/α-Fe2O3 modified photoanode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shi H, Jiang X, Chen D, Li Y, Hou C, Wang L, Shen J. BiVO 4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine. WATER RESEARCH 2020; 187:116464. [PMID: 33011569 DOI: 10.1016/j.watres.2020.116464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Pyridine, a highly toxic nitrogen-containing heterocyclic compound, is recalcitrant in the conventional biodegradation process. In this study, BiVO4/FeOOH semiconductor-microbe interface was developed for enhanced visible-light-driven biodegradation of pyridine, where the efficiencies of pyridine removal (100%), total organic carbon (TOC) removal (88.06±3.76%) and NH4+-N formation (84.51±8.95%) were remarkably improved, compared to the biodegradation system and photodegradation system. The electron transport system activity and photoelectrochemical analysis implied the significant improvement of photogenerated carriers transfer between microbes and semiconductors. High-throughput sequencing analysis suggested functional species related to pyridine biodegradation (Shewanella, Bacillus and Lysinibacillus) and electron transfer (Shewanella and Tissierella) were enriched at the semiconductor-microbe interface. The light-excited holes played a crucial role in promoting pyridine mineralization. This study demonstrated that this bio-photodegradation system would be a potential alternative for the efficient treatment of wastewater containing recalcitrant pollutant such as pyridine.
Collapse
Affiliation(s)
- Hefei Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
15
|
Yang K, Ji M, Liang B, Zhao Y, Zhai S, Ma Z, Yang Z. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122892. [PMID: 32768818 DOI: 10.1016/j.jhazmat.2020.122892] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn't be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhifan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
16
|
Wang L, Li S, Li D, Xiao Q, Jing W. 3D flower-like molybdenum disulfide modified graphite felt as a positive material for vanadium redox flow batteries. RSC Adv 2020; 10:17235-17246. [PMID: 35521452 PMCID: PMC9053512 DOI: 10.1039/d0ra02541k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
3D flower-like molybdenum disulfide microsphere modified graphite felt (MoS2/GF) with excellent electrocatalytic activity and redox reversibility for the VO2+/VO2+ couple is successfully fabricated by a facile hydrothermal method. The results show that the hydrothermal reaction time has a deep influence on the MoS2 structure; an open 3D flower-like MoS2 structure with a layer spacing of 0.63 nm is uniformly grafted on the GF surface for a reaction time of 36 h. With the presence of MoS2, the total resistance (1.58 Ω) and charge transfer resistance (0.01 Ω) of MoS2/GF-36 are smaller than that of the heat treated GF (2.04 Ω and 11.27 Ω, respectively), indicating that the electrode has better conductivity and more favorable electron transfer ability. As expected, a significant increase in the capacity and energy efficiency is obtained with the MoS2/GF-36 electrode. These satisfactory results are attributed to the 3D flower-like structure on the surface of the electrode, which increases the contact area between the electrode and the electrolyte. More importantly, the MoS2/GF electrode with excellent stability has great application prospect in vanadium redox flow batteries (VRFBs). The open flower-like structure facilitates vanadium ion transport. The capacity and efficiency of a battery using MoS2/GF are dramatically increased.![]()
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Shuangyu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Dan Li
- Jiangsu Jiayi Thermal Power Co., Ltd. Changzhou 213200 China
| | - Qinhao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenheng Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
17
|
Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. WATER RESEARCH 2019; 157:8-18. [PMID: 30947080 DOI: 10.1016/j.watres.2019.03.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Due to highly recalcitrant and toxicological nature of halogenated organic compounds, conventional anaerobic dehalogenation is often limited by low removal rate and poor process stability. Besides, the reduction intermediates or products formed during dehalogenation process, which are still toxic, required further energy-intensive aerobic post-treatment. In this study, an up-flow electricity-stimulated anaerobic system (ESAS) was developed by installing cathode underneath and anode above to realize simultaneous anaerobic debromination and mineralization of 4-bromophenol (4-BP). When cathode potential was -600 mV, high TOC removal efficiency (98.78 ± 0.96%), complete removal of 4-BP and phenol could be achieved at 4-BP loading rate of 0.58 mol m-3 d-1, suggesting debrominated product of 4-BP from cathode (i.e., phenol) would be utilized as the fuel by the bioanode of ESAS. Under high 4-BP loading rate (2.32 mol m-3 d-1) and low electron donor dosage (4.88 mM), 4-BP could be completely removed at acetate usage ratio as low as 4.21 ± 1.42 mol acetate mol-1 4-BP removal in ESAS, whereas only 13.45 ± 1.38% of 4-BP could be removed at acetate usage ratio as high as 31.28 ± 3.38 mol acetate mol-1 4-BP removal in control reactor. Besides, electrical stimulation distinctly facilitated the growth of various autotrophic dehalogenation species, phenol degradation related species, fermentative species, homoacetogens and electrochemically active species in ESAS. Moreover, based on the identified intermediates and the bacterial taxonomic analysis, possible metabolism mechanism involved in enhanced anaerobic debromination and mineralization of 4-BP in ESAS was proposed.
Collapse
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
18
|
Tian T, Qiao S, Yu C, Yang Y, Zhou J. Low-temperature anaerobic digestion enhanced by bioelectrochemical systems equipped with graphene/PPy- and MnO 2 nanoparticles/PPy-modified electrodes. CHEMOSPHERE 2019; 218:119-127. [PMID: 30471492 DOI: 10.1016/j.chemosphere.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bioelectrochemical systems (BESs) with graphene (Gr)/polypyrrole (PPy)- and MnO2 nanoparticles (NPs)/PPy-modified electrodes were developed to enhance low-temperature anaerobic digestion (LTAD) of low-strength wastewater. At 20 °C, the chemical oxygen demand removal efficiencies and CH4 yield of the BESs with Gr/PPy (R2) and MnO2 NPs/PPy (R3)-modified electrodes were 12.7% and 25.6%, and 43.9% and 66.3%, respectively, higher than those of the control (R1, without modification). Although the performance of all reactors decreased as temperature dropping to 12 °C, the CH4 yield rates of R2 and R3 were still 22.8% and 39.0% higher than that of R1. Further analysis indicated that the modified electrodes might stimulate the metabolic activity of the anaerobic digester sludge. Scanning electron microscopy observation showed that the modified electrodes had higher specific surface area, favoring the attachment and formation of dense biofilms on the surface of electrodes. 16S rRNA gene-sequencing results demonstrated that H2-consuming methanogens dominated in the BESs and the influence of Gr/PPy and MnO2 NPs/PPy differed on the microbial community structure of biofilms. These findings justify the wider use of Gr and MnO2 NPs in electrode modification to assist LTAD using BESs.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Cong Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
19
|
Mukherjee P, Saravanan P. Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead. ChemistrySelect 2019. [DOI: 10.1002/slct.201802694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| | - Pichiah Saravanan
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| |
Collapse
|
20
|
Zhang T, Zhang L, Liu X, Mu Z, Xing S. Achieving nitrogen-doped carbon/MnO2 nanocomposites for catalyzing the oxygen reduction reaction. Dalton Trans 2019; 48:3045-3051. [DOI: 10.1039/c8dt04635b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Doped carbon/MnO2 nanocomposites generated via pyrolyzing polypyrrole/MnO2 show excellent catalytic performance towards the oxygen reduction reaction owing to the synergistic effect between N-doped carbon and MnO2.
Collapse
Affiliation(s)
- Tingting Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Liang Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Xianchun Liu
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Zhongcheng Mu
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P.R. China
| | - Shuangxi Xing
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P.R. China
| |
Collapse
|
21
|
Jiang X, Chen Y, Hou C, Liu X, Ou C, Han W, Sun X, Li J, Wang L, Shen J. Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Front Microbiol 2018; 9:2052. [PMID: 30214440 PMCID: PMC6125335 DOI: 10.3389/fmicb.2018.02052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
Anaerobic dechlorination of chlorophenols often subjects to their toxicity and recalcitrance, presenting low loading rate and poor degradation efficiency. In this study, in order to accelerate p-chlorophenol (p-CP) reduction and extracellular electron transfer in an anaerobic system, three iron-oxide nanoparticles, namely hematite, magnetite and ferrihydrite, were coupled into an anaerobic system, with the performance and underlying role of iron-oxide nanoparticles elucidated. The reductive dechlorination of p-CP was notably improved in the anaerobic systems coupled by hematite and magnetite, although ferrihydrite did not plays a positive role. Enhanced dechlorination of p-CP in hematite or magnetite coupled anaerobic system was linked to the obvious accumulation of acetate, lower oxidation-reduction potential and pH, which were beneficial for reductive dechlorination. Electron transfer could be enhanced by Fe2+/Fe3+ redox couple on the iron oxides surface formed through dissimilatory iron-reduction. This study demonstrated that the coupling of iron-oxide nanoparticles such as hematite and magnetite could be a promising alternative to the conventional anaerobic reduction process for the removal of CPs from wastewater.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yuzhe Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chen Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
22
|
Jiang X, Shi H, Shen J, Han W, Sun X, Li J, Wang L. Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen-doped graphene-modified cathode in the bioelectrochemical system. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Zhou X, Xu Y, Mei X, Du N, Jv R, Hu Z, Chen S. Polyaniline/β-MnO 2 nanocomposites as cathode electrocatalyst for oxygen reduction reaction in microbial fuel cells. CHEMOSPHERE 2018; 198:482-491. [PMID: 29427950 DOI: 10.1016/j.chemosphere.2018.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
An efficient and inexpensive catalyst for oxygen reduction reaction (ORR), polyaniline (PANI) and β-MnO2 nanocomposites (PANI/β-MnO2), was developed for air-cathode microbial fuel cells (MFCs). The PANI/β-MnO2, β-MnO2, PANI and β-MnO2 mixture modified graphite felt electrodes were fabricated as air-cathodes in double-chambered MFCs and their cell performances were compared. At a dosage of 6 mg cm-2, the maximum power densities of MFCs with PANI/β-MnO2, β-MnO2, PANI and β-MnO2 mixture cathodes reached 248, 183 and 204 mW m-2, respectively, while the cathode resistances were 38.4, 45.5 and 42.3 Ω, respectively, according to impedance analysis. Weak interaction existed between the rod-like β-MnO2 and surficial growth granular PANI, this together with the larger specific surface area and PANI electric conducting nature enhanced the electrochemical activity for ORR and improved the power generation. The PANI/β-MnO2 nanocomposites are a promising cathode catalyst for practical application of MFCs.
Collapse
Affiliation(s)
- Xinxing Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Yunzhi Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Xiaojie Mei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Ningjie Du
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Rongmao Jv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China
| | - Zhaoxia Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China.
| | - Shouwen Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210018, China.
| |
Collapse
|
24
|
Chen D, Mu Y, Shen J, Wang L. Anchoring α-, β-, or γ-MnO2 into Polypyrrole Wrapping for Modifying Graphite Felt Anodes: The Effect of MnO2 Type on Phenol Degradation. CHEM LETT 2017. [DOI: 10.1246/cl.170749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
25
|
Liu X, Zhao X, Yu YY, Wang YZ, Shi YT, Cheng QW, Fang Z, Yong YC. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|