1
|
Kirillova MV, Pastor A, Kirillov AM. Multimetal Layered Double Hydroxides: Synthesis, Characterization, and Synergic Effect in Mild Catalytic Oxidation of Alkanes. Inorg Chem 2025; 64:8668-8677. [PMID: 40265908 DOI: 10.1021/acs.inorgchem.5c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Layered double hydroxides (LDHs) represent a promising class of inexpensive and tunable inorganic materials with growing applications in diverse areas. In this study, we applied an aqueous miscible organic solvent treatment (AMOST) to prepare a novel series of highly dispersed LDHs containing up to four different metal centers (Mg, Cu, Al, and Fe). These AMO-LDHs were fully characterized and employed as precatalysts for the mild oxidative functionalization of cyclic and gaseous alkanes with aqueous H2O2 to give the corresponding alcohols, ketones, and carboxylic acids. Cyclohexane and propane were used as model substrates. The oxidation reactions, occurring under mild conditions (30-50 °C), demonstrated good efficiency with total product yields up to 40% and catalyst turnover numbers up to 370 when using a tetra-heterometallic AMO-LDH precatalyst (AMO-MgCuAlFe). Its enhanced catalytic activity is likely associated with the synergic effect of different metal centers (Cu, Fe, and Al─all having a recognized function in oxidation catalysis). Substrate scope, selectivity, and the influence of the reaction parameters were also investigated. This work offers a novel, easy, and more sustainable path to advance the application of AMO-LDHs in oxidation catalysis, opening up the use of this type of catalytic systems in the mild oxidation of alkanes.
Collapse
Affiliation(s)
- Marina V Kirillova
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Adrián Pastor
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Zhao Y, Lv F, Ou Y, Lv G, Zhao S. Contribution of Active Surface of NiFe-Layered Double Hydroxide on the Removal of Methyl Orange. MATERIALS (BASEL, SWITZERLAND) 2025; 18:911. [PMID: 40004434 PMCID: PMC11857282 DOI: 10.3390/ma18040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Layered double hydroxides (LDHs) have potential applications for pollutant removal. Enhancing their pollutant removal ability by fully utilizing the synergistic effects of physical adsorption and chemical catalysis has received widespread attention. In this study, a high methyl orange (MO) removal capacity was achieved by utilizing the synergistic effects of physical adsorption and chemical catalysis of NiFe-LDH. wNiFe-LDH showed a significant removal amount of MO, up to 506.30 mg/g due to its reserving of the active surface to the largest extent. Experiment and molecular simulation clarified the high removal capacity derived from surface adsorption and the degradation ability of the active surface. The presence of more -OH groups on the surface enhanced the removal of MO, and the vacancies in the surface were beneficial for the formation of •O2- and contributed to the degradation of MO. As K2S2O8 was introduced, the removal rate of MO improved to 100% from 60.67%. However, a deeper study showed that the degradation was incomplete, as K2S2O8 inhibited the formation of •O2-, and the active species in the system changed to holes. The degradation path of MO was also altered. Thus, this study gives new insight into the reactivity of the active surface of NiFe-LDH and affords a new path to preserve the active surface.
Collapse
Affiliation(s)
| | - Fengzhu Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Z.); (Y.O.); (S.Z.)
| | | | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.Z.); (Y.O.); (S.Z.)
| | | |
Collapse
|
3
|
Li S, Pan K, Du J, Liu Z, Qiu J. Coral-Inspired Terahertz-Infrared Bi-Stealth Electronic Skin. Angew Chem Int Ed Engl 2024; 63:e202406177. [PMID: 38651494 DOI: 10.1002/anie.202406177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The development of electronic skin with dual stealth functionality is crucial for enabling devices to operate effectively in dynamic electromagnetic environments, thereby facilitating intelligent electromagnetic protection for autonomous perception. However, achieving compatibility between terahertz (THz) and infrared (IR) stealth technologies remains largely unexplored due to their inherent contradictions. Herein, inspired by natural corals, a novel coral-like multi-scale composite foam (CMSF) was proposed that ingeniously reconciles these contradictions. The design capitalizes on the conductive network and heat insulation properties of the foam skeleton, the loss effects and low infrared emission of metal particles, and the infrared transparency of magneto-optical materials. This approach leads to the realization of a THz-IR bi-stealth electronic skin concept. The CMSF exhibits a maximum reflection loss of 84.8 dB in the terahertz band, while its infrared stealth capability ensures environmental adaptability under varying temperatures. Furthermore, the electronic skin exhibits exceptional sensitivity and reliability as a wearable device for perceiving environmental changes. This advanced material, combining multispectral stealth with sensing capabilities, holds immense potential for applications ranging from camouflage technology to smart wearables.
Collapse
Affiliation(s)
- Shangjing Li
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Kaichao Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jiang Du
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zunfeng Liu
- School of Chemistry and Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Qiu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai, 201804, P. R. China
| |
Collapse
|
4
|
Alam K, Jang W, Jeong G, Ser J, Kang D, Kim TH, Cho H. Synthesis of High-Entropy Alloys with a Tailored Composition and Phase Structure Using a Single Configurable Target. ACS OMEGA 2024; 9:1362-1374. [PMID: 38222601 PMCID: PMC10785334 DOI: 10.1021/acsomega.3c07721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Previously, refractory high-entropy alloys (HEAs) with high crystallinity were synthesized using a configurable target without heat treatment. This study builds upon prior investigations to develop nonrefractory elemental HEAs with low crystallinity using a novel target system. Different targets with various elemental compositions, i.e., Co20Cr20Ni20Mn20Mo20 (target 1), Co30Cr15Ni25Mn15Mo15 (target 2), and Co15Cr25Cu20Mn20Ni20 (target 3), are designed to modify the phase structure. The elemental composition is varied to ensure face-centered cubic (FCC) or body-centered cubic (BCC) phase stabilization. In target 1, the FCC and BCC phases coexist, whereas targets 2 and 3 are characterized by a single FCC phase. Thin films based on targets 1 and 2 exhibit crystalline phases followed by annealing, as indicated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. In contrast, target 3 yields crystalline thin films without any heat treatment. The thin-film coatings are classified based on the atomic size difference (δ). The δ value for the target with the elemental composition CoCrMoMnNi is 9.7, i.e., ≥6.6, corresponding to an HEA with an amorphous phase. However, the annealed thin film is considered a multiprincipal elemental alloy. In contrast, δ for the CoCrCuMnNi HEA is 5, i.e., ≤6.6, upon the substitution of Mo with Cu, and a solid solution phase is formed without any heat treatment. Thus, the degree of crystallinity can be controlled through heat treatment and the manipulation of δ in the absence of heat treatment. The XRD results clarify the crystallinity and phase structure, indicating the presence of FCC or a combination of FCC and BCC phases. The outcomes are consistent with those obtained through the analysis of the valence electron concentration based on X-ray photoelectron spectroscopy. Furthermore, a selected area electron diffraction analysis confirms the presence of both amorphous and crystalline structures in the HEA thin films. Additionally, phase evolution and segregation are observed at 500 °C.
Collapse
Affiliation(s)
- Khurshed Alam
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department
of Metal Powder, Korea Institute of Materials
Science, 51508 Changwon, South Korea
| | - Woohyung Jang
- Department
of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Geonwoo Jeong
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinhui Ser
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Doori Kang
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoonsung Cho
- School
of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Zhong W, Liang Z, Zhao H, Wang P, Li Z, Shi J, Ma Q. ECL resonance energy transfer-regulated "off-on" mode biosensor for the detection of miRNA-150-5p in triple negative breast cancer. Biosens Bioelectron 2023; 240:115663. [PMID: 37678060 DOI: 10.1016/j.bios.2023.115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal "off-on" mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET regulated-sensing platform consisted of NiMn-LDHs nanoflowers, the artificially assembled phospholipid bilayers and hairpin DNA-labeled Eu-doped MoS2 QDs. Firstly, Eu-doped MoS2 QDs with high quantum efficiency were prepared as the ECL-RET donors. And NiMn-layer double hydroxides (LDHs) nanoflowers with wide UV-vis absorption spectra as the ECL-RET acceptors. Secondly, due to the hairpin DNA structure, the closed distance between ECL-RET donor-acceptor pair can quench the luminescence signal of Eu-doped MoS2 QDs. When miRNA-150-5p was captured, the hairpin DNA structure changed to a rodlike configuration and enlarged the distance between Eu-doped MoS2 QDs and NiMn-LDHs. As a result, the recovery of ECL signal can be observed as a signal "turn off-on" mode. Furthermore, the hydrophilicity of the lipid bilayer can reduce the nonspecific adsorption and improve the flexibility of the hairpin DNA efficiently. Therefore, based on the ECL-RET regulation strategy, the biosensor was employed to detect miRNA-150-5p from 10 fM to 1 nM with a detection limit of 1.5 fM. The constructed biosensor can effectively differentiate TNBC patient tumor and healthy breast fibroadenoma. The ECL-RET regulation strategy provided a new biosensing pathway for ultrasensitive detection of biomolecules and promoted the development of diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Weiyao Zhong
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - He Zhao
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Wang D, Xing S, Peng F, Zhang X, Tan J, Hao X, Qiao Y, Ge N, Liu X. Microenvironment-responsive electrocution of tumor and bacteria by implants modified with degenerate semiconductor film. Bioact Mater 2023; 20:472-488. [PMID: 35800406 PMCID: PMC9249615 DOI: 10.1016/j.bioactmat.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Implantable biomaterials are widely used in the curative resection and palliative treatment of various types of cancers. However, cancer residue around the implants usually leads to treatment failure with cancer reoccurrence. Postoperation chemotherapy and radiation therapy are widely applied to clear the residual cancer cells but induce serious side effects. It is urgent to develop advanced therapy to minimize systemic toxicity while maintaining efficient cancer-killing ability. Herein, we report a degenerate layered double hydroxide (LDH) film modified implant, which realizes microenvironment-responsive electrotherapy. The film can gradually transform into a nondegenerate state and release holes. When in contact with tumor cells or bacteria, the film quickly transforms into a nondegenerate state and releases holes at a high rate, rendering the "electrocution" of tumor cells and bacteria. However, when placed in normal tissue, the hole release rate of the film is much slower, thus, causing little harm to normal cells. Therefore, the constructed film can intelligently identify and meet the physiological requirements promptly. In addition, the transformation between degenerate and nondegenerate states of LDH films can be cycled by electrical charging, so their selective and dynamic physiological functions can be artificially adjusted according to demand.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shun Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xueqing Hao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Naijian Ge
- Intervention Center, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
7
|
Zhang C, Zheng J, Wang Z. Plasma-induced exfoliation in NiMn-layered double hydroxides for enhanced oxygen evolution reaction activity. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Bansal D, Yadav S, Gupta R. Oxo‐bridged Tri‐ and Tetra‐nuclear Cobalt Complexes Supported with Amide‐Based Nitrogen Donor Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Deepak Bansal
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Samanta Yadav
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Rajeev Gupta
- Department of Chemistry University of Delhi Delhi 110 007 India
| |
Collapse
|
9
|
Li K, Li S, Li Q, Liu H, Yao W, Wang Q, Chai L. Design of a high-performance ternary LDHs containing Ni, Co and Mn for arsenate removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127865. [PMID: 34848069 DOI: 10.1016/j.jhazmat.2021.127865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
To cope with the current serious arsenate pollution problem, a new ternary layered double hydroxides (LDHs) containing Ni, Co and Mn with good performance was developed, guiding by DFT calculations. First, Ni, Co and Mn were screened as the metal sources to constitute the LDHs, due to their high ionic charge density. Then, Ni(II), Co(II) and Mn(III)-O octahedra were selected as the primary units for structuring the LDHs, because of their good chemical activity. Meanwhile, the ratio of metals in the ternary LDHs, favoring for arsenate removal, was optimized at 1:2:1. In addition, the synergistic effect among various metals in the LDHs was considered. The results suggested that in the case of single doping, all three metals can act as the center to promote chemical activity independently. On the contrary, when combined together, there is only one unilateral active center. Moreover, the existence of ligand covalent bonds between arsenate and LDHs was confirmed. Finally, a promising new NiCo2Mn-LDHs with the maximum adsorption capacity of 407.23 mg/g for arsenate removal had been prepared.
Collapse
Affiliation(s)
- Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shuimei Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China.
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Wenming Yao
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| |
Collapse
|
10
|
Wang M, Saad A, Li X, Peng T, Zhang QT, Kumar M, Zhao W. Solid-state synthesis of single-phase nickel monophosphosulfide for the oxygen evolution reaction. Dalton Trans 2021; 50:12870-12878. [PMID: 34581378 DOI: 10.1039/d1dt02343h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance and cost-effective nonprecious-metal catalysts are essential for the next-generation oxygen evolution reaction (OER). However, the electrocatalysis of the OER during water splitting is often carried out by using noble metal catalysts, such as RuO2 or IrO2 with high-cost and limited stability. Herein, we reported a successful synthesis of a ternary nickel monophosphosulfide (NiPS) compound via a simple solid-state route and further investigated its electrocatalytic performances for water oxidation. It is found that the NiPS electrocatalyst exhibits good OER performance in 1.0 M KOH solution, i.e., achieving a current density of 20 mA cm-2 at an overpotential of 400 mV and a Tafel slope of 126 mV dec-1, comparable to commercial benchmark RuO2. The ternary NiPS electrocatalyst for the OER is superior to its binary counterparts, i.e., Ni2P and NiS. Density functional theory (DFT) calculations combined with ex situ XPS were performed to obtain further insights into the intrinsic catalytic mechanism of NiPS, and their results clearly revealed that the instability of the NiO intermediate during the OH* → O* process and the easy oxidation of the (PS)3- anion favoring the formation of hydroxyl-based species (i.e., Ni(OH)2/NiOOH) on the surface of the catalyst, which plays a crucial role in facilitating the OER activity. Furthermore, we creatively extended this method to the fabrication of heteroatom substituted catalysts and a new quaternary CoNiP2S2 compound was successfully synthesized for the first time in the same way. The structural properties and electrocatalytic performance towards the OER for CoNiP2S2 (e.g., 20 mA cm-2 at 376 mV) are also systematically investigated in this work.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Tao Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi-Tao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Mohan Kumar
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
|
12
|
Liu X, Najam T, Yasin G, Kumar M, Wang M. Facile Synthesis of MPS 3/C (M = Ni and Sn) Hybrid Materials and Their Application in Lithium-Ion Batteries. ACS OMEGA 2021; 6:17247-17254. [PMID: 34278111 PMCID: PMC8280674 DOI: 10.1021/acsomega.1c01042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Herein, we successfully synthesized two novel metal thiophosphites (MTPs) hybridized with carbon, that is, NiPS3/C and SnPS3/C composites, via an environment-friendly and cost-effective approach without harsh reaction conditions. Subsequently, the electrochemical performances of NiPS3/C and SnPS3/C composites have been investigated in coin-cells, and it is revealed that MTPs/C have a significantly higher Li-storage capacity and better stability compared to the MTPs without carbon. Moreover, the SnPS3/C electrode shows a lower internal resistance and a better rate performance compared to NiPS3/C. We employed extensive ex situ experiments to characterize the materials and interpreted the remarkably improved performance of MTPs/C.
Collapse
Affiliation(s)
- Xianyu Liu
- School
of Chemistry and Chemical Engineering, Lanzhou
City University, Lanzhou 730070, China
| | - Tayyaba Najam
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ghulam Yasin
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mohan Kumar
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miao Wang
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
A facile electrosynthesis approach of Mn-Ni-Co ternary phosphides as binder-free active electrode materials for high-performance electrochemical supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138197] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Lee J, Son N, Park NK, Ryu HJ, Baek JI, Sohn Y, Do JY, Kang M. Electrochemical behavior of the flower shaped CoMn2O4 spinel structure assembled for effective HER from water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Reddy KHP, Kim BS, Lam SS, Jung SC, Song J, Park YK. Effective toluene oxidation under ozone over mesoporous MnO x/γ-Al 2O 3 catalyst prepared by solvent deficient method: Effect of Mn precursors on catalytic activity. ENVIRONMENTAL RESEARCH 2021; 195:110876. [PMID: 33592225 DOI: 10.1016/j.envres.2021.110876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, the role of manganese precursors in mesoporous (meso) MnOx/γ-Al2O3 catalysts was examined systematically for toluene oxidation under ozone at ambient temperature (20 °C). The meso MnOx/γ-Al2O3 catalysts developed with Mn(CH3COO)2, MnCl2, Mn(NO3)2.4H2O and MnSO4 were prepared by an innovative single step solvent-deficient method (SDM); the catalysts were labeled as MnOx/Al2O3(A), MnOx/Al2O3(C), MnOx/Al2O3(N), and MnOx/Al2O3(S), respectively. Among all, MnOx/Al2O3(C) showed superior performance both in toluene removal (95%) as well as ozone decomposition (88%) followed by acetate, nitrate and sulphated precursor MnOx/Al2O3. The superior performance of MnOx/Al2O3(C) in the oxidation of toluene to COx is associated with the ozone decomposition over highly dispersed MnOx in which extremely active oxygen radicals (O2-, O22- and O-) are generated to enhance the oxidation ability of the catalysts greatly. In addition, toluene adsorption over acid support played a vital role in this reaction. Hence, the properties such as optimum Mn3+/Mn4+ ratio, acidic sites, and smaller particle size (≤2 nm) examined by XPS, TPD of NH3, and TEM results are playing vital role in the present study. In summary, the MnOx/Al2O3 (C) catalyst has great potential in environmental applications particularly for the elimination of volatile organic compounds with low loading of manganese developed by SDM.
Collapse
Affiliation(s)
| | - Beom-Sik Kim
- Hydrogen Research Center, Research Institute of Industrial Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon, 57923, Republic of Korea
| | - JiHyeon Song
- Department of Civil and Environmental Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
16
|
Niu J, Wang Y, E. Liland S, K. Regli S, Yang J, Rout KR, Luo J, Rønning M, Ran J, Chen D. Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04429] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juntian Niu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Shirley E. Liland
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Samuel K. Regli
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jia Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kumar R. Rout
- SINTEF Materials and Chemistry, Trondheim 7491, Norway
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Magnus Rønning
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
17
|
Luo F, Wagner S, Onishi I, Selve S, Li S, Ju W, Wang H, Steinberg J, Thomas A, Kramm UI, Strasser P. Surface site density and utilization of platinum group metal (PGM)-free Fe-NC and FeNi-NC electrocatalysts for the oxygen reduction reaction. Chem Sci 2020; 12:384-396. [PMID: 34168745 PMCID: PMC8179675 DOI: 10.1039/d0sc03280h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Pyrolyzed iron-based platinum group metal (PGM)-free nitrogen-doped single site carbon catalysts (Fe-NC) are possible alternatives to platinum-based carbon catalysts for the oxygen reduction reaction (ORR). Bimetallic PGM-free M1M2-NC catalysts and their active sites, however, have been poorly studied to date. The present study explores the active accessible sites of mono- and bimetallic Fe-NC and FeNi-NC catalysts. Combining CO cryo chemisorption, X-ray absorption and 57Fe Mössbauer spectroscopy, we evaluate the number and chemical state of metal sites at the surface of the catalysts along with an estimate of their dispersion and utilization. Fe L3,2-edge X-ray adsorption spectra, Mössbauer spectra and CO desorption all suggested an essentially identical nature of Fe sites in both monometallic Fe-NC and bimetallic FeNi-NC; however, Ni blocks the formation of active sites during the pyrolysis and thus causes a sharp reduction in the accessible metal site density, while with only a minor direct participation as a catalytic site in the final catalyst. We also use the site density utilization factor, ϕ SDsurface/bulk , as a measure of the metal site dispersion in PGM-free ORR catalysts. ϕ SDsurface/bulk enables a quantitative evaluation and comparison of distinct catalyst synthesis routes in terms of their ratio of accessible metal sites. It gives guidance for further optimization of the accessible site density of M-NC catalysts.
Collapse
Affiliation(s)
- Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Stephan Wagner
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | | | - Sören Selve
- Technische Universität Berlin, Center for Electron Microscopy (ZELMI) Straße des 17. Juni 135 10623 Berlin Germany
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technical Universität Berlin Hardenbergstr. 40 Berlin 10623 Germany
| | - Wen Ju
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Huan Wang
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Julian Steinberg
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Arne Thomas
- Functional Materials, Department of Chemistry, Technical Universität Berlin Hardenbergstr. 40 Berlin 10623 Germany
| | - Ulrike I Kramm
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| |
Collapse
|
18
|
Park H, Park BH, Choi J, Kim S, Kim T, Youn YS, Son N, Kim JH, Kang M. Enhanced Electrochemical Properties and OER Performances by Cu Substitution in NiCo 2O 4 Spinel Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1727. [PMID: 32878224 PMCID: PMC7558615 DOI: 10.3390/nano10091727] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
In order to improve the electrochemical performance of the NiCo2O4 material, Ni ions were partially substituted with Cu2+ ions having excellent reducing ability. All of the electrodes were fabricated by growing the Ni1-xCuxCo2O4 electrode spinel-structural active materials onto the graphite felt (GF). Five types of electrodes, NiCo2O4/GF, Ni0.875Cu0.125Co2O4/GF, Ni0.75Cu0.25Co2O4/GF, Ni0.625Cu0.375Co2O4/GF, and Ni0.5Cu0.5Co2O4/GF, were prepared for application to the oxygen evolution reaction (OER). As Cu2+ ions were substituted, the electrochemical performances of the NiCo2O4-based structures were improved, and eventually the OER activities were also greatly increased. In particular, the Ni0.75Cu0.25Co2O4/GF electrode exhibited the best OER activity in a 1.0 M KOH alkaline electrolyte: the cell voltage required to reach a current density of 10 mA cm-2 was only 1.74 V (η = 509 mV), and a low Tafel slope of 119 mV dec-1 was obtained. X-ray photoelectron spectroscopy (XPS) analysis of Ni1-xCuxCo2O4/GF before and after OER revealed that oxygen vacancies are formed around active metals by the insertion of Cu ions, which act as OH-adsorption sites, resulting in high OER activity. Additionally, the stability of the Ni0.75Cu0.25Co2O4/GF electrode was demonstrated through 1000th repeated OER acceleration stability tests with a high faradaic efficiency of 94.3%.
Collapse
Affiliation(s)
- Hyerim Park
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Byung Hyun Park
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Jaeyoung Choi
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Seyeon Kim
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Taesung Kim
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Young-Sang Youn
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| | - Jae Hong Kim
- School of Chemical Engineering, College of Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (H.P.); (B.H.P.); (J.C.); (S.K.); (T.K.); (Y.-S.Y.)
| |
Collapse
|
19
|
Synthesis and Photocatalytic Activity of Ni–Fe Layered Double Hydroxide Modified Sulphur Doped Graphitic Carbon Nitride (SGCN/Ni–Fe LDH) Photocatalyst for 2,4-Dinitrophenol Degradation. Top Catal 2020. [DOI: 10.1007/s11244-020-01359-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Reddy CV, Koutavarapu R, Reddy KR, Shetti NP, Aminabhavi TM, Shim J. Z-scheme binary 1D ZnWO 4 nanorods decorated 2D NiFe 2O 4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110677. [PMID: 32383655 DOI: 10.1016/j.jenvman.2020.110677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, dimensionally coupled Z-scheme binary nanocomposites from two-dimensional (2D) NiFe2O4 nanoplates and one-dimensional (1D) ZnWO4 nanorods are prepared for efficient degradation of an antibiotic tetracycline (TC) and organic dye rhodamine B (RhB) under solar illumination. NiFe2O4/ZnWO4 nanocomposites were synthesized by a simple and ecological in-situ hydrothermal method without the use of surfactants. Structural and morphological studies revealed the formation of heterostructure and 1D ZnWO4 nanorods were uniformly distributed over the surface of NiFe2O4 nanoplates. Light-harvesting capability was improved and optimized by loading with different amounts of ZnWO4. Photoluminescence analysis demonstrated inhibited nature of the recombination of photo-excited charge carriers in the nanocomposites. Photocatalytic experiments revealed that the nanocomposite exhibited improved Z-scheme electron-transfer for the degradation of TC under solar illumination. In particular, NFZW-20 nanocomposite demonstrated superior photocatalytic degradation of TC of approximately 98% within 105 min. Furthermore, their photocatalytic performance was investigated by RhB dye under the solar irradiation to achieve 98% of degradation of RhB in 70 min. Improved photocatalytic activities are attributed to the Z-scheme electron-transfer mechanism, which could enhance the superior ability of light absorption and reduced recombination rate of the photogenerated charge carriers.
Collapse
Affiliation(s)
- Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | | | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, affiliated to Visvesvaraya Technological University, Karnataka, India.
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad, 580 007, Karnataka, India.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
21
|
Aramesh N, Hoseini SJ, Shahsavari HR, Nabavizadeh SM, Bahrami M, Halvagar MR, Giglio ED, Latronico M, Mastrorilli P. PtSn Nanoalloy Thin Films as Anode Catalysts in Methanol Fuel Cells. Inorg Chem 2020; 59:10688-10698. [PMID: 32701304 DOI: 10.1021/acs.inorgchem.0c01147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of SnX2 (X = Cl, Br) with [PtMe2(bipy)], 1, (bipy = 2,2'-bipyridine), followed by NaBH4 reduction at the toluene/water interface in the presence or absence of graphene oxide support rendered PtSn nanoalloy thin films. They were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrocatalytical activity of the PtSn thin films was investigated in the methanol oxidation reaction. Our studies showed that the PtSn/reduced-graphene oxide (RGO) thin film gave better catalytic results for MOR in comparison to bare PtSn or Pt thin films. A maximum jf/jb ratio (jf and jb are the maximum current densities in the forward and backward scans, respectively) of 6.77 was obtained for the PtSn/RGO thin film deriving from the 1 + SnBr2 + NaBH4 sequence.
Collapse
Affiliation(s)
- Nahal Aramesh
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj 75918-74831, Iran
| | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran.,Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj 75918-74831, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Mehrangiz Bahrami
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Mohammad Reza Halvagar
- Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14968-13151, Iran
| | - Elvira De Giglio
- Dipartimento di Chimica, Università degli studi di Bari "Aldo Moro", I-70125 Bari, Italy
| | | | | |
Collapse
|
22
|
Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Castellanos‐Blanco N, Taborda G, Cobo M. An Efficient Acetalization Method for Biomass‐Derived Furfural with Ethanol Using γ‐Al
2
O
3
‐Supported Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202000410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nahury Castellanos‐Blanco
- Escuela de Ciencias BásicasTecnología e Ingeniería - ECBTIUniversidad Nacional Abierta y a Distancia Calle 14 Sur 14–23 Bogotá Colombia
| | - Gonzalo Taborda
- Chemical DepartmentFaculty of Natural SciencesUniversidad de Caldas A.A. 265 Manizales Caldas
| | - Martha Cobo
- Energy Materials and Environment LaboratoryDepartment of Chemical EngineeringUniversidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte Bogotá Colombia
| |
Collapse
|
24
|
Shinde PA, Khan MF, Rehman MA, Jung E, Pham QN, Won Y, Jun SC. Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors. CrystEngComm 2020. [DOI: 10.1039/d0ce01006e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fabrication of advanced MOF-derived multicomponent NiCoP/NC marigold flowers electrode for high-performance hybrid supercapacitors.
Collapse
Affiliation(s)
- Pragati A. Shinde
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | | | - Malik A. Rehman
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Euigeol Jung
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Quang N. Pham
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Seong Chan Jun
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| |
Collapse
|
25
|
Mathur A, Kaushik R, Halder A. Visible-light-driven photo-enhanced zinc–air batteries using synergistic effect of different types of MnO 2 nanostructures. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01581d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Solar light enhanced the charge generation which leads to better O redox reactions.
Collapse
Affiliation(s)
- Ankita Mathur
- School of Engineering
- Indian Institute of Technology Mandi
- Mandi
- India
| | - Ravinder Kaushik
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| | - Aditi Halder
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| |
Collapse
|
26
|
Oxygen transfer capacity of the copper component introduced into the defected-MgMnAlO4 spinel structure in CH4-CO2/air redox cycles. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0407-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Li X, Tang Y, Lv H, Wang W, Mo F, Liang G, Zhi C, Li H. Recent advances in flexible aqueous zinc-based rechargeable batteries. NANOSCALE 2019; 11:17992-18008. [PMID: 31560348 DOI: 10.1039/c9nr06721c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible aqueous Zn battery has exhibited great potential as a power source for flexible and wearable electronic devices due to its unique features, such as high safety, low cost, and eco-friendliness. Numerous studies on flexible Zn batteries have been reported and exciting achievements have been obtained in the past few years. However, there are still many problems in the electrode design and the assembly process to acquire desirable flexibility without sacrificing the capacity. This review summarizes the up-to-date advances in flexible Zn batteries. We first introduce the recent progresses in anodes, cathodes and solid-state electrolytes. Special emphases are then put on the discussions of differences between various flexible current collectors or substrates. Electrode preparation techniques and flexible battery assembly technologies are also compared and discussed. Finally, challenges toward further developments of flexible Zn batteries with high capacity, excellent flexibility and cycling stability are proposed. Future research trends and highlights are suggested as well.
Collapse
Affiliation(s)
- Xuejin Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Yongchao Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Wenlong Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. and Beijing National Laboratory for Condensed Matter Physics and, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Funian Mo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. and Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| |
Collapse
|
28
|
Electrochemical Synergies of Heterostructured Fe 2O 3-MnO Catalyst for Oxygen Evolution Reaction in Alkaline Water Splitting. NANOMATERIALS 2019; 9:nano9101486. [PMID: 31635334 PMCID: PMC6835942 DOI: 10.3390/nano9101486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022]
Abstract
For efficient electrode development in an electrolysis system, Fe2O3, MnO, and heterojunction Fe2O3-MnO materials were synthesized via a simple sol-gel method. These particles were coated on a Ni-foam (NF) electrode, and the resulting material was used as an electrode to be used during an oxygen evolution reaction (OER). A 1000-cycle OER test in a KOH alkaline electrolyte indicated that the heterojunction Fe2O3-MnO/NF electrode exhibited the most stable and highest OER activity: it exhibited a low overvoltage (n) of 370 mV and a small Tafel slope of 66 mV/dec. X-ray photoelectron spectroscopy indicated that the excellent redox performance contributed to the synergy of Mn and Fe, which enhanced the OER performance of the Fe2O3-MnO/NF electrode. Furthermore, the effective redox reaction of Mn and Fe indicated that the structure maintained stability even under 1000 repeated OER cycles.
Collapse
|
29
|
Hou B, Du Y, Liu X, Ci C, Wu X, Xie X. Tunable preparation of highly dispersed Ni x Mn-LDO catalysts derived from Ni x Mn-LDHs precursors and application in low-temperature NH 3-SCR reactions. RSC Adv 2019; 9:24377-24385. [PMID: 35527889 PMCID: PMC9069834 DOI: 10.1039/c9ra04578c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
A series of Ni x Mn bimixed metal oxides (Ni x Mn-LDO) were prepared via calcining Ni x Mn layered double hydroxides (Ni x Mn-LDHs) precursors at 400 °C and applied as catalysts in the selective catalytic reduction (SCR) of NO x with NH3. The DeNO x performance of catalysts was optimized by adjusting the Ni/Mn molar ratios of Ni x Mn-LDO precursors, in which Ni5Mn-LDO exhibited above 90% NO x conversion and N2 selectivity at a temperature zone of 180-360 °C. Besides, Ni5Mn-LDO possessed considerable SO2 & H2O resistance and outstanding stability. Multiple characterization techniques were used to analyze the physicochemical properties of the catalysts. The analysis results indicated that all catalysts had the same active species Ni6MnO8, while their particle sizes showed significant differences. Notably, the uniform distribution of active species particles in the Ni5Mn-LDO catalyst provided the rich surface acidity and suitable redox ability which were the primary causes for its desirable DeNO x property.
Collapse
Affiliation(s)
- Benhui Hou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 PR China
| | - Xuezhen Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Chao Ci
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xianmei Xie
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| |
Collapse
|
30
|
Cheng X, Zheng J, Li J, Luo X. Iron Doping Effect for Oxygen Evolution Hybrid Catalysts based on Nickel Phosphate/Nitrogen‐Doped Carbon Nanoflakes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xian Cheng
- Fujian Key Laboratory of Advanced Materials (Xiamen University) College of MaterialsXiamen University Xiamen Fujian 361005 China
| | - Jianfeng Zheng
- Fujian Key Laboratory of Advanced Materials (Xiamen University) College of MaterialsXiamen University Xiamen Fujian 361005 China
| | - Jintang Li
- Fujian Key Laboratory of Advanced Materials (Xiamen University) College of MaterialsXiamen University Xiamen Fujian 361005 China
| | - Xuetao Luo
- Fujian Key Laboratory of Advanced Materials (Xiamen University) College of MaterialsXiamen University Xiamen Fujian 361005 China
| |
Collapse
|
31
|
Bansal D, Mondal A, Lakshminarasimhan N, Gupta R. Oxo-bridged trinuclear and tetranuclear manganese complexes supported with nitrogen donor ligands: syntheses, structures and properties. Dalton Trans 2019; 48:7918-7927. [DOI: 10.1039/c9dt00966c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work illustrates syntheses, structures, redox and magnetic properties as well as catalase activities of rare μ3-oxo bridged mixed-valent trinuclear MnIIMnIII complexes (1 and 2) and a μ4-oxo bridged tetranuclear MnII4 complex (3) supported with nitrogen donor ligands.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore – 560 012
- India
| | - N. Lakshminarasimhan
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| |
Collapse
|
32
|
Yan AL, Wang XC, Cheng JP. Research Progress of NiMn Layered Double Hydroxides for Supercapacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E747. [PMID: 30241330 PMCID: PMC6215097 DOI: 10.3390/nano8100747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023]
Abstract
The research on supercapacitors has been attractive due to their large power density, fast charge/discharge speed and long lifespan. The electrode materials for supercapacitors are thus intensively investigated to improve the electrochemical performances. Various transition metal layered double hydroxides (LDHs) with a hydrotalcite-like structure have been developed to be promising electrode materials. Earth-abundant metal hydroxides are very suitable electrode materials due to the low cost and high specific capacity. This is a review paper on NiMn LDHs for supercapacitor application. We focus particularly on the recent published papers using NiMn LDHs as electrode materials for supercapacitors. The preparation methods for NiMn LDHs are introduced first. Then, the structural design and chemical modification of NiMn LDH materials, as well as the composites and films derived from NiMn LDHs are discussed. These approaches are proven to be effective to enhance the performance of supercapacitor. Finally, the reports related to NiMn LDH-based asymmetric supercapacitors are summarized. A brief discussion of the future development of NiMn LDHs is also provided.
Collapse
Affiliation(s)
- Ai-Lan Yan
- Institute of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| | - Xin-Chang Wang
- Key Laboratory of Material Physics, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China.
| | - Ji-Peng Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|