1
|
Rodrigues MÁV, Bertolo MRV, Horn MM, Lugão AB, Mattoso LHC, de Guzzi Plepis AM. Comparing solution blow spinning and electrospinning methods to produce collagen and gelatin ultrathin fibers: A review. Int J Biol Macromol 2024; 283:137806. [PMID: 39561830 DOI: 10.1016/j.ijbiomac.2024.137806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Ultrathin fibers have been used to design functional nanostructured materials for technological and biomedical applications. Combining the use of renewable and compatible sources with the emerging alternative SBS (solution blow spinning) technique opens new opportunities for material applications. In this review, we introduce the benefits of SBS over the classical electrospinning technique by following studies that use collagen or gelatin. SBS offers distinct advantages over electrospinning in the preparation of ultrathin fibers based on natural proteins, including the absence of high-voltage sources and the possibility of using fewer toxic solvents. Notably, there is also the prospect of using SBS directly in injured tissues, opening new strategies for in situ structure assembly SBS is a suitable approach to produce fibers at the nanoscale that can be tailored to distinct diameters by blending or simply adjusting experimental conditions. The focus on producing collagen or gelatin fibers contributes to designing highly biocompatible mats with potential for promoting cellular growth and implantation, even though their applications can be found also in food packaging, energy, and the environment. Therefore, a comprehensive analysis of the topic is essential to evaluate the current strategies regarding these materials and allow for their expanded production and advanced applications.
Collapse
Affiliation(s)
- Murilo Álison Vigilato Rodrigues
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, SP, Brazil; Nuclear and Energy Research Institute, National Nuclear Energy Commission (IPEN-CNEN), São Paulo, SP, Brazil; Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, SP, Brazil.
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, SP, Brazil; Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, SP, Brazil
| | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, Kassel, Germany
| | - Ademar Benévolo Lugão
- Nuclear and Energy Research Institute, National Nuclear Energy Commission (IPEN-CNEN), São Paulo, SP, Brazil
| | | | | |
Collapse
|
2
|
Xie C, Yang R, Wan X, Li H, Ge L, Li X, Zhao G. A High-Proton Conductivity All-Biomass Proton Exchange Membrane Enabled by Adenine and Thymine Modified Cellulose Nanofibers. Polymers (Basel) 2024; 16:1060. [PMID: 38674980 PMCID: PMC11054160 DOI: 10.3390/polym16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nanocellulose fiber materials were considered promising biomaterials due to their excellent biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low proton conductivity significantly limited their application as proton exchange membranes. The methods previously reported to increase their proton conductivity often introduced non-biodegradable groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare cellulose-based proton exchange membranes that could simultaneously meet sustainability and high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once modified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet strength also increased. This study paved a new path for the preparation of environmentally friendly membrane materials that could replace the commonly used non-degradable ones, highlighting the potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells, supercapacitors, and solid-state batteries.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Runde Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Xing Wan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Haorong Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Liangyao Ge
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wushan Road, Guangzhou 510641, China; (C.X.); (R.Y.); (X.W.); (H.L.); (L.G.)
| |
Collapse
|
3
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
4
|
Duan Y, Ru C, Li J, Sun YN, Pu X, Liu B, Pang B, Zhao C. Enhancing proton conductivity and methanol resistance of SPAEK membrane by incorporating MOF with flexible alkyl sulfonic acid for DMFC. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
SUWANSOONTORN A, YAMAMOTO K, NAGANO S, MATSUI J, NAGAO Y. Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Katsuhiro YAMAMOTO
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| | - Shusaku NAGANO
- Department of Chemistry, College of Science, Rikkyo University
| | | | - Yuki NAGAO
- School of Materials Science, Japan Advanced Institute of Science and Technology
| |
Collapse
|
6
|
Zhang S, Tanioka A, Matsumoto H. De Novo Ion-Exchange Membranes Based on Nanofibers. MEMBRANES 2021; 11:652. [PMID: 34564469 PMCID: PMC8469869 DOI: 10.3390/membranes11090652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The unique functions of nanofibers (NFs) are based on their nanoscale cross-section, high specific surface area, and high molecular orientation, and/or their confined polymer chains inside the fibers. The introduction of ion-exchange (IEX) groups on the surface and/or inside the NFs provides de novo ion-exchangers. In particular, the combination of large surface areas and ionizable groups in the IEX-NFs improves their performance through indices such as extremely rapid ion-exchange kinetics and high ion-exchange capacities. In reality, the membranes based on ion-exchange NFs exhibit superior properties such as high catalytic efficiency, high ion-exchange and adsorption capacities, and high ionic conductivities. The present review highlights the fundamental aspects of IEX-NFs (i.e., their unique size-dependent properties), scalable production methods, and the recent advancements in their applications in catalysis, separation/adsorption processes, and fuel cells, as well as the future perspectives and endeavors of NF-based IEMs.
Collapse
Affiliation(s)
- Shaoling Zhang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Akihiko Tanioka
- Interdisciplinary Cluster for Cutting Edge Research, Institute of Carbon Science and Technology, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan;
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
7
|
Raja Pugalenthi M, Ramesh Prabhu M. The Pore filled SPEEK nanofibers matrix combined with ethylene diamine modified SrFeO3 nanoneedles for the cation exchange membrane fuel cells. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
9
|
Wang L, Deng N, Wang G, Ju J, Cheng B, Kang W. Constructing Amino-Functionalized Flower-like Metal-Organic Framework Nanofibers in Sulfonated Poly(ether sulfone) Proton Exchange Membrane for Simultaneously Enhancing Interface Compatibility and Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39979-39990. [PMID: 31593437 DOI: 10.1021/acsami.9b13496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel flower-like MIL-53(Al)-NH2 nanofiber (MNF) was successfully constructed, in which the electro-blown spinning Al2O3 nanofibers were introduced as Al precursors to coordinate with ligand in hydrothermal reaction for the formation of MOFs nanofibers. By incorporating the functional and consecutive MNFs fillers in sulfonated poly(ether sulfone) (SPES) matrix, high-performance MNFs@SPES hybrid membranes were obtained. Specifically, the peak stress strength could be strengthened to 33.42 MPa and the proton conductivity was remarkably improved to 0.201 S cm-1 as MNFs content increased to 5 wt %, achieving a simultaneous improvement on proton conduction and membrane stability. The highly promoted performance could be ascribed to the synergy advantages of unique structure and amino modification of MNFs: (1) The flower-like nanofiber structure of MNFs with high surface area could be beneficial to construct long-range and compatible interfaces between MNFs and SPES matrix, leading to sufficient continuous proton pathways as well as strengthened stability for the hybrid membrane. (2) The hydrophilic MNFs rendered the hybrid membrane with sufficient water retention for proton transfer via Vehicle mechanism. (3) Functional -NH2 groups of MNFs and -SO3H groups of SPES were consecutively and tightly bonded via acid-base electrostatic interactions, which further accelerated the proton conduction via Grotthuss hopping mechanism and effectively suppressed the methanol penetration in the meanwhile for the MNFs@SPES hybrid membranes.
Collapse
Affiliation(s)
- Liyuan Wang
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes , Tiangong University , Tianjin 300387 , China
| | - Nanping Deng
- School of Material Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Gang Wang
- School of Material Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Jingge Ju
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes , Tiangong University , Tianjin 300387 , China
| | - Bowen Cheng
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes , Tiangong University , Tianjin 300387 , China
- School of Material Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Weimin Kang
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes , Tiangong University , Tianjin 300387 , China
| |
Collapse
|
10
|
Wang H, Zhuang X, Wang X, Li C, Li Z, Kang W, Yin Y, Guiver MD, Cheng B. Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21865-21873. [PMID: 31185563 DOI: 10.1021/acsami.9b01200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development and fabrication of novel proton exchange membranes (PEMs) with excellent performance have a great significance to the commercial application of PEM fuel cell. Inspired from the proton-conducting mechanism, γ-poly(glutamic acid) (γ-PGA) nanofibers (NFs) are first fabricated by solution blowing with the help of polylactic acid (PLA) and designed to form amino acid arrays as efficient proton channels for PEMs. The NFs with 50% γ-PGA exhibit a high proton conductivity of 0.572 S cm-1 at 80 °C/50% relative humidity (RH), and 1.28 S cm-1 at 40 °C/90% RH. Density functional theory is carried out to explain the mechanisms of proton hopping in γ-PGA, and the activation energy barriers from NH to COO- for trans and cis conformations under anhydrous conditions are only 0.64 and 0.62 eV, respectively. Then the γ-PGA/PLA NFs are incorporated into sulfonated poly(ether sulfone) to prepare PEMs, which show remarkable performance compared with the Nafion membrane. The composite membrane with 30 wt % NFs exhibits the highest proton conductivity (0.261 S cm-1 at 80 °C/100% RH). The direct methanol fuel cells with this membrane show a maximum power density (202.3 mW cm-2) among all of the PEMs, showing great application potential in the field of PEMs.
Collapse
Affiliation(s)
| | | | | | - Congju Li
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | | | | | - Yan Yin
- State Key Laboratory of Engines , Tianjin University , Tianjin 300072 , P. R. China
| | - Michael D Guiver
- State Key Laboratory of Engines , Tianjin University , Tianjin 300072 , P. R. China
| | | |
Collapse
|
11
|
Nanomechanical, Mechanical Responses and Characterization of Piezoelectric Nanoparticle-Modified Electrospun PVDF Nanofibrous Films. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-03694-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang H, Li X, Li X, Feng X, Kang W, Xu X, Zhuang X, Cheng B. Self-Assembly DBS Nanofibrils on Solution-Blown Nanofibers as Hierarchical Ion-Conducting Pathway for Direct Methanol Fuel Cells. Polymers (Basel) 2018; 10:E1037. [PMID: 30960962 PMCID: PMC6403695 DOI: 10.3390/polym10091037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
In this work, we reported a novel proton exchange membrane (PEM) with an ion-conducting pathway. The hierarchical nanofiber structure was prepared via in situ self-assembling 1,3:2,4-dibenzylidene-d-sorbitol (DBS) supramolecular fibrils on solution-blown, sulfonated poly (ether sulfone) (SPES) nanofiber, after which the composite PEM was prepared by incorporating hierarchical nanofiber into the chitosan polymer matrix. Then, the effects of incorporating the hierarchical nanofiber structure on the thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability of the composite membranes were investigated. The results show that incorporation of hierarchical nanofiber improves the water uptake, proton conductivity, and methanol permeability of the membranes. Furthermore, the composite membrane with 50% hierarchical nanofibers exhibited the highest proton conductivity of 0.115 S cm-1 (80 °C), which was 69.12% higher than the values of pure chitosan membrane. The self-assembly allows us to generate hierarchical nanofiber among the interfiber voids, and this structure can provide potential benefits for the preparation of high-performance PEMs.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiangxiang Li
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiaojie Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xi Feng
- Department of Industrial Design, Yanshan University, Qinhuang Dao 066004, China.
| | - Weimin Kang
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xianlin Xu
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
- College of Textile, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|