1
|
Ramírez-Mendoza CG, Armenta-Villegas L, Quiroz-Castillo JM, Orozco-Valencia AU, Rodríguez-Félix DE, Ramírez-Bon R, Fernández-Benavides DA, Flores-León JR, Suarez-Campos G, Cabrera-González AD, Plascencia-Martínez DF, Castillo-Ortega MM. Application of electrospun membranes of polylactic acid and polypyrrole as a biosensor for the detection of cholesterol. Biomed Mater Eng 2025:9592989251341131. [PMID: 40368119 DOI: 10.1177/09592989251341131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
BACKGROUND Hydrogen peroxide (H2O2) plays a crucial role in various industries and enzymatic reactions, including cholesterol oxidation. Cholesterol, vital for physiological functions, can lead to cardiovascular and hepatic diseases when present in excess. Accurate detection is crucial, yet current techniques are costly and time-consuming. Biosensors offer a promising alternative due to their sensitivity, speed, and portability in detecting H2O2. Objective: This study aims to develop a sensitive, simple, rapid, and cost-effective biosensor for H2O2 detection using electrospun membranes coated with polypyrrole (PPy). Methods: Poly(lactic acid) (PLA) membranes were prepared using the electrospinning technique. Subsequently, these membranes were coated with polypyrrole (PPy) through in situ chemical polymerization. The obtained materials were characterized using SEM, contact angle measurements, XPS, and their electrical properties were analyzed. Results: PLA/PPy composite membranes exhibited electrical conductivities on the order of 10-2 S cm-1. Upon exposure to H2O2 and enzymatic reaction, a significant decrease in their electrical properties was observed, indicating their potential as sensors for detecting this analyte. Conclusions: Electrospun PLA/PPy membranes demonstrate high potential for H2O2 detection, owing to their large surface area and high reactivity, thereby enhancing sensor sensitivity. These characteristics make this material a promising option for H2O2 detection applications across various industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafael Ramírez-Bon
- Department of Materials Science and Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Querétaro, Mexico
| | - David A Fernández-Benavides
- Department of Manufacturing Engineering, Center for Engineering and Industrial Development, Santiago de Querétaro, Mexico
| | - José R Flores-León
- Department of Polymers and Materials Research, University of Sonora, Hermosillo, Mexico
| | | | | | | | | |
Collapse
|
2
|
Singh S, Numan A, Khalid M, Bello I, Panza E, Cinti S. Facile and Affordable Design of MXene-Co 3 O 4 -Based Nanocomposites for Detection of Hydrogen Peroxide in Cancer Cells: Toward Portable Tool for Cancer Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208209. [PMID: 37096900 DOI: 10.1002/smll.202208209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-β1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Ivana Bello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, 80131, Italy
- BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Naples, 80055, Italy
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, Naples, 80126, Italy
| |
Collapse
|
3
|
Alizadeh N, Salimi A. Electrochemical monitoring of hydrogen peroxide by a signal-amplified microfluidic chip coupled with colloidal VO 2 nanostructures as a peroxidase enzyme mimic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1896-1902. [PMID: 36988072 DOI: 10.1039/d3ay00203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We present a novel electrochemical microfluidic device for the sensitive and selective detection of hydrogen peroxide (H2O2) through a VO2 nanostructure enzyme mimic. The low-cost ($0.50) microfluidic chip was fabricated using a simple and rapid prototyping technique via three syringe needles. Each needle played the role of an electrode (working, reference, and counter), and was connected by micro-hoses to a construction of the electrochemical microfluidic chip. The colloidal VO2 nanoflakes with peroxidase-like activity could be easily transferred on to the electrodes by a syringe, for development of a novel electrochemical platform to enable the detection of H2O2. The unique microfluidic electrochemical sensor delivered a wide linear dynamic range from 0.5 to 300 μM, with a limit of detection of 0.14 μM. The facile, rapid, sensitive, and selective as-fabricated H2O2 sensors were proven to be appropriate for the real-time monitoring of H2O2 released from PC12 cells. The integration of a microfluidic sensor with an enzyme mimic nanostructure is essentially a promising strategy for the low-cost and accurate monitoring of physiological processes.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.
- Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
4
|
Ahsan M, Dutta A, Akermi M, Mahtab Alam M, Nizam Uddin S, Khatun N, Hasnat MA. Sulfur adlayer on gold surface for attaining H2O2 reduction in alkaline medium: Catalysis, Kinetics, and Sensing activities. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Verma AK, Tripathi P, Alam Z, Mishra SK, Ray B, Sinha ASK, Singh S. Photocatalytic Production of Oxygen by Nitrogen Doped Graphene Oxide Nanospheres: Synthesized
via
Bottom‐Up Approach Using Dibenzopyrrole. ChemistrySelect 2022. [DOI: 10.1002/slct.202202813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar Verma
- Department of Sciences and Humanities Rajiv Gandhi Institute of Petroleum Technology Jais, Amethi 229304
| | - Prerna Tripathi
- Department of Sciences and Humanities Rajiv Gandhi Institute of Petroleum Technology Jais, Amethi 229304
| | - Zahoor Alam
- Department of Chemical Engineering and Biochemical Engineering Rajiv Gandhi Institute of Petroleum Technology Jais, Amethi 229304
| | - Shiva Kant Mishra
- Raman and Photoluminescence Laboratory Material Science and Engineering Indian Institute of Kanpur- 208016
| | - Biswajit Ray
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005
| | - A. S. K. Sinha
- Department of Chemical Engineering and Biochemical Engineering Rajiv Gandhi Institute of Petroleum Technology Jais, Amethi 229304
| | - Shikha Singh
- Department of Sciences and Humanities Rajiv Gandhi Institute of Petroleum Technology Jais, Amethi 229304
| |
Collapse
|
7
|
Aromatic carboxylic acid derived bimetallic nickel/cobalt electrocatalysts for oxygen evolution reaction and hydrogen peroxide sensing applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Singh J, Singh R, Singh S, Mitra K, Mondal S, Vishwakarma S, Ray B. Colorimetric detection of hydrogen peroxide and cholesterol using Fe3O4-brominated graphene nanocomposite. Anal Bioanal Chem 2022; 414:2131-2145. [DOI: 10.1007/s00216-021-03848-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
|
9
|
Hussein MA, Khan A, Alamry KA. A highly efficient electrochemical sensor containing polyaniline/cerium oxide nanocomposites for hydrogen peroxide detection. RSC Adv 2022; 12:31506-31517. [DOI: 10.1039/d2ra05041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
An efficient electrochemical sensor containing (PANI/CeO2) for the detection of hydrogen peroxide has been fabricated using the in situ oxidative polymerization. The fabricated electrode sensor was successfully used to detect H2O2 in real samples.
Collapse
Affiliation(s)
- Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ajahar Khan
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Khalid A. Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Dutta A, Hasan MM, Miah MR, Nagao Y, Hasnat MA. Efficient sensing of hydrogen peroxide via electrocatalytic oxidation reactions using polycrystalline Au electrode modified with controlled thiol group immobilization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
12
|
Sinha GN, Subramanyam P, Sivaramakrishna V, Subrahmanyam C. Electrodeposited copper bismuth oxide as a low-cost, non-enzymatic electrochemical sensor for sensitive detection of uric acid and hydrogen peroxide. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wani AA, Bhat MM, Sofi FA, Bhat SA, Ingole PP, Rashid N, Bhat MA. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2O 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis of a nano-spinel cobalt decorated sulphur doped reduced graphene oxide (Co@S–rGO) composite exhibiting excellent electrocatalytic performance and electrochemical stability toward oxygen evolution reaction in an alkaline medium.
Collapse
Affiliation(s)
- Adil Amin Wani
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
14
|
Ma J, Chen G, Bai W, Zheng J. Amplified Electrochemical Hydrogen Peroxide Sensing Based on Cu-Porphyrin Metal-Organic Framework Nanofilm and G-Quadruplex-Hemin DNAzyme. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58105-58112. [PMID: 32702964 DOI: 10.1021/acsami.0c09254] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A novel electrochemical hydrogen peroxide (H2O2) sensor based on Cu-porphyrin(Cu-TCPP)/G-quadruplex-hemin nanocomposite was constructed by assembling two-dimensional Cu-TCPP metal-organic framework (MOF) nanofilm and G-quadruplex-hemin DNAzyme. The Cu-TCPP synthesized by the surfactant-assisted method has a wrinkled two-dimensional nanofilm morphology, which gives it a large surface area and accessible active sites. Cu-TCPP exhibits peroxidase activity and good stability and can catalyze the reduction of H2O2. In addition, Cu-TCPP can be used as a nanocarrier for G-quadruplex-hemin DNAzyme with strong peroxidase activity to achieve "biological barcode" amplification and improve stability. The cooperative interaction of Cu-TCPP and G-quadruplex-hemin DNAzyme effectively amplifies the electrochemical response signal. Electrochemical studies have shown that the constructed sensor exhibits good electrochemical sensing performance with three linear ranges: 0.08 μM to 0.11 mM, 0.11-0.91 mM, and 0.91-8.1 mM, with sensitivities of 2315.86, 301.00, and 65.71 μA/(mM cm2), respectively, and the detection limit was 0.03 μM. In addition, the sensor shows good selectivity. In summary, this study provides a simple and effective new strategy for electrochemical sensing based on two-dimensional MOFs and artificial enzymes.
Collapse
Affiliation(s)
- Junping Ma
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China
| | - Guozhen Chen
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wushuang Bai
- College of Food Science and Engineering, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianbin Zheng
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
15
|
Rahman MM, Adeosun WA, Asiri AM. Fabrication of selective and sensitive chemical sensor development based on flower-flake La2ZnO4 nanocomposite for effective non-enzymatic sensing of hydrogen peroxide by electrochemical method. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111296. [DOI: 10.1016/j.msec.2020.111296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
|
17
|
More MP, Deshmukh PK. Computational studies and biosensory applications of graphene-based nanomaterials: a state-of-the-art review. NANOTECHNOLOGY 2020; 31:432001. [PMID: 32498048 DOI: 10.1088/1361-6528/ab996e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene, graphene oxide (GO) and graphene quantum dots (GQDs) are expected to play a vital role in the diagnosis of severe ailments. Computer-based simulation approaches are helpful for understanding theoretical tools prior to experimental investigation. These theoretical tools still have a high computational requirement. Thus, more efficient algorithms are required to perform studies on even larger systems. The present review highlights the recent advancement in structural confinement using computer simulation approaches along with biosensory applications of graphene-based materials. The computer simulation approaches help to identify the interaction between interacting molecules and sensing elements like graphene sheets. The simulation approach reduces the wet-lab experiment time and helps to predict the interaction and interacting environment. The experimental investigation can be tuned at a molecular level easily to predict small changes in structural configuration. Here, the molecular simulation study could be useful as an alternative to actual wet experimental approaches. The sensing ability of graphene-based materials is a result of interactions like hydrogen bonding, base-base interaction, and base-to-pi interaction to name a few. These interactions help in designing and engineering a substrate for sensing of various biomolecules.
Collapse
Affiliation(s)
- Mahesh P More
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra, India. Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | | |
Collapse
|
18
|
Wu H, Xiao K, Ouyang T, Wang Z, Chen Y, Li N, Liu ZQ. Co-Cr mixed spinel oxide nanodots anchored on nitrogen-doped carbon nanotubes as catalytic electrode for hydrogen peroxide sensing. J Colloid Interface Sci 2020; 585:605-613. [PMID: 33139019 DOI: 10.1016/j.jcis.2020.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen peroxide (H2O2) is a significant biomarker in physiological processes. Abnormal levels of H2O2 are considered to be closely related to some acute diseases. Therefore, it is important to monitor the H2O2 levels in bio-samples. Herein, we present a novel non-enzymatic electrochemical H2O2 sensor based on the excellent electrocatalytic performance of a composite comprising Zn-Cr-Co ternary spinel metal oxide nanodots (ZnCrCoO4) anchored on the surface of nitrogen-doped carbon nanotubes (NCNTs), denoted as ZnCrCoO4/NCNTs, toward H2O2 reduction. ZnCrCoO4/NCNTs were synthesized using a facile one-pot hydrothermal strategy. The enhanced electrocatalytic performance of ZnCrCoO4 is resulted from the partial substitution of Co in spinel zinc cobaltate (ZnCo2O4) with Cr, which modifies the CoO electronic structure and enhances electroconductivity. The ZnCrCoO4/NCNTs-based H2O2 sensor exhibited a wide quantitative detection range from 1 to 7330 μM with a detection limit of 1 μM. The sensor showed excellent reproducibility and selectivity for H2O2 sensing. In addition, remarkable recoveries were obtained for H2O2-spiked fish serum samples. These results demonstrated that the as-developed sensor has a great potential in monitoring H2O2 levels in practical applications.
Collapse
Affiliation(s)
- Huixiang Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Nan Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, 510006, PR China.
| |
Collapse
|
19
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
20
|
Alizadeh N, Salimi A, Sham TK, Bazylewski P, Fanchini G. Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H 2O 2 Detection Using an Electrochemical Microfluidic Device. ACS OMEGA 2020; 5:11883-11894. [PMID: 32548367 PMCID: PMC7271032 DOI: 10.1021/acsomega.9b03252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 05/31/2023]
Abstract
Artificial enzyme mimics have gained considerable attention for use in sensing applications due to their high stability and outstanding catalytic activity. We show that cerium oxide nanosheets (NSs) exhibit triple-enzyme mimetic activity. The oxidase-, peroxidase-, and catalase-like activities of the proposed nanoparticles are demonstrated using both colorimetric and electron paramagnetic resonance (EPR) spectroscopy. On the basis of the excellent catalytic activity of cerium oxide NSs toward hydrogen peroxide, an electrochemical approach for the high-throughput detection of H2O2 in living cells was established. This report presents an analytical microfluidic chip integrated with a cerium oxide NS mimic enzyme for the fabrication of a simple, sensitive, and low-cost electrochemical sensor. Three Au microelectrodes were fabricated on a glass substrate using photolithography, and the working electrode was functionalized using cerium oxide NSs. The operation of this biosensor is based on cerium oxide NSs and presents a high sensitivity over a wide detection range, between 100 nM and 20 mM, with a low detection limit of 20 nM and a high sensitivity threshold of 226.4 μA·cm-2·μM-1. This microfluidic sensor shows a strong response to H2O2, suggesting potential applications in monitoring H2O2 directly secreted from living cells. This sensor chip provides a promising platform for applications in the field of diagnostics and sensing.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department
of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Abdollah Salimi
- Department
of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
- Department
of Chemistry, University of Western Ontario, 1151 Richmond St., N6A 5B7 London, Ontario, Canada
- Research
Center for Nanotechnology, University of
Kurdistan, 66177-15175 Sanandaj, Iran
| | - Tsun-Kong Sham
- Department
of Chemistry, University of Western Ontario, 1151 Richmond St., N6A 5B7 London, Ontario, Canada
| | - Paul Bazylewski
- Department
of Physics and Astronomy, University of
Western Ontario, 1151
Richmond St., N6A 3K7 London, Canada
| | - Giovanni Fanchini
- Department
of Physics and Astronomy, University of
Western Ontario, 1151
Richmond St., N6A 3K7 London, Canada
| |
Collapse
|
21
|
Kaushal S, Kaur M, Kaur N, Kumari V, Singh PP. Heteroatom-doped graphene as sensing materials: a mini review. RSC Adv 2020; 10:28608-28629. [PMID: 35520086 PMCID: PMC9055927 DOI: 10.1039/d0ra04432f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets. Graphene and its derivatives like graphene oxide and reduced graphene oxide have emerged as significant nanomaterials in the area of sensors. Furthermore, doping of graphene and its derivatives with heteroatoms (B, N, P, S, I, Br, Cl and F) alters their electronic and chemical properties which are best suited for the construction of economical sensors of practical utility. This review recapitulates the developments in graphene materials as emerging electrochemical, ultrasensitive explosive, gas, glucose and biological sensors for various molecules with greater sensitivity, selectivity and a low limit of detection. Apart from the most important turn of events, the properties and incipient utilization of the ever evolving family of heteroatom-doped graphene are also discussed. This review article encompasses a wide range of heteroatom-doped graphene materials as sensors for the detection of NH3, NO2, H2O2, heavy metal ions, dopamine, bleomycinsulphate, acetaminophen, caffeic acid, chloramphenicol and trinitrotoluene. In addition, heteroatom-doped graphene materials were also explored for sensitivity and selectivity with respect to interfering analytes present in the system. Finally, the review article concludes with future perspectives for the advancement of heteroatom-doped graphene materials. Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets.![]()
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Manpreet Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Navdeep Kaur
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Vanita Kumari
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| | - Prit Pal Singh
- Department of Chemistry
- Sri Guru Granth Sahib World University
- India
| |
Collapse
|
22
|
Chauhan M, Jha PK, Bangwal AS, Jha PA, Singh P. Microstructural dependent oxygen reduction reaction in a Ruddlesden–Popper perovskite (SmSr)NiO4−δ. Phys Chem Chem Phys 2020; 22:12294-12300. [DOI: 10.1039/d0cp00433b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alteration in conduction pathways through Microstructural difference:Microstructural designing for Ruddlesen–Popper structured layered perovskite, (SmSr)NiO4−δ.
Collapse
Affiliation(s)
- Manisha Chauhan
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University) Varanasi
- Varansi-221005
- India
| | - Pardeep K. Jha
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University) Varanasi
- Varansi-221005
- India
| | - Ajay S. Bangwal
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University) Varanasi
- Varansi-221005
- India
| | - Priyanka A. Jha
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University) Varanasi
- Varansi-221005
- India
| | - Prabhakar Singh
- Department of Physics
- Indian Institute of Technology (Banaras Hindu University) Varanasi
- Varansi-221005
- India
| |
Collapse
|
23
|
Zhang Y, Duan Y, Shao Z, Chen C, Yang M, Lu G, Xu W, Liao X. Amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with a nanocomposite prepared from ferumoxytol and reduced graphene oxide decorated with platinum nanoparticles. Mikrochim Acta 2019; 186:386. [PMID: 31144114 DOI: 10.1007/s00604-019-3502-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/12/2019] [Indexed: 01/19/2023]
Abstract
A high-performance electrochemical H2O2 sensor was prepared by constructing multiple interfaces using platinum nanoparticles (Pt NPs), ferumoxytol (Fer) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). The morphology of Fer/rGO and Fer/rGO-Pt was characterized by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry and chronoamperometry were adopted to characterize the electrochemical properties of the sensor. Because of the synergistic catalytic effect of the compositions (rGO, Fer and Pt NPs) on the multiple interfaces, the sensor exhibits particularly high electrocatalytic activity toward the reduction of H2O2 with a low detection limit (~0.38 μM), a linear range (0.0004-0.01, 0.0075-4.3 and 4.9-10.8 mM), and a high sensitivity (340 μA mM-1 cm-2, n = 4) operated at a typical working voltage of +0.1 V (vs. Ag/AgCl). The electrode is selective and long-term stable. It was successfully applied to the determination of H2O2 in (spiked) milk samples. Graphical abstract Schematic presentation of an electrochemical H2O2 sensor using platinum nanoparticles (Pt NPs), ferumoxytol (Fer) and reduced graphene oxide (rGO) nanocomposites modified glassy carbon electrode (GCE). The sensor was applied to the determination of H2O2 in (spiked) milk samples.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Yulin Duan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Zeyu Shao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Chen Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Mei Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Guodong Lu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
24
|
Hasan M, Meiou W, Yulian L, Ullah S, Ta HQ, Zhao L, Mendes RG, Malik ZP, Ahmad N, Liu Z, Rümmeli MH. Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv 2019; 9:13527-13532. [PMID: 35519551 PMCID: PMC9063914 DOI: 10.1039/c9ra01152h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C–Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments. In this study we present the first direct synthesis of large area, single layer, crystalline graphene with covalently doped bromine.![]()
Collapse
|
25
|
Fu Y, Dai J, Ge Y, Zhang Y, Ke H, Zhang W. A Novel Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on a Metal-Organic Framework/Carbon Nanofiber Composite. Molecules 2018; 23:molecules23102552. [PMID: 30301225 PMCID: PMC6222608 DOI: 10.3390/molecules23102552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 12/03/2022] Open
Abstract
A co-based porous metal-organic framework (MOF) of zeolitic imidazolate framework-67 (ZIF-67) and carbon nanofibers (CNFs) was utilized to prepare a ZIF-67/CNFs composite via a one-pot synthesis method. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were employed to investigate the morphology, structure, and composition of the resulting composite. A novel high-performance non-enzymatic electrochemical sensor was constructed based on the ZIF-67/CNFs composite. The ZIF-67/CNFs based sensor exhibited enhanced electrocatalytic activity towards H2O2 compared to a pure ZIF-67-based sensor, due to the synergistic effects of ZIF-67 and CNFs. Meanwhile, chronoamperometry was utilized to explore the detection performance of the sensor. Results showed the sensor displayed high-efficiency electrocatalysis towards H2O2 with a detection limit of 0.62 μM (S/N = 3), a sensitivity of 323 µA mM−1 cm−2, a linear range from 0.0025 to 0.19 mM, as well as satisfactory selectivity and long-term stability. Furthermore, the sensor demonstrated its application potential in the detection of H2O2 in food.
Collapse
Affiliation(s)
- Yijun Fu
- College of Textile and Clothing, Nantong University, Nantong 226019, China.
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong 226019, China.
| | - Jiamu Dai
- College of Textile and Clothing, Nantong University, Nantong 226019, China.
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong 226019, China.
| | - Yan Ge
- College of Textile and Clothing, Nantong University, Nantong 226019, China.
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong 226019, China.
| | - Yu Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China.
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong 226019, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Wei Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China.
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong 226019, China.
| |
Collapse
|
26
|
Green Preparation of Ag-Au Bimetallic Nanoparticles Supported on Graphene with Alginate for Non-Enzymatic Hydrogen Peroxide Detection. NANOMATERIALS 2018; 8:nano8070507. [PMID: 29986528 PMCID: PMC6071074 DOI: 10.3390/nano8070507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
Abstract
In this work, a facile, environmentally friendly method was demonstrated for the synthesis of Ag-Au bimetallic nanoparticles (Ag-AuNPs) supported on reduced graphene oxide (RGO) with alginate as reductant and stabilizer. The prepared Ag-AuNPs/RGO was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that uniform, spherical Ag-AuNPs was evenly dispersed on graphene surface and the average particle size is about 15 nm. Further, a non-enzymatic sensor was subsequently constructed through the modified electrode with the synthesized Ag-AuNPs/RGO. The sensor showed excellent performance toward H2O2 with a sensitivity of 112.05 μA·cm−2·mM−1, a linear range of 0.1–10 mM, and a low detection limit of 0.57 μM (S/N = 3). Additionally, the sensor displayed high sensitivity, selectivity, and stability for the detection of H2O2. The results demonstrated that Ag-AuNPs/RGO has potential applications as sensing material for quantitative determination of H2O2.
Collapse
|
27
|
A human whole blood chemically modified electrode for the hydrogen peroxide reduction and sensing: Real-time interaction studies of hemoglobin in the red blood cell with hydrogen peroxide. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|