1
|
Liu Y, Wang Y, Fornasiero P, Tian G, Strasser P, Yang XY. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew Chem Int Ed Engl 2024; 63:e202412087. [PMID: 39205621 DOI: 10.1002/anie.202412087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Direct electrochemical seawater splitting is a renewable, scalable, and potentially economic approach for green hydrogen production in environments where ultra-pure water is not readily available. However, issues related to low durability caused by complex ions in seawater pose great challenges for its industrialization. In this review, a mechanistic analysis of durability issues of electrolytic seawater splitting is discussed. We critically analyze the development of seawater electrolysis and identify the durability challenges at both the anode and cathode. Particular emphasis is given to elucidating rational strategies for designing electrocatalysts/electrodes/interfaces with long lifetimes in realistic seawater including inducing passivating anion layers, preferential OH-adsorption, employing anti-corrosion materials, fabricating protective layers, immobilizing Cl- on the surface of electrocatalysts, tailoring Cl- adsorption sites, inhibition of OH- binding to Mg2+ and Ca2+, inhibition of Mg and Ca hydroxide precipitation adherence, and co-electrosynthesis of nano-sized Mg hydroxides. Synthesis methods of electrocatalysts/electrodes and innovations in electrolyzer are also discussed. Furthermore, the prospects for developing seawater splitting technologies for clean hydrogen generation are summarized. We found that researchers have rethought the role of Cl- ions, as well as more attention to cathodic reaction and electrolyzers, which is conducive to accelerate the commercialization of seawater electrolysis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste and ICCOM-CNR and INSTM Trieste Research Units, 34127, Trieste, Italy
| | - Ge Tian
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Peter Strasser
- Technical University Berlin, Department of Chemistry, 10623, Berlin, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Zhang XL, Yu PC, Sun SP, Shi L, Yang PP, Wu ZZ, Chi LP, Zheng YR, Gao MR. In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting. Nat Commun 2024; 15:9462. [PMID: 39487190 PMCID: PMC11530463 DOI: 10.1038/s41467-024-53724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Seawater electrolysis using renewable electricity offers an attractive route to sustainable hydrogen production, but the sluggish electrode kinetics and poor durability are two major challenges. We report a molybdenum nitride (Mo2N) catalyst for the hydrogen evolution reaction with activity comparable to commercial platinum on carbon (Pt/C) catalyst in natural seawater. The catalyst operates more than 1000 hours of continuous testing at 100 mA cm-2 without degradation, whereas massive precipitate (mainly magnesium hydroxide) forms on the Pt/C counterpart after 36 hours of operation at 10 mA cm-2. Our investigation reveals that ammonium groups generate in situ at the catalyst surface, which not only improve the connectivity of hydrogen-bond networks but also suppress the local pH increase, enabling the enhanced performances. Moreover, a zero-gap membrane flow electrolyser assembled by this catalyst exhibits a current density of 1 A cm-2 at 1.87 V and 60 oC in simulated seawater and runs steadily over 900 hours.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Ya-Rong Zheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, Anhui, China.
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Cui C, Zhang H, Wang D, Song J, Yang Y. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4057. [PMID: 39203235 PMCID: PMC11356654 DOI: 10.3390/ma17164057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Direct seawater electrolysis is a promising technology within the carbon-neutral energy framework, leveraging renewable resources such as solar, tidal, and wind energy to generate hydrogen and oxygen without competing with the demand for pure water. High-selectivity, high-efficiency, and corrosion-resistant multifunctional electrocatalysts are essential for practical applications, yet producing stable and efficient catalysts under harsh conditions remains a significant challenge. This review systematically summarizes recent advancements in advanced electrocatalysts for seawater splitting, focusing on their multifunctional designs for selectivity and chlorine corrosion resistance. We analyze the fundamental principles and mechanisms of seawater electrocatalytic reactions, discuss the challenges, and provide a detailed overview of the progress in nanostructures, alloys, multi-metallic systems, atomic dispersion, interface engineering, and functional modifications. Continuous research and innovation aim to develop efficient, eco-friendly seawater electrolysis systems, promoting hydrogen energy application, addressing efficiency and stability challenges, reducing costs, and achieving commercial viability.
Collapse
Affiliation(s)
| | | | | | | | - Ying Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; (C.C.); (H.Z.); (D.W.); (J.S.)
| |
Collapse
|
4
|
Fei H, Liu R, Liu T, Ju M, Lei J, Wang Z, Wang S, Zhang Y, Chen W, Wu Z, Ni M, Wang J. Direct Seawater Electrolysis: From Catalyst Design to Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309211. [PMID: 37918125 DOI: 10.1002/adma.202309211] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Direct seawater electrolysis (DSE) for hydrogen production, using earth-abundant seawater as the feedstock and renewable electricity as the driving source, paves a new opportunity for flexible energy conversion/storage and smooths the volatility of renewable energy. Unfortunately, the complex environments of seawater impose significant challenges on the design of DSE catalysts, and the practical performance of many current DSE catalysts remains unsatisfactory on the device level. However, many studies predominantly concentrate on the development of electrocatalysts for DSE without giving due consideration to the specific devices. To mitigate this gap, the most recent progress (mainly published within the year 2020-2023) of DSE electrocatalysts and devices are systematically evaluated. By discussing key bottlenecks, corresponding mitigation strategies, and various device designs and applications, the tremendous challenges in addressing the trade-off among activity, stability, and selectivity for DSE electrocatalysts by a single shot are emphasized. In addition, the rational design of the DSE electrocatalysts needs to align with the specific device configuration, which is more effective than attempting to comprehensively enhance all catalytic parameters. This work, featuring the first review of this kind to consider rational catalyst design in the framework of DSE devices, will facilitate practical DSE development.
Collapse
Affiliation(s)
- Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Min Ju
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Jia Lei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Ziyi Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
| | - Wen Chen
- China Southern Power Grid Technology Co., Ltd, Guangzhou, 510000, China
| | - Zhuangzhi Wu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
5
|
Yao Y, Yang C, Sun S, Zhang H, Geng M, He X, Dong K, Luo Y, Zheng D, Zhuang W, Alfaifi S, Farouk A, Hamdy MS, Tang B, Zhu S, Sun X, Hu WW. Boosting Alkaline Seawater Oxidation of CoFe-layered Double Hydroxide Nanosheet Array by Cr Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307294. [PMID: 37963858 DOI: 10.1002/smll.202307294] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Indexed: 11/16/2023]
Abstract
The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2 .
Collapse
Affiliation(s)
- Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meiqi Geng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sulaiman Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shuyun Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Jin H, Xu J, Liu H, Shen H, Yu H, Jaroniec M, Zheng Y, Qiao SZ. Emerging materials and technologies for electrocatalytic seawater splitting. SCIENCE ADVANCES 2023; 9:eadi7755. [PMID: 37851797 PMCID: PMC10584342 DOI: 10.1126/sciadv.adi7755] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
The limited availability of freshwater in renewable energy-rich areas has led to the exploration of seawater electrolysis for green hydrogen production. However, the complex composition of seawater presents substantial challenges such as electrode corrosion and electrolyzer failure, calling into question the technological and economic feasibility of direct seawater splitting. Despite many efforts, a comprehensive overview and analysis of seawater electrolysis, including electrochemical fundamentals, materials, and technologies of recent breakthroughs, is still lacking. In this review, we systematically examine recent advances in electrocatalytic seawater splitting and critically evaluate the obstacles to optimizing water supply, materials, and devices for stable hydrogen production from seawater. We demonstrate that robust materials and innovative technologies, especially selective catalysts and high-performance devices, are critical for efficient seawater electrolysis. We then outline and discuss future directions that could advance the techno-economic feasibility of this emerging field, providing a roadmap toward the design and commercialization of materials that can enable efficient, cost-effective, and sustainable seawater electrolysis.
Collapse
Affiliation(s)
- Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Sustainability, Energy and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Xu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hao Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haifeng Shen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huimin Yu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Yang X, He X, He L, Chen J, Zhang L, Liu Q, Cai Z, Yang C, Sun S, Zheng D, Farouk A, Hamdy MS, Ren Z, Sun X. A Hierarchical CuO Nanowire@CoFe-Layered Double Hydroxide Nanosheet Array as a High-Efficiency Seawater Oxidation Electrocatalyst. Molecules 2023; 28:5718. [PMID: 37570688 PMCID: PMC10420605 DOI: 10.3390/molecules28155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.
Collapse
Affiliation(s)
- Xiya Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lang He
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Mohamed S. Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| |
Collapse
|
8
|
Wang N, Ou P, Hung SF, Huang JE, Ozden A, Abed J, Grigioni I, Chen C, Miao RK, Yan Y, Zhang J, Wang Z, Dorakhan R, Badreldin A, Abdel-Wahab A, Sinton D, Liu Y, Liang H, Sargent EH. Strong-Proton-Adsorption Co-Based Electrocatalysts Achieve Active and Stable Neutral Seawater Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210057. [PMID: 36719140 DOI: 10.1002/adma.202210057] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Direct electrolysis of pH-neutral seawater to generate hydrogen is an attractive approach for storing renewable energy. However, due to the anodic competition between the chlorine evolution and the oxygen evolution reaction (OER), direct seawater splitting suffers from a low current density and limited operating stability. Exploration of catalysts enabling an OER overpotential below the hypochlorite formation overpotential (≈490 mV) is critical to suppress the chloride evolution and facilitate seawater splitting. Here, a proton-adsorption-promoting strategy to increase the OER rate is reported, resulting in a promoted and more stable neutral seawater splitting. The best catalysts herein are strong-proton-adsorption (SPA) materials such as palladium-doped cobalt oxide (Co3- x Pdx O4 ) catalysts. These achieve an OER overpotential of 370 mV at 10 mA cm-2 in pH-neutral simulated seawater, outperforming Co3 O4 by a margin of 70 mV. Co3- x Pdx O4 catalysts provide stable catalytic performance for 450 h at 200 mA cm-2 and 20 h at 1 A cm-2 in neutral seawater. Experimental studies and theoretical calculations suggest that the incorporation of SPA cations accelerates the rate-determining water dissociation step in neutral OER pathway, and control studies rule out the provision of additional OER sites as a main factor herein.
Collapse
Affiliation(s)
- Ning Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Ivan Grigioni
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Clark Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yu Yan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Ahmed Badreldin
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yongchang Liu
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
- State Key Lab of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, P.R. China
| | - Hongyan Liang
- School of Materials Science and Engineering and Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
9
|
Zhang B, Liu S, Zhang S, Cao Y, Wang H, Han C, Sun J. High Corrosion Resistance of NiFe-Layered Double Hydroxide Catalyst for Stable Seawater Electrolysis Promoted by Phosphate Intercalation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203852. [PMID: 36192167 DOI: 10.1002/smll.202203852] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable production of hydrogen from seawater electrolysis has attracted much attention in recent years. Considering that Cl- might corrode metal substrate by crossing through the covered catalyst, the conventional Ni(II)Fe(III)-layered double hydroxide (NiFe-LDH) loaded on metal substrate, as a favorable oxygen evolution catalyst, cannot be directly used for seawater electrolysis. Herein, an anti-corrosion strategy of PO4 3- intercalation in NiFe-LDH is proposed, in which the highly negatively charged PO4 3- in the interlayers can prevent the Ni substrate from Cl- corrosion by electrostatic repulsion. In order to verify the anti-corrosion effect, the two electrodes of the pristine NiFe-LDH and the PO4 3- intercalated NiFe-LDH are evaluated in a solution with high Cl- concentration. PO4 3- can effectively hinder the migration of Cl- between the interlayers of NiFe-LDH, thus the corrosion life of the PO4 3- intercalated NiFe-LDH is more than 100 times longer than that of the pristine NiFe-LDH. The improvement of stability is attributed to the inhibition effect of Cl- passing through the interlayers of NiFe-LDH, leading to the protection of Ni substrate. This work provides a design strategy for the catalysts loaded on the metal substrate, which has excellent Cl- -corrosion resistance and can be widely used in hydrogen generation from seawater electrolysis.
Collapse
Affiliation(s)
- Baoshan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuo Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shaojie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Huili Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Chengyu Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Kitiphatpiboon N, Chen M, Feng C, Zhou Y, Liu C, Feng Z, Zhao Q, Abudula A, Guan G. Modification of spinel MnCo2O4 nanowire with NiFe-layered double hydroxide nanoflakes for stable seawater oxidation. J Colloid Interface Sci 2022; 632:54-64. [DOI: 10.1016/j.jcis.2022.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
11
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022; 61:e202210753. [DOI: 10.1002/anie.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyun Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Shuo Duan
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Hao Shi
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Gang Wu
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
12
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianyun Liu
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Shuo Duan
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Hao Shi
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Tanyuan Wang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Xiaoxuan Yang
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering UNITED STATES
| | - Yunhui Huang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Gang Wu
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering 309 Furnas Hall 14260 Buffalo UNITED STATES
| | - Qing Li
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| |
Collapse
|
13
|
Han J. Exploring the Interface of Porous Cathode/Bipolar Membrane for Mitigation of Inorganic Precipitates in Direct Seawater Electrolysis. CHEMSUSCHEM 2022; 15:e202200372. [PMID: 35332704 PMCID: PMC9324844 DOI: 10.1002/cssc.202200372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Direct seawater electrolysis utilizes natural seawater as the electrolyte. Hydroxide ions generated from the hydrogen evolution reaction at the cathode induce the precipitation of inorganic compounds, which block the active sites of the catalysts, leading to high cell voltage. To mitigate inorganic scaling, herein, an optimized interface between a porous electrode and a bipolar membrane (BPM, as a separator) was suggested in zero-gap seawater electrolyzers. Despite the formation of inorganic deposits at the front side (facing bulk seawater) of the porous cathode due to the water reduction reaction, the back side facing the cation exchange layer of the BPM remained free from thick inorganic deposits. This was ascribed to the locally acidic environment generated by proton flux from water dissociation at the BPM, enabling stable hydrogen production via the proton reduction at low overpotential. This asymmetric hydrogen evolution reaction at the porous cathode led to a considerably lower cell voltage and higher stability than that achieved with the mesh electrode. Moreover, precipitation at the front side of the porous cathode was further mitigated through acidification of the seawater by introducing an open area of the BPM that was not in contact with the porous cathode, allowing free protons that were not involved in the electron transfer reaction to diffuse out into the bulk seawater. These findings may provide critical guidance for the investigation of interfacial phenomena for the complete mitigation of inorganic scaling in the direct electrolytic splitting of seawater.
Collapse
Affiliation(s)
- Ji‐Hyung Han
- Jeju Global Research CentreKorea Institute of Energy Research200 Haemajihaean-ro, Gujwa-eupJeju63357Republic of Korea
| |
Collapse
|
14
|
Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
High-Property Anode Catalyst Compositing Co-Based Perovskite and NiFe-Layered Double Hydroxide for Alkaline Seawater Splitting. Processes (Basel) 2022. [DOI: 10.3390/pr10040668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The progress of high-efficiency non-precious metal anode catalysts for direct seawater splitting is of great importance. However, due to the slow oxygen evolution reaction (OER) kinetics, competition of chlorine evolution reaction (ClER), and corrosion of chloride ions on the anode, the direct seawater splitting faces many challenges. Herein, we develop a perovskite@NiFe layered double hydroxide composite for anode catalyst based on Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) and NiFe layered double hydroxide (NiFe-LDH) heterostructure. The optimized BSCF@CeO2@NiFe exhibits excellent OER activity, with the potential at 100 mA cm−2 (Ej = 100) being 1.62 V in the alkaline natural seawater. Moreover, the electrolytic cell composed of BSCF@CeO2@NiFe anode shows an excellent stability, with negligible attenuation during the long-term overall seawater splitting with the remarkable self-recovery ability in the initial operation stage, and the direct seawater splitting potential increasing by about 30 mV at 10 mA cm−2. Our work can give a guidance for the design and preparation of anode catalysts for the direct seawater splitting.
Collapse
|
17
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
18
|
High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts 2022. [DOI: 10.3390/catal12030261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Seawater is one of the most abundant and clean hydrogen atom resources on our planet, so hydrogen production from seawater splitting has notable advantages. Direct electrolysis of seawater would not be in competition with growing demands for pure water. Using green electricity generated from renewable sources (e.g., solar, tidal, and wind energies), the direct electrolytic splitting of seawater into hydrogen and oxygen is a potentially attractive technology under the framework of carbon-neutral energy production. High selectivity and efficiency, as well as stable electrocatalysts, are prerequisites to facilitate the practical applications of seawater splitting. Even though the oxygen evolution reaction (OER) is thermodynamically favorable, the most desirable reaction process, the four-electron reaction, exhibits a high energy barrier. Furthermore, due to the presence of a high concentration of chloride ions (Cl−) in seawater, chlorine evolution reactions involving two electrons are more competitive. Therefore, intensive research efforts have been devoted to optimizing the design and construction of highly efficient and anticorrosive OER electrocatalysts. Based on this, in this review, we summarize the progress of recent research in advanced electrocatalysts for seawater splitting, with an emphasis on their remarkable OER selectivity and distinguished anti-chlorine corrosion performance, including the recent progress in seawater OER electrocatalysts with their corresponding optimized strategies. The future perspectives for the development of seawater-splitting electrocatalysts are also demonstrated.
Collapse
|
19
|
Abstract
Hydrogen production from water electrolysis is one of the most promising approaches for the production of green H2, a fundamental asset for the decarbonization of the energy cycle and industrial processes. Seawater is the most abundant water source on Earth, and it should be the feedstock for these new technologies. However, commercial electrolyzers still need ultrapure water. The debate over the advantages and disadvantages of direct sea water electrolysis when compared with the implementation of a distillation/purification process before the electrolysis stage is building in the relevant research. However, this debate will remain open for some time, essentially because there are no seawater electrolyser technologies with which to compare the modular approach. In this study, we attempted to build and validate an autonomous sea water electrolyzer able to produce high-purity green hydrogen (>90%) from seawater. We were able to solve most of the problems that natural seawater electrolyses imposes (high corrosion, impurities, etc.), with decisions based on simplicity and sustainability, and those issues that are yet to be overcome were rationally discussed in view of future electrolyzer designs. Even though the performance we achieved may still be far from industrial standards, our results demonstrate that direct seawater electrolysis with a solar-to-hydrogen efficiency of ≈7% can be achieved with common, low-cost materials and affordable fabrication methods.
Collapse
|
20
|
Wang X, Zhai X, Yu Q, Liu X, Meng X, Wang X, Wang L. Strategies of designing electrocatalysts for seawater splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Abstract
Hydrogen energy, as a clean and renewable energy, has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet, the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years, various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally, the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Collapse
|
22
|
Khatun S, Roy P. Cobalt chromium vanadium layered triple hydroxides as an efficient oxygen electrocatalyst for alkaline seawater splitting. Chem Commun (Camb) 2021; 58:1104-1107. [PMID: 34931642 DOI: 10.1039/d1cc05745f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cobalt chromium vanadium layered triple hydroxides have been identified as a promising electrocatalyst for seawater splitting. The insertion of vanadium as a third metal into cobalt chromium layered double hydroxides not only adds extra cationic active sites but also facilitates electronic transition from Co(II) to V(V) boosting the OER activity and suppressing the CER.
Collapse
Affiliation(s)
- Sakila Khatun
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
23
|
Samo IA, Mughal W, Shakeel M, Samo KA, Chen C. Triple Product Overall Water Splitting – An Environment Friendly and New Direction Water Splitting in Sea‐Water Mimicking Electrolyte. ChemistrySelect 2021. [DOI: 10.1002/slct.202102647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Imran Ahmed Samo
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Waqas Mughal
- Department of Mechanical Engineering Quaid-e-Awam University of Engineering, Science and Technology Nawabshah Pakistan
| | - Muhammad Shakeel
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Kamran Ahmed Samo
- Department of Electrical Engineering Quaid-e-Awam University of Engineering Science and Technology Nawabshah Pakistan
| | - Congtian Chen
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
24
|
|
25
|
Hegner FS, Garcés-Pineda FA, González-Cobos J, Rodríguez-García B, Torréns M, Palomares E, López N, Galán-Mascarós JR. Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Franziska S. Hegner
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Felipe A. Garcés-Pineda
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Jesús González-Cobos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Barbara Rodríguez-García
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Mabel Torréns
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Emilio Palomares
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - José-Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
26
|
Zheng W, Lee LYS, Wong KY. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. NANOSCALE 2021; 13:15177-15187. [PMID: 34487129 DOI: 10.1039/d1nr03294a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct seawater electrolysis opens a new opportunity to lower the cost of hydrogen production from current water electrolysis technologies. To facilitate its commercialization, the challenges of long-term performance stability of electrochemical devices need to be first addressed and realized. This minireview summarised the common causes of performance decline during seawater electrolysis, from chemical reactions at the electrode surface to physical damage to the cell. The problems triggered by the impurities in seawater are specifically discussed. Following these issues, we further outlined the ongoing effort of counter-measurements: from electrocatalyst optimization to electrode engineering and cell design. The recent progress in selectivity tuning, surface protection, gas diffusion, and cell configuration is highlighted. In the final remark, we emphasized the need for a consensus on evaluating the stability of seawater electrolysis in the current literature.
Collapse
Affiliation(s)
- Weiran Zheng
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
27
|
Ros C, Murcia-López S, Garcia X, Rosado M, Arbiol J, Llorca J, Morante JR. Facing Seawater Splitting Challenges by Regeneration with Ni-Mo-Fe Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. CHEMSUSCHEM 2021; 14:2872-2881. [PMID: 33826792 DOI: 10.1002/cssc.202100194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen, produced by water splitting, has been proposed as one of the main green energy vectors of the future if produced from renewable energy sources. However, to substitute fossil fuels, large amounts of pure water are necessary, scarce in many world regions. In this work, we fabricate efficient and earth-abundant electrodes, study the challenges of using real seawater, and propose an electrode regeneration method to face undesired salt deposition. Ni-Mo-Fe trimetallic electrocatalyst is deposited on non-expensive graphitic carbon felts both for hydrogen (HER) and oxygen evolution reactions (OER) in seawater and alkaline seawater. Cl- pitting and the chlorine oxidation reaction are suppressed on these substrates and alkalinized electrolyte. Precipitations on the electrodes, mainly CaCO3 , originating from seawater-dissolved components have been studied, and a simple regeneration technique is proposed to rapidly dissolve undesired deposited CaCO3 in acidified seawater. Under alkaline conditions, Ni-Mo-Fe-based catalyst is found to reconfigure, under cathodic bias, into Ni-Mo-Fe alloy with a cubic crystalline structure and Ni : Fe(OH)2 redeposits whereas, under anodic bias, it is transformed into a follicular Ni:FeOOH structure. High productivities over 300 mA cm-2 and voltages down to 1.59 V@10 mA cm-2 for the overall water splitting reaction have been shown, and electrodes are found stable for over 24 h without decay in alkaline seawater conditions and with energy efficiency higher than 61.5 % which makes seawater splitting promising and economically feasible.
Collapse
Affiliation(s)
- Carles Ros
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Sebastian Murcia-López
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
| | - Xenia Garcia
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Marcos Rosado
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, 08193, Barcelona, Catalonia (Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, 08193, Barcelona, Catalonia (Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Joan R Morante
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
- Universitat de Barcelona (UB), Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
28
|
Wang Y, Li G, Yan H, Chen S, Ding L. An Extreme Energy-Saving Carbohydrazide Oxidization Reaction Directly Driven by Commercial Graphite Paper in Alkali and Near-Neutral Seawater Electrolytes. ACS OMEGA 2021; 6:15737-15741. [PMID: 34179617 PMCID: PMC8223228 DOI: 10.1021/acsomega.1c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The energy-saving anode with low oxidization potential has been an intriguing pursue for earth-abundant seawater electrolysis. In this paper, we first introduced a superior energy-saving carbohydrazide oxidization reaction catalysis system in the anode section, which can be driven by commercial graphite paper with good durability. Combining this catalysis reaction and common graphite paper, the lowest anodic potentials 0.63 V (vs RHE) and 1.09 V (vs RHE) were obtained for driving a 10 mA/cm2 current density in alkali and near-neutral seawater electrolytes, respectively, outperforming all the as-reported alkali or near-neutral seawater catalysts accordingly to the best of our knowledge.
Collapse
|
29
|
|
30
|
Wang C, Shang H, Jin L, Xu H, Du Y. Advances in hydrogen production from electrocatalytic seawater splitting. NANOSCALE 2021; 13:7897-7912. [PMID: 33881101 DOI: 10.1039/d1nr00784j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the most abundant resources on the Earth, seawater is not only a promising electrolyte for industrial hydrogen production through electrolysis, but also of great significance for the refining of edible salt. Despite the great potential for large-scale hydrogen production, the implementation of water electrolysis requires efficient and stable electrocatalysts that can maintain high activity for water splitting without chloride corrosion. Recent years have witnessed great achievements in the development of highly efficient electrocatalysts toward seawater splitting. Starting from the historical background to the most recent achievements, this review will provide insights into the current state, challenges, and future perspectives of hydrogen production through seawater electrolysis. In particular, the mechanisms of overall water splitting, key features of seawater electrolysis, noble-metal-free electrocatalysts for seawater electrolysis and the underlying mechanisms are also highlighted to provide guidance for fabricating more efficient electrocatalysts toward seawater splitting.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
31
|
Zhou D, Li P, Lin X, McKinley A, Kuang Y, Liu W, Lin WF, Sun X, Duan X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem Soc Rev 2021; 50:8790-8817. [PMID: 34160484 DOI: 10.1039/d1cs00186h] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane-electrode-assembly based electrolysers, are emphasized to shed light on future research directions.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiao Lin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Adam McKinley
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
32
|
|
33
|
Li P, Wang S, Samo IA, Zhang X, Wang Z, Wang C, Li Y, Du Y, Zhong Y, Cheng C, Xu W, Liu X, Kuang Y, Lu Z, Sun X. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. RESEARCH 2020; 2020:2872141. [PMID: 33043295 PMCID: PMC7532522 DOI: 10.34133/2020/2872141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2020] [Indexed: 11/08/2022]
Abstract
Developing efficient seawater-electrolysis system for mass production of hydrogen is highly desirable due to the abundance of seawater. However, continuous electrolysis with seawater feeding boosts the concentration of sodium chloride in the electrolyzer, leading to severe electrode corrosion and chlorine evolution. Herein, the common-ion effect was utilized into the electrolyzer to depress the solubility of NaCl. Specifically, utilization of 6 M NaOH halved the solubility of NaCl in the electrolyte, affording efficient, durable, and sustained seawater electrolysis in NaCl-saturated electrolytes with triple production of H2, O2, and crystalline NaCl. Ternary NiCoFe phosphide was employed as a bifunctional anode and cathode in simulative and Ca/Mg-free seawater-electrolysis systems, which could stably work under 500 mA/cm2 for over 100 h. We attribute the high stability to the increased Na+ concentration, which reduces the concentration of dissolved Cl− in the electrolyte according to the common-ion effect, resulting in crystallization of NaCl, eliminated anode corrosion, and chlorine oxidation during continuous supplementation of Ca/Mg-free seawater to the electrolysis system.
Collapse
Affiliation(s)
- Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Imran Ahmed Samo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhaolei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cheng Wang
- Chinese Research Academy of Environmental Sciences Institution, Beijing 100012, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyun Du
- State Nuclear Electric Power Planning Design & Research Institute Co., Ltd., Beijing, China
| | - Yang Zhong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Congtian Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenwen Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 Zhejiang, China
| | - Xijun Liu
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiyi Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 Zhejiang, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
34
|
Debnath B, Parvin S, Dixit H, Bhattacharyya S. Oxygen-Defect-Rich Cobalt Ferrite Nanoparticles for Practical Water Electrolysis with High Activity and Durability. CHEMSUSCHEM 2020; 13:3875-3886. [PMID: 32469148 DOI: 10.1002/cssc.202000932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Indexed: 05/20/2023]
Abstract
The scope of any metal oxide as a catalyst for driving electrocatalytic reactions depends on its electronic structure, which is correlated to its oxygen-defect density. Likewise, to transform a spinel oxide, such as cobalt ferrite (CoFe2 O4 ), into a worthy universal-pH, bifunctional electrocatalyst for the hydrogen and oxygen evolution reactions (HER and OER, respectively), oxygen defects need to be regulated. Prepared by coprecipitation and inert calcination at 650 °C, CoFe2 O4 nanoparticles (NPs) require 253 and 300 mV OER overpotentials to reach current densities of 10 and 100 mA cm-2 , respectively, if nickel foam is used as a substrate. With cost-effective carbon fiber paper, the OER overpotential increases to 372 mV at 10 mA cm-2 at pH 14. The NPs prepared at 550 °C require HER overpotentials of 218, 245, and 314 mV at -10 mA cm-2 in alkaline, acidic, and neutral pH, respectively. The intrinsic activity is reflected from turnover frequencies of >3 O2 s-1 and >5 H2 s-1 at overpotentials of 398 and 259 mV, respectively. If coupled for overall water splitting, the extremely durable two-electrode electrolyzer requires a cell potential of only 1.63 V to reach 10 mA cm-2 at pH 14. The homologous couple also splits seawater at impressively low cell voltages of 1.72 and 1.47 V at room temperature and 80 °C, respectively.
Collapse
Affiliation(s)
- Bharati Debnath
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sahanaz Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Harsha Dixit
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
35
|
Vandichel M, Laasonen K, Kondov I. Oxygen Evolution and Reduction on Fe-doped NiOOH: Influence of Solvent, Dopant Position and Reaction Mechanism. Top Catal 2020. [DOI: 10.1007/s11244-020-01334-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Niu J, Yang J, Channa AI, Ashalley E, Yang J, Jiang J, Li H, Ji H, Niu X. Enhancing the water splitting performance via decorating Co 3O 4 nanoarrays with ruthenium doping and phosphorization. RSC Adv 2020; 10:27235-27241. [PMID: 35515797 PMCID: PMC9055514 DOI: 10.1039/d0ra02128h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Hydrogen is the most promising renewable energy source to replace traditional fossil fuels for its ultrahigh energy density, abundance and environmental friendliness. Generating hydrogen by water splitting with highly efficient electrocatalysts is a feasible route to meet current and future energy demand. Herein, the effects of Ru doping and phosphorization treatment on Co3O4 nanoarrays for water splitting are systemically investigated. The results show that a small amount of phosphorus can accelerate hydrogen evolution reaction (HER) and the trace of Ru dopant can significantly enhance the catalytic activities for HER and oxygen evolution reaction (OER). Ru-doped cobalt phosphorous oxide/nickel foam (CoRuPO/NF) nanoarrays exhibit highly efficient catalytic performance with an overpotential of 26 mV at 10 mA cm−2 for HER and 342 mV at 50 mA cm−2 for OER in 1 M KOH solution, indicating superior water splitting performance. Furthermore, the CoRuPO/NF also exhibits eminent and durable activities for alkaline seawater electrolysis. This work significantly advances the development of seawater splitting for hydrogen generation. CoRuPO/NF shows low overpotentials in HER and OER.![]()
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Jian Yang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Ali Imran Channa
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Eric Ashalley
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Jiachao Yang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Jie Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Handong Li
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Haining Ji
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610054 PR China
| |
Collapse
|
37
|
Vandichel M, Busch M, Laasonen K. Oxygen Evolution on Metal‐oxy‐hydroxides: Beneficial Role of Mixing Fe, Co, Ni Explained via Bifunctional Edge/acceptor Route. ChemCatChem 2020. [DOI: 10.1002/cctc.201901951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Vandichel
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick Ireland
- Department of applied physicsAalto University Otakaari 1 02150 Espoo Finland
| | - Michael Busch
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
| | - Kari Laasonen
- Department of chemistry and material science School of chemical engineeringAalto University Kemistintie 1 02150 Espoo Finland
| |
Collapse
|
38
|
Thin Film Coating of Mg-Intercalated Layered MnO2 to Suppress Chlorine Evolution at an IrO2 Anode in Cathodic Protection. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-0509-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
El Hassani K, Kalnina D, Turks M, Beakou BH, Anouar A. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|