1
|
Muralee Gopi CVV, Kulurumotlakatla DK, Raghavendra KVG, Suneetha M, Ramesh R. Hierarchical NiCo 2O 4@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors. RSC Adv 2024; 14:40087-40097. [PMID: 39717815 PMCID: PMC11664368 DOI: 10.1039/d4ra07808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Hierarchical binder-free NiCo2O4@CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCo2O4 nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.38 m2 g-1) compared to NiCo2O4 (52.16 m2 g-1), with a predominant pore size of 3-6 nm. This synergistic combination enhanced the electrode's electrochemical properties. The NiCo2O4@CuS electrode delivered an impressive specific capacitance of 141.13 mA h g-1 at 1 A g-1, surpassing the performance of the bare NiCo2O4 electrode. The composite electrode also exhibited excellent rate capability and cycling stability, retaining 87.49% of its initial capacity at high current densities and 88.62% after 3000 cycles. A hybrid supercapacitor (HSC) device assembled using NiCo2O4@CuS and G-ink electrodes attained a peak energy density of 28.85 W h kg-1 at a power density of 238.2 W kg-1, outperforming many reported HSCs. Additionally, the HSC device demonstrated exceptional cycling stability, retaining 87.59% of its initial capacitance after 4000 cycles. The superior performance of the NiCo2O4@CuS composite electrode is attributed to the synergistic combination of NiCo2O4 and CuS, which promotes interfacial electron separation and facilitates rapid electron transfer.
Collapse
Affiliation(s)
- Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah Sharjah P. O. Box 27272 United Arab Emirates
| | - Dasha Kumar Kulurumotlakatla
- Graduate School of Convergence Science, Pusan National University San 30 Jangjeon-dong, Geumjeong-gu Busan 609-735 Republic of Korea
| | - K V G Raghavendra
- Department of Electrical Engineering, Pusan National University Busan Republic of South Korea
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P. O. Box 1888 Adama Ethiopia
| |
Collapse
|
2
|
Mahani R, Helmy AK, Fathi AM. Electrical, optical, and electrochemical performances of phosphate-glasses-doped with ZnO and CuO and their composite with polyaniline. Sci Rep 2024; 14:1169. [PMID: 38216612 PMCID: PMC10786889 DOI: 10.1038/s41598-023-51065-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024] Open
Abstract
Phosphate-based glasses (PBG) with appropriate doping agents have been used as solid electrolytes in solid-state ionic devices. Therefore, more light was shed on the electrical, optical, and electrochemical behavior of the phosphate-based glasses (PBG), containing ZnO or CuO in the absence and existence of conductive polyaniline (PANI), since no publications are available concerning this work. The glass samples were prepared by the rapid quenching method, then mixing phosphate glass and polyaniline (PANI) with metal oxide (ZnO, CuO). They were characterized by different techniques; diffuse reflectance spectrophotometer (DRS), broadband dielectric spectrometer (BDS), cyclic voltammetry (CV), and charge-discharge techniques. In the DRS study, the direct and indirect band gap were calculated from Tauc's relationship where CuO-doped glasses have higher values than ZnO-doped glasses. In the BDS study, the permittivity of all glass compositions decreased while AC conductivity increased with increasing frequency. AC conductivity of PBG doped with metal oxides and mixed with PANI exhibited semiconducting features (6.8 × 10-4 S/cm). Further, these composites exhibited lower loss tangent (0.11), and giant permittivity (186,000) compared to the pure PBG. Also, the electrochemical study exhibited that the composite with 7% CuO content has the highest specific capacitance value (82.3 F/g at 1.0 A/g) which increased to about 113% of its first cycle and then decreased to about 55% after 2500 cycles and finally increased again to 77% after 4500 cycles, indicating its good stability. The combination of optical, electrical, and electrochemical features of these composites suggests their use for energy generation and storage devices.
Collapse
Affiliation(s)
- Ragab Mahani
- Microwave Physics and Dielectrics Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Giza, Egypt
| | - A Kh Helmy
- Glass Research Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Giza, Egypt
| | - A M Fathi
- Physical Chemistry Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Giza, Egypt.
| |
Collapse
|
3
|
Mo X, Xu G, Kang X, Yin H, Cui X, Zhao Y, Zhang J, Tang J, Wang F. A Facile Microwave Hydrothermal Synthesis of ZnFe 2O 4/rGO Nanocomposites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061034. [PMID: 36985927 PMCID: PMC10053183 DOI: 10.3390/nano13061034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/01/2023]
Abstract
As a typical binary transition metal oxide, ZnFe2O4 has attracted considerable attention for supercapacitor electrodes due to its high theoretical specific capacitance. However, the reported synthesis processes of ZnFe2O4 are complicated and ZnFe2O4 nanoparticles are easily agglomerated, leading to poor cycle life and unfavorable capacity. Herein, a facile microwave hydrothermal process was used to prepare ZnFe2O4/reduced graphene oxide (rGO) nanocomposites in this work. The influence of rGO content on the morphology, structure, and electrochemical performance of ZnFe2O4/rGO nanocomposites was systematically investigated. Due to the uniform distribution of ZnFe2O4 nanoparticles on the rGO surface and the high specific surface area and rich pore structures, the as-prepared ZnFe2O4/rGO electrode with 44.3 wt.% rGO content exhibits a high specific capacitance of 628 F g-1 and long cycle life of 89% retention over 2500 cycles at 1 A g-1. This work provides a new process for synthesizing binary transition metal oxide and developing a new strategy for realizing high-performance composites for supercapacitor electrodes.
Collapse
Affiliation(s)
- Xiaoyao Mo
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Guangxu Xu
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiaochan Kang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Hang Yin
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiaochen Cui
- College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yuling Zhao
- State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jianmin Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jie Tang
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Fengyun Wang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
4
|
Elsaid MA, Hassan AA, Sayed AZ, Ashmawy AM, Waheed AF, Mohamed SG. Fabrication of novel coral reef-like nanostructured ZnFeNiCo2S4 on Ni foam as an electrode material for battery-type supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Aman S, Ansari MZ, Abdullah M, Abid AG, Bashir I, Un Nisa M, Manzoor S, Shawky AM, Znaidia S, Tahir Farid HM. Facile synthesis of CoCo2O4/rGO spinel nanoarray as a robust electrode for energy storage devices. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Shi C, Kang N, Wang C, Yu K, Lv J, Wang C, Zhou B. An inorganic-organic hybrid nanomaterial with a core-shell structure constructed by using Mn-BTC and Ag 5[BW 12O 40] for supercapacitors and photocatalytic dye degradation. NANOSCALE ADVANCES 2022; 4:4358-4365. [PMID: 36321138 PMCID: PMC9552923 DOI: 10.1039/d2na00510g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 05/16/2023]
Abstract
Creating inorganic-organic hybrids with polyoxometalates (POMs) and metal-organic frameworks (MOFs) as energy storage and dye-degradation materials remains challenging. Here, a new hybrid nanomaterial Mn-BTC@Ag5[BW12O40] is synthesized by using Ag5[BW12O40] and Mn3(BTC)2(H2O)6 (Mn-BTC, BTC = 1,3,5-benzenetricarboxylic acid) through a plain grinding method. The structure and morphology characterization by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) shows that the synthetic products have core-shell construction. Due to its unique structure wherein the core is Mn-BTC and the shell is Ag5[BW12O40], it exhibits excellent capacitance performance. In a three-electrode system where nickel foam is a collector, at a current density of 1 A g-1, its specific capacitance is 198.09 F g-1; after 5000 cycles, the capacitance retention rate is 94.4%. When the power density is 503.1 W kg-1, the symmetrical supercapacitor reveals a high energy density which is 10.9 W h kg-1. At the same time, the capacitance retention is 92.9% after 5000 cycles which showed good cycle stability. The photocatalytic degradation efficiencies of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) dyes exceed 90% after 140 min, and the degradation results remained unchanged after five photocatalytic cycles. The photocatalytic degradation mechanism shows that ˙OH has a major effect. The results show that this research provides a fresh idea for the development of energy storage and dye photocatalytic degradation materials.
Collapse
Affiliation(s)
- Caihong Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Ning Kang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| |
Collapse
|
7
|
Abbas Q, Mateen A, Khan AJ, Eldesoky GE, Idrees A, Ahmad A, Eldin ET, Das HT, Sajjad M, Javed MS. Binder-Free Zinc-Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3154. [PMID: 36144942 PMCID: PMC9504540 DOI: 10.3390/nano12183154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less explored for SC applications. Herein, we proposed a high-performance binder-free anode material composed of two-dimensional ZnFe2O4 nanoflakes supported on carbon cloth (ZFO-NF@CC). The electrochemical performance of ZFO-NF@CC as an anode material for supercapacitor application was examined in a KOH solution via a three-electrode configuration. The ZFO-NF@CC electrode demonstrated a specific capacitance of 509 F g-1 at 1.5 A g-1 and was retained 94.2% after 10,000 GCD cycles. The ZFO-NF@CC electrode showed exceptional charge storage properties by attaining high pseudocapacitive-type storage. Furthermore, an asymmetric SC device was fabricated using ZFO-NF@CC as an anode and activated carbon on CC (AC@CC) as a cathode with a KOH-based aqueous electrolyte (ZFO-NF@CC||AC@CC). The ZFO-NF@CC||AC@CC yielded a high specific capacitance of 122.2 F g-1 at a current density of 2 A g-1, a high energy density of 55.044 Wh kg-1 at a power density of 1801.44 W kg-1, with a remarkable retention rate of 96.5% even after 4000 cycles was attained. Thus, our results showed that the enhanced electrochemical performance of ZFO-NF@CC used as an anode in high-performance SC applications can open new research directions for replacing carbon-based anode materials.
Collapse
Affiliation(s)
- Qasim Abbas
- Department of Intelligent Manufacturing, Yibin University, Yibin 644000, China
| | - Abdul Mateen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Department of Physics, Beijing Normal University, Beijing 100084, China
| | - Abdul Jabbar Khan
- College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, E14014 Cordoba, Spain
| | - Elsayed Tag Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Himadri Tanaya Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Muhammad Sajjad
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Gao X, Bi J, Gao J, Meng L, Xie L, Liu C. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Liu Q, Wang Z, Liu J, Lu Z, Xuan D, Luo F, Li S, Ye Y, Wang D, Wang D, Zheng Z. One‐Dimensional Spinel Transition Bimetallic Oxide Composite Carbon Nanofibers (CoFe
2
O
4
@CNFs) for Asymmetric Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202100998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qian Liu
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Zhuang Wang
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Jie Liu
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Zhe Lu
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Dipan Xuan
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Fenqiang Luo
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Shuirong Li
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Yueyuan Ye
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Duo Wang
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Dechao Wang
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
| | - Zhifeng Zheng
- Fujian Provincial Industry Technologies Development Base for New Energy Fujian Provincial Engineering and Research Center of Clean and High-Valued Technologies for Biomass Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass College of Energy Xiamen University Xiamen 361102 P.R. China
- China Fujian Innovation Laboratory of Energy Materials Science and Technology Tan Kah Kee Innovation Laboratory Xiamen University Xiamen 361102 China
| |
Collapse
|
10
|
Wu H, Wu Q, Zhang J, Gu Q, Guo W, Rong S, Zhang Y, Wei X, Wei L, Sun M, Li A, Jing X. Highly efficient removal of Sb(V) from water by franklinite-containing nano-FeZn composites. Sci Rep 2021; 11:17113. [PMID: 34429442 PMCID: PMC8384885 DOI: 10.1038/s41598-021-95520-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The existence of toxic and carcinogenic pentavalent antimony in water is a great safety problem. In order to remove antimony(V) from water, the purpose of this study was to prepare a novel graphene nano iron zinc (rGO/NZV-FeZn) photocatalyst via hydrothermal method followed by ultrasonication. Herein, weakly magnetic nano-Fe–Zn materials (NZV-FeZn, GACSP/NZV-FeZn, and rGO/NZV-FeZn) capable of rapid and efficient Sb(V) adsorption from water were prepared and characterised. In particular, rGO/NZV-FeZn was shown to comprise franklinite, Fe0, and graphite. Adsorption data were fitted by a quasi-second-order kinetic equation and Langmuir model, revealing that among these materials, NZV-FeZn exhibited the best Sb removal performance (543.9 mgSb gNZV-FeZn−1, R2 = 0.951). In a practical decontamination test, Sb removal efficiency of 99.38% was obtained for a reaction column filled with 3.5 g of rGO/NZV-FeZn. Column regenerability was tested at an initial concentration of 0.8111 mgSb L−1, and the treated water obtained after five consecutive runs complied with the GB5749-2006 requirement for Sb. rGO/NZV-FeZn was suggested to remove Sb(V) through adsorption-photocatalytic reduction and flocculation sedimentation mechanisms and, in view of its high cost performance, stability, and upscalable synthesis, was concluded to hold great promise for source water and wastewater treatment.
Collapse
Affiliation(s)
- Huiqing Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Shun Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yongxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Lei Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Aimei Li
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing City, 526070, Guangdong Province, People's Republic of China
| | - Xinhui Jing
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing City, 526070, Guangdong Province, People's Republic of China
| |
Collapse
|
11
|
Facile Synthesis of Coral Reef-Like ZnO/CoS2 Nanostructure on Nickel Foam as an Advanced Electrode Material for High-Performance Supercapacitors. ENERGIES 2021. [DOI: 10.3390/en14164925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanocomposite electrodes receive much attention because of their excellent energy storage nature. Electrodes for supercapacitors have come a major source of interest. In this pursuit, the current work elucidates binder-free coral reefs resembling ZnO/CoS2 nanoarchitectures synthesized on the surface of Ni foams employing the cost-effective hydrothermal route. The Zno/CoS2 nanocomposite demonstrated excellent battery-type behavior, which can be employed for supercapcitor application. Various analyses were carried out in the current study, such as X-ray diffraction and high-resolution scanning electron microscopy, which allowed defining the crystalline nature and morphology of surface with ZnO/CoS2 nanoarchitectures. Electrochemical measures such as cyclic voltammetry, galvanostatic charge discharge, and potentiostatic impedance spectroscopy confirmed the battery-type behavior of the material. The synthesized precursors of binder-free ZnO/CoS2 nanostructures depicted an excellent specific capacity of 400.25 C·g−1 at 1 A·g−1, with a predominant cycling capacity of 88. 2% and retention holding of 68% at 10 A·g−1 and 2 A·g−1, even after 4000 cycles, representing an improvement compared to the pristine ZnO and CoS2 electroactive materials. Therefore, the electrochemical and morphological analyses suggest the excellent behavior of the ZnO/CoS2 nanoarchitectures, making them promising for supercapacitors.
Collapse
|
12
|
Askari MB, Salarizadeh P, Di Bartolomeo A, Şen F. Enhanced electrochemical performance of MnNi 2O 4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst. NANOTECHNOLOGY 2021; 32:325707. [PMID: 33946059 DOI: 10.1088/1361-6528/abfded] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Binary transition metal oxides with encouraging electrocatalyst properties have been suggested as electrode materials for supercapacitors and methanol oxidation. Hence, in this work, a binary mixed metal oxide based on nickel and manganese (MnNi2O4) and its hybrid with reduced graphene oxide were synthesized by a one-step hydrothermal method. After physical and morphological characterization, the potential of these nanostructures was investigated for use as supercapacitor electrodes and methanol electro-oxidation. The results of the electrochemical analysis showed a substantial effect of adding rGO to the MnNi2O4. The MnNi2O4/rGO hybrid electrode supercapacitor exhibited good stability of 93% after 2000 consecutive CV cycles and a specific capacitance of 575 F g-1at the current density of 0.5 A g-1. Furthermore, the application of this hybrid nanomaterial in the methanol electro-oxidation reaction (MOR) indicated its appropriate electrochemical efficiency and stability in methanol oxidation. Our results show that MnNi2O4/rGO can be considered as a promising electrode material for energy applications.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 1599637111, Iran
| | - Antonio Di Bartolomeo
- Department of Physics 'E. R. Caianiello' and 'Interdepartmental center NANOMATES', University of Salerno, I-84084, Fisciano, Salerno, Italy
| | - Fatih Şen
- Sen Research Group, Department of Biochemistry, University of Dumlupınar, 43000 Kütahya, Turkey
| |
Collapse
|
13
|
Balaji TE, Tanaya Das H, Maiyalagan T. Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications. ChemElectroChem 2021. [DOI: 10.1002/celc.202100098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- T. Elango Balaji
- Electrochemical Energy Laboratory Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - Himadri Tanaya Das
- Department of Materials and Mineral Resources Engineering, NTUT No. 1, Sec. 3, Chung-Hsiao East Rd. Taipei 106 Taiwan, ROC
- Centre of Excellence for Advanced Materials and Applications Utkal university Vanivihar Bhubaneswar 751004 Odisha India
| | - T. Maiyalagan
- Electrochemical Energy Laboratory Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| |
Collapse
|
14
|
Li P, Wang J, Li L, Song S, Yuan X, Jiao W, Hao Z, Li X. Design of a ZnMoO 4 porous nanosheet with oxygen vacancies as a better performance electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01219c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnMoO4 porous nanosheet with oxygen vacancies (ZnMoO4-OV) was synthesized which delivers a preferable energy storage performance.
Collapse
Affiliation(s)
- Pengxi Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Chemistry and Chemical Engineering
- Southeast University
| | - Jiepeng Wang
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Materials Science and Engineering
- Shanghai University
| | - Liming Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Shili Song
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xianming Yuan
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Wenqiang Jiao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Zhen Hao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xiaoli Li
- School of Materials Science and Engineering
- Hebei University of Engineering
- Handan
- China
| |
Collapse
|
15
|
Hou JF, Gao JF, Kong LB. Boosting the performance of cobalt molybdate nanorods by introducing nanoflake-like cobalt boride to form a heterostructure for aqueous hybrid supercapacitors. J Colloid Interface Sci 2020; 565:388-399. [PMID: 31981848 DOI: 10.1016/j.jcis.2020.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/24/2022]
Abstract
Binary transition metal oxides have received extensive attention because of their multiple oxidation states. However, due to the inherent vices of poor electronic/ionic conductivities, their practical performance as supercapacitor material is limited. Herein, a cobalt molybdate/cobalt boride (CoMoO4/Co-B) composite is constructed with cobalt boride nanoflake-like as a conductive additive in CoMoO4 nanorods using a facile water bath deposition process and liquid-phase reduction method. The effects of CoMoO4/Co-B mass ratios on its electrochemical performance are investigated. Remarkably, the CoMoO4/Co-B composite obtained at a mass ratio of 2:1 shows highly enhanced electrochemical performance relative to those obtained at other ratios and exhibits an optimum specific capacity of 436 F g-1 at 0.5 A g-1. This kind of composite could also display great rate capacity (294 F g-1 at 10 A g-1) and outstanding long cycle performance (90.5% capacitance retention over 10 000 cycles at 5 A g-1). Also, the asymmetric supercapacitor device is prepared by using CoMoO4/Co-B composite as the anode with the active carbon as the cathode. Such a device demonstrates an outstanding energy density of 23.18 Wh kg-1 and superior long-term stability with 100% initial specific capacity retained after 10,000 cycles. The superior electrochemical properties show that the CoMoO4/Co-B electrode material has tremendous potential in energy storage equipment applications.
Collapse
Affiliation(s)
- Jing-Feng Hou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China
| | - Jian-Fei Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China
| | - Ling-Bin Kong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P.R. China; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P.R. China.
| |
Collapse
|
16
|
Charge storage properties of mixed ternary transition metal ferrites MZnFe oxides (M = Al, Mg, Cu, Fe, Ni) prepared by hydrothermal method. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1355-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. NANOSCALE ADVANCES 2019; 1:2817-2827. [PMID: 36133592 PMCID: PMC9416938 DOI: 10.1039/c9na00345b] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/27/2019] [Indexed: 05/19/2023]
Abstract
Supercapacitors are highly attractive for a large number of emerging mobile devices for addressing energy storage and harvesting issues. This mini review presents a summary of recent developments in supercapacitor research and technology, including all kinds of supercapacitor design techniques using various electrode materials and production methods. It also covers the current progress achieved in novel materials for supercapacitor electrodes. The latest produced EDLC/hybrid/pseudo-supercapacitors have also been described. In particular, metal oxides, specifically ZnO, used as electrode materials are in focus here. Eventually, future developments, prospects, and challenges in supercapacitor research have been elaborated on.
Collapse
Affiliation(s)
- Sumaiyah Najib
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
| | - Emre Erdem
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University Tuzla 34956 Istanbul Turkey
| |
Collapse
|
18
|
Li P, Ruan C, Xu J, Xie Y. A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO 4/CoO nanohybrid on nickel foam. NANOSCALE 2019; 11:13639-13649. [PMID: 31290908 DOI: 10.1039/c9nr03784e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A two-step hydrothermal route was employed to fabricate a ZnMoO4/CoO nanohybrid supported on Ni foam. The ZnMoO4/CoO nanohybrid shows a three-dimensional criss-crossed structure. The specific surface area is enhanced from 45 m2 g-1 of ZnMoO4 to 67 m2 g-1 of the ZnMoO4/CoO nanohybrid. Furthermore, the existence of electroactive CoO is in favor of reducing the charge transport resistance. The ZnMoO4/CoO nanohybrid electrode possesses a high capacitance of 4.47 F cm-2 at 2 mA cm-2, which is much higher than those of ZnMoO4 (1.07 F cm-2) and CoO (2.47 F cm-2). The ZnMoO4/CoO nanohybrid electrode also exhibits an ultrahigh cycling stability with 100.5% capacitance retention after 5000 cycles at 20 mA cm-2. In addition, an asymmetric all-solid-state supercapacitor was assembled using the ZnMoO4/CoO nanohybrid as the positive electrode and exfoliated graphite carbon paper as the negative electrode. The asymmetric supercapacitor exhibits a superior energy density of 58.6 W h kg-1 at a power density of 800 W kg-1 and a considerable cycling stability with 81.8% capacitance retention after 5000 cycles at 5 A g-1. The ZnMoO4/CoO nanohybrid demonstrates its tremendous advantages and possibilities as a positive electrode material in energy storage applications. Moreover, for a better understanding of the electrochemical behavior, a combined study of experimental measurements and density functional theory calculations is also applied to illustrate the high-performance of the ZnMoO4/CoO nanohybrid.
Collapse
Affiliation(s)
- Pengxi Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chaohui Ruan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
19
|
Sun J, Yang S, Ai J, Yang C, Jia Q, Cao B. Hierarchical Porous Activated Carbon Obtained by a Novel Heating‐Rate‐Induced Method for Lithium‐Ion Capacitor. ChemistrySelect 2019. [DOI: 10.1002/slct.201900366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Sun
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Shuhua Yang
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Jingui Ai
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
| | - Chao Yang
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| | - Qi Jia
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| | - Bingqiang Cao
- Materials Center for Energy and Photoelectrochemical ConversionSchool of Material Science and EngineeringUniversity of Jinan Jinan 250022 China
- School of Physics and Physical EngineeringQufu Normal University Qufu 273165 Shandong China
| |
Collapse
|
20
|
Gao YP, Zhai ZB, Wang QQ, Hou ZQ, Huang KJ. Cycling profile of layered MgAl2O4/reduced graphene oxide composite for asymmetrical supercapacitor. J Colloid Interface Sci 2019; 539:38-44. [DOI: 10.1016/j.jcis.2018.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
|
21
|
Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Mohammadi Zardkhoshoui A, Hosseiny Davarani SS, Hashemi M. Fabrication of cobalt gallium oxide with zinc iron oxide on nickel foam for a high-performance asymmetric supercapacitor. NEW J CHEM 2019. [DOI: 10.1039/c8nj05854g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A straightforward method is proposed for the synthesis of CoGa2O4 on nickel foam with excellent durability for practical applications in asymmetric supercapacitors.
Collapse
Affiliation(s)
| | | | - Masumeh Hashemi
- Chemistry & Materials Research Center
- Niroo research institute
- Tehran
- Iran
| |
Collapse
|
23
|
Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.142] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Preparation of defective ZnFe2O4/graphene composites and their charge storage properties. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|