1
|
Lv J, Liu J, Liu J, Huang Z, Li Y, Zhang H, Li T, Zhang S. Laser Additive Manufacturing of Three-Dimensional Ti/TiN Nanotube Arrays with Hierarchical Pore Structures and Promoted Supercapacitor Performances. NANO LETTERS 2024; 24:8327-8334. [PMID: 38942742 DOI: 10.1021/acs.nanolett.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.
Collapse
Affiliation(s)
- Junyi Lv
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jianghao Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K
| |
Collapse
|
2
|
Xu Y, Yu S, Johnson HM, Wu Y, Liu X, Fang B, Zhang Y. Recent progress in electrode materials for micro-supercapacitors. iScience 2024; 27:108786. [PMID: 38322999 PMCID: PMC10845924 DOI: 10.1016/j.isci.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Micro-supercapacitors (MSCs) stand out in the field of micro energy storage devices due to their high power density, long cycle life, and environmental friendliness. The key to improving the electrochemical performance of MSCs is the selection of appropriate electrode materials. To date, both the composition and structure of electrode materials in MSCs have become a hot research topic, and it is urgent to compose a review to highlight the most important research achievements, major challenges, opportunities, and encouraging perspectives in this field. In this review, research background of MSCs is first reviewed followed by their working principles, structural classifications, and physiochemical and electrochemical characterization techniques. Next, various materials and preparation methods are summarized, and the relationship between the MSC performance and structure and composition of materials are discussed in depth. Finally, this review provides a comprehensive suggestion on accelerating the development of electrode materials to facilitate the commercialization of MSCs.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hannah M. Johnson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Baizeng Fang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| |
Collapse
|
3
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
4
|
Zhang X, Wang T, Li S, Shen X. Electrodeposition Polyaniline Nanofiber on the PEDOT:PSS-Coated SiNWs for High Performance Supercapacitors. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Majumdar D. Review on Current Progress of MnO
2
‐Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem 2020. [DOI: 10.1002/celc.202001371] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dipanwita Majumdar
- Department of Chemistry Chandernagore College Chandannagar Hooghly, West Bengal India Pin-712136
| |
Collapse
|
6
|
Chen Y, Zhang X, Xue W, Xie Z. Three-Dimensional SiC/Holey-Graphene/Holey-MnO 2 Architectures for Flexible Energy Storage with Superior Power and Energy Densities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32514-32525. [PMID: 32578976 DOI: 10.1021/acsami.0c04825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although nanostructured materials have recently enabled a dramatic improvement of the current energy-storage units in portable electronics with enhanced functionality, it is still challenging to provide a cost-efficient solution to attain the ultrahigh energy and power densities of supercapacitors (SCs) since nearly arbitrary electrodes are limited to the thinner porous structure with de facto rather low mass loading (∼1 mg cm-2) because of the huge limitations of pronounced impaired ion transport in subnanometer pores in thicker compact electrodes. In this contribution, we report the fabrication of a macro/mesoporous hybrid hierarchical nanocomposite SiC/holey-graphene/holey-MnO2 (SiC/HG/h-MnO2) with tailored porosity by knitting together the quasi-aligned single-crystalline doped 3C-SiC nanowire array and in situ surface-reduced holey graphene framework into a three-dimensional quasi-ordered structure, which enables the mass growth of ultrathin h-MnO2 nanosheets at approximately practical levels of mass loading. The produced synergistically favorable interconnected porous architecture allows for the highly efficient electron transfer and rapid ion transport up to interior surfaces of the network. Remarkably, the all-solid-state flexible asymmetric supercapacitors (ASCs) made with SiC/HG/h-MnO2 and SiC/graphitic carbon (GC) nanoarrays are mechanically robust and show a high areal capacity (0.32 mWh cm-2) and a high rate capability (280 mW cm-2) at ultrahigh mass loading (6.5 mg cm-2), much higher than most of previous superior SCs in aqueous or gelled electrolytes and thus offer an entirely new prototype of textile-based ASCs, which represents a critical step toward practical applications for various portable electronics.
Collapse
Affiliation(s)
- Youqiang Chen
- College of Physics Science, Qingdao University, Qingdao 266071, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinni Zhang
- State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, P. R. China
| | - Weijiang Xue
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhipeng Xie
- State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
High Capacitive PEDOT-Coated SiNWs Electrode for Micro-supercapacitors with Facile Preparation. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Tunable Synthesis of Hollow Co3O4 Nanoboxes and Their Application in Supercapacitors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hollow Co3O4 nanoboxes constructed by numerous nanoparticles were prepared by using a facile method consisting of precipitation, solvothermal and annealing reactions. The desirable hollow structure as well as a highly porous morphology led to synergistically determined and enhanced supercapacitor performances. In particular, the hollow Co3O4 nanoboxes were comprehensively investigated to achieve further optimization by tuning the sizes of the nanoboxes, which were well controlled by initial precipitation reaction. The systematical electrochemical measurements show that the optimized Co3O4 electrode delivers large specific capacitances of 1832.7 and 1324.5 F/g at current densities of 1 and 20 A/g, and only 14.1% capacitance decay after 5000 cycles. The tunable synthesis paves a new pathway to get the utmost out of Co3O4 with a hollow architecture for supercapacitors application.
Collapse
|
9
|
Porous Thin-Wall Hollow Co3O4 Spheres for Supercapacitors with High Rate Capability. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, a zeolitic imidazolate framework-67 (ZIF-67) was prepared as a precursor using a facile hydrothermal method. After a calcination reaction in the air, the as-prepared precursor was converted to porous thin-wall hollow Co3O4 with its original frame structure almost preserved. The physical and chemical characterizations of the nanomaterial were analyzed systemically. The electrochemical tests indicate that the obtained Co3O4 possesses large specific capacitances of 988 and 925 F/g at 1 and 20 A/g accompanying an outstanding rate capability (a 93.6% capacitance retention) and retains 96.6% of the specific capacitance, even after 6000 continuous charge/discharge cycles. These excellent properties mark the Co3O4 a promising electrode material for high performance supercapacitors.
Collapse
|
10
|
Zhu B, Wu X, Liu WJ, Lu HL, Zhang DW, Fan Z, Ding SJ. High-Performance On-Chip Supercapacitors Based on Mesoporous Silicon Coated with Ultrathin Atomic Layer-Deposited In 2O 3 Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:747-752. [PMID: 30525419 DOI: 10.1021/acsami.8b17093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On-chip supercapacitors have attracted considerable attention because of their high power density, long cycling life, and compatibility with integrated circuits. One critical drawback that restricts their practical application is the low energy density. In this work, low-resistivity mesoporous silicon with a high aspect ratio is prepared by Pt film-assisted chemical etching and utilized as the scaffold of the supercapacitors. Subsequently, low-resistivity (<0.0015 Ω·cm) and ultrathin In2O3 films are coated on the mesoporous silicon scaffold by atomic layer deposition at 200 °C, serving as the active electrode material. The electrochemical measurements reveal that the coating of the In2O3 film remarkably improves the performance of the supercapacitors compared with those without the In2O3 coating. The supercapacitors with a 4.5 nm In2O3 film coating exhibit a capacitance density of 1.36 mF/cm2 at a scan rate of 10 mV/s as well as a better stability against the scan rate. In addition, it is found that the pristine mesoporous silicon walls are collapsed after 400 times of sweeping while those with the In2O3 film coating are still intact even after 2000 times of sweeping. Meanwhile, a high energy density is also achieved without sacrificing the power performance.
Collapse
|
11
|
A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0089-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|