1
|
Li S, Song Q, Fang C, Lu Y, Ding X, Liu T, Zhang J, Xu FJ. High-Performance Flexible and Symmetric Supercapacitors Based on Micro-Flower-Like MnSe@Ti 3C 2T x Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409130. [PMID: 39580692 DOI: 10.1002/smll.202409130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Flexible supercapacitors, renowned for their exceptional power density and cycling stability, are a focus in the field of energy storage. Ti3C2Tx MXene is a promising electrode material for supercapacitors owing to its excellent metallic conductivity. However, its stacking layered structure limits device performance on specific capacitance, operating voltage, and energy density. Herein, a MnSe@Ti3C2Tx heterostructure is developed to enhance the electrochemical performance of Ti3C2Tx-based electrode materials. With the solvothermal synthesis method, MnSe nanosheets are in situ grown on Ti3C2Tx surface to form micro-flower-like MnSe@Ti3C2Tx heterostructures by adjusting the ratio of ethanolamine solvent and the amount of Ti3C2Tx. The specific capacitance of the optimized heterostructure (E3/MnSe@Ti3C2Tx-45) is as high as 721.4 F g-1 at 1 A g-1, approximately ten times higher than that of pure Ti3C2Tx. The MnSe@Ti3C2Tx flexible symmetric supercapacitor (MT-FSC) based on E3/MnSe@Ti3C2Tx-45 exhibits a wide working voltage window of 1.2 V and a large energy density of 28.68 Wh kg-1 at 308.23 W kg-1. The capacitance retention rate keeps 90.77% after 4000 charge-discharge cycles. Furthermore, MT-FSC can power LEDs even under large-angle (90°) bending. This heterostructure electrode material not only improves the electrochemical performance of Ti3C2Tx-based flexible supercapacitors but also offers a robust energy supply for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Siyan Li
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Song
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunlei Fang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yong Lu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ting Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jicai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Rashmi, Sharma SK, Chaudhary V, Pala RGS, Sivakumar S. Rapid nucleation and optimal surface-ligand interaction stabilize wurtzite MnSe. Phys Chem Chem Phys 2024; 26:20837-20851. [PMID: 39044559 DOI: 10.1039/d4cp02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Non-native structures (NNS) differ in discrete translational symmetry from the bulk ground state native structure (NS). To explore the extent of deconvolution of various factors relevant to the stabilization of the wurtzite/NNS of MnSe via a heat-up method, we performed experiments using various ligands (oleic acid, oleylamine, octadecylamine, stearic acid, and octadecene), solvents (tetraethylene glycol and octadecene), and precursor salts (manganese chloride and manganese acetate). Experiments suggest that oleic acid in the presence of tetraethylene glycol and oleylamine in the presence of octadecene stabilize wurtzite/NNS. Further, density functional theory (DFT) computations explore the interaction between the functional groups in ligands and the most exposed surfaces of wurtzite/NNS and rocksalt/NS polymorphs. Computations suggest that the interactions between relevant surface facets with carboxylic acid and the double bond functional groups suppress the phase transformation from NNS to NS. In addition, the ionizability of the precursor salt also determines the rate of formation of the metal-ligand complex and the rate of nucleation. Consequently, the formation rate of the Mn-ligand complex is expected to be greater in the case of chloride salt than acetate salt because the chloride salt has higher ionizability in ethylene glycol. From the above, we conclude that the kinetics of the wurtzite/NNS to rocksalt/NS phase transformation depends mainly on two factors: (1) nucleation/growth kinetics which is controlled by the ionizability of the precursor salt, solvent, and stability of the metal-ligand complex, and (2) the activation energy barrier of the NNS to NS conversion which is controlled by surface energy minimization with the ligand.
Collapse
Affiliation(s)
- Rashmi
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Shilendra Kumar Sharma
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Vivek Chaudhary
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Raj Ganesh S Pala
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Sri Sivakumar
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Nanosciences, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Gangwal School and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
3
|
Bongu C, Arsalan M, Alsharaeh EH. 2D Hybrid Nanocomposite Materials (h-BN/G/MoS 2) as a High-Performance Supercapacitor Electrode. ACS OMEGA 2024; 9:15294-15303. [PMID: 38585061 PMCID: PMC10993247 DOI: 10.1021/acsomega.3c09877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The nanocomposites of hexagonal boron nitride, molybdenum disulfide, and graphene (h-BN/G/MoS2) are promising energy storage materials. The originality of the current work is the first-ever synthesis of 2D-layered ternary nanocomposites of boron nitrate, graphene, and molybdenum disulfide (h-BN/G/MoS2) using ball milling and the sonication method and the investigation of their applicability for supercapacitor applications. The morphological investigation confirms the well-dispersed composite material production, and the ternary composite appears to be made of h-BN and MoS2 wrapping graphene. The electrochemical characterization of the prepared samples is evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. With a high specific capacitance of 392 F g-1 at a current density of 1 A g-1 and an outstanding cycling stability with around 96.4% capacitance retention after 10,000 cycles, the ideal 5% BN_G@MoS2_90@10 composite demonstrates exceptional capabilities. Furthermore, a symmetric supercapacitor (5% BN_G@MoS2_90@10 composite) exhibits a 94.1% capacitance retention rate even after 10,000 cycles, an energy density of 16.4 W h kg-1, and a power density of 501 W kg-1. The findings show that the preparation procedure is safe for the environment, manageable, and suitable for mass production, which is crucial for advancing the electrode materials used in supercapacitors.
Collapse
Affiliation(s)
- Chandra
Sekhar Bongu
- College
of Science and General Studies, AlFaisal
University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Muhammad Arsalan
- EXPEC
Advanced Research Center, Saudi Aramco, P.O. Box 5000, Dhahran 31311, Saudi Arabia
| | - Edreese H. Alsharaeh
- College
of Science and General Studies, AlFaisal
University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Nokabadi AS, Yazdani A. Magnetic field effects on the crystal structure, morphology, energy gap, and magnetic properties of manganese selenide nanoparticles synthesized by hydrothermal method. NANOSCALE ADVANCES 2023; 5:6170-6176. [PMID: 37941942 PMCID: PMC10628988 DOI: 10.1039/d3na00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
In this study, we synthesized manganese selenide under magnetic fields ranging from 0 to 800 gauss and investigated its optical, electrical, and magnetic properties. In the absence of a magnetic field, we observed the formation of MnSe nanorods. As the field strength increased, impurities arose. In the 250 G range, two rock salt structures emerged, altering the morphology from nanorods to cubes. Beyond 250 G, MnSe2 formed, returning to a nanorod morphology. Also, with the increase of the magnetic field, the energy gap of the synthesized compounds increased. To measure the electrical properties of the samples, the synthesized powders were compressed under the same pressure for a certain period of time, and it was observed that the synthesized samples showed insulating behavior in the presence of a magnetic field. For this reason, we performed current-voltage, resistance-temperature, and current-temperature analyses on the synthesized sample, at a constant voltage of 5 eV in the absence of a magnetic field.
Collapse
Affiliation(s)
- Ali Salmani Nokabadi
- Department of Condensed Matter Physics, Faculty of Basic Sciences, Tarbiat Modares University Tehran Iran
| | - Ahmad Yazdani
- Department of Condensed Matter Physics, Faculty of Basic Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
5
|
Scarpa D, Cirillo C, Ponticorvo E, Cirillo C, Attanasio C, Iuliano M, Sarno M. Iron Selenide Particles for High-Performance Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5309. [PMID: 37570012 PMCID: PMC10419825 DOI: 10.3390/ma16155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, iron (II) selenide (FeSe), which has been widely studied for years to unveil the high-temperature superconductivity in iron-based superconductors, is drawing increasing attention in the electrical energy storage (EES) field as a supercapacitor electrode because of its many advantages. In this study, very small FeSe particles were synthesized via a simple, low-cost, easily scalable, and reproducible solvothermal method. The FeSe particles were characterized using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS), revealing enhanced electrochemical properties: a high capacitance of 280 F/g at 0.5 A/g, a rather high energy density of 39 Wh/kg and a corresponding power density of 306 W/kg at 0.5 A/g, an extremely high cycling stability (capacitance retention of 92% after 30,000 cycles at 1 A/g), and a rather low equivalent series resistance (RESR) of ~2 Ω.
Collapse
Affiliation(s)
- Davide Scarpa
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Claudia Cirillo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Eleonora Ponticorvo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carla Cirillo
- CNR-SPIN, c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Carmine Attanasio
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Mariagrazia Iuliano
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Sarno
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Abbas Q, Mateen A, Siyal SH, Hassan NU, Alothman AA, Ouladsmane M, Eldin SM, Ansari MZ, Javed MS. In-situ construction of binder-free MnO 2/MnSe heterostructure membrane for high-performance energy storage in pseudocapacitors. CHEMOSPHERE 2023; 313:137421. [PMID: 36455663 DOI: 10.1016/j.chemosphere.2022.137421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Manganese (Mn)-based oxides are considered suitable positive electrode materials for supercapacitors (SCs). However, their cycle stability and specific capacitance are significantly hindered by key restrictions such as structural instability and low conductivity. Herein, we demonstrated a novel nanorod (NR)-shaped heterostructured manganese dioxide/manganese selenide membrane (MnO2/MnSe) on carbon cloth (CC) (denoted as MnO2/MnSe-NR@CC) with a high aspect ratio by a straightforward and facile hydrothermal process. Experiments have demonstrated that doping selenium atoms to oxygen sites reduce electronegativity, increasing the intrinsic electronic conductivity of MnO2, decreasing electrostatic interactions with electrolyte ions, and thus boosting the reaction kinetics. Further, the selenium doping results in an amorphous surface with extensive oxygen defects, which contributed to the emergence of additional charge storage sites with pseudocapacitive characteristics. As expected, novel heterostructured MnO2/MnSe-NR@CC as an electrode for SC exhibits a high capacitance of 740.63 F/g at a current density of 1.5 A/g, with excellent cycling performance (93% capacitance retention after 5000 cycles). The MnO2/MnSe-NR@CC exhibited outstanding charge storage capability, dominating capacitive charge storage (84.6% capacitive at 6 mV/s). To examine the practical applications of MnO2/MnSe-NR@CC-ASC as a positive electrode, MnO2/MnSe-NR@CC//AC device was fabricated. The MnO2/MnSe-NR@CC//AC-ASC device performed exceptionally well, with a maximum capacitance of 166.66 F/g at 2 A/g, with a capacitance retention of 94%, after 500 GCD cycles. Additionally, it delivers an energy density of 75.06 Wh/kg at a power density of 1805.1 W/kg and maintains 55.044 Wh/kg at a maximum power density of 18,159 W/kg. This research sheds fresh information on the anionic doping method and has the potential to be applied to the synthesis of positive electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Qasim Abbas
- Department of Intelligent Manufacturing, Yibin University, Yibin, Sichuan, 644000, PR China
| | - Abdul Mateen
- Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100084, China
| | - Sajid Hussain Siyal
- Metallurgy & Materials Engineering Department, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Najam Ul Hassan
- Department of Physics, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sayed M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Shah MZU, Sajjad M, Shah MS, Rahim M, Rahman SU, Hou H, Khan AU, Shah A. Wet-chemical assisted synthesis of MnSe/ZnO nanostructures as low-resistance robust novel cathode material for advanced hybrid supercapacitors. NEW J CHEM 2023. [DOI: 10.1039/d2nj05682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We proposed a novel MnSe–ZnO-based binary nanocomposite synthesized via a wet-chemical assisted method which deliver high power and energy densities, suppressing previous reports on MnSe and ZnO with decent cycling durability with good rate performance.
Collapse
Affiliation(s)
- Muhammad Zia Ullah Shah
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Sajjad
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Muhammad Sanaullah Shah
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Rahim
- Department of Physics, International Islamic University, H10, Islamabad, Pakistan
| | - Shams ur Rahman
- Department of Physics, COMSATS University Islamabad, Pakistan
| | - Hongying Hou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, 212013, China
| | - A. Shah
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| |
Collapse
|
8
|
Salem Alsaiari N, Ahmad M, Shaheen I, Ali I, Amara U, Mohammed Alzahrani F, Eldin SM, Ul Arifeen W, Jo Ko T, Hussain I. Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Elsaid MA, Hassan AA, Sayed AZ, Ashmawy AM, Waheed AF, Mohamed SG. Fabrication of novel coral reef-like nanostructured ZnFeNiCo2S4 on Ni foam as an electrode material for battery-type supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
One-step solvothermal synthesis of heterostructured nanocomposite Ni0.85Se/MnSe as the high-performance electrode material for supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Arif Dar M, Ahmed Mala N, Govindarajan D, Dar G, Siva C, Rather AAA, Rafi Ahamed S. Toward new energy storage devices: Electrochemical and photovoltaic performance of SnSe/Fe, SnSe/Ni nanospherical composites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Anandhu TP, R. Mohan R, Cherusseri J, R. R, J. Varma S. High areal capacitance and enhanced cycling stability of binder-free, pristine polyaniline supercapacitor using hydroquinone as a redox additive. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mao B, Xu D, Meng T, Cao M. Advances and challenges in metal selenides enabled by nanostructures for electrochemical energy storage applications. NANOSCALE 2022; 14:10690-10716. [PMID: 35861338 DOI: 10.1039/d2nr02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials and their related electrochemical energy storage (EES) devices can provide solutions for improving the performance and development of existing EES systems owing to their high electronic conductivity and ion transport and abundant embeddable sites. Recent progress has demonstrated that metal selenides are attracting increasing attention in the field of EES because of their unique structures, high theoretical capacities, rich element resources, and high conductivity. However, there are still many challenges in their application in EES, and thus the use of nanoscale metal selenide materials in commercial devices is limited. In this review, we summarize recent advances in the nanostructured design of metal selenides (e.g., zero-, one-, two-, and three-dimensional, and self-supported structures) and present their advantages in terms of EES performance. Moreover, some remarks on the potential challenges and research prospects of nanostructured metal selenides in the field of EES are presented.
Collapse
Affiliation(s)
- Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dan Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
14
|
Alimola F, Arsalani N, Ahadzadeh I. Facile fabrication of a new nanocomposite based on cobalt oxide and a new polymer dots derived from polyethylene glycol diacid as a high performance, ultra-stable symmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Arumugasamy SK, Ramakrishnan S, Yoo DJ, Govindaraju S, Yun K. Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. ENVIRONMENTAL RESEARCH 2022; 204:112050. [PMID: 34516981 DOI: 10.1016/j.envres.2021.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The two-dimensional carbonaceous nanocomposites tend to have extreme capacitance and catalysis activity because of their surface tunability of oxygenated moieties aiding in photocatalytic degradation. Herewith, we performed microwave-assisted alkaline treatment of graphene oxide sheets to attain defective sites on the graphitic surface by altering microwave parameters. The synergism of zinc oxide (ZnO) on the graphitic surface impacts electronic transitions paving paths for vacant oxygen sites to promote photocatalytic degradation and catalytic activity. The photocatalytic efficiency of the synthesized material for the degradation of rhodamine B (RhB) because of its susceptibility in industrial effluents, and the degradation rate was estimated to be around 87.5% within a short span of 30 min by utilizing UV irradiation. Concomitantly, the pGO/ZnO coated substrate exhibits a specific capacity of 561.7 mAh/g and incredible coulombic efficiency illustrating pseudocapacitive nature. Furthermore, on subjecting the composite modified electrode to oxygen evolution catalysis due to the vacant sites located at the lattice edges attributing to the d-d coulombic interaction within the local electron clouds possessing a low overpotential of 205 mV with a Tafel slope of 84 mV/dec. This modest approach boosts an eco-friendly composite to develop photocatalytic degradability and bifunctional catalytic activity for futuristic necessity.
Collapse
Affiliation(s)
| | - Shanmugam Ramakrishnan
- Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of life science, R&D Education Center for Whole Life Cycle, R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea; Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
16
|
|
17
|
Hydrothermal synthesis of Cu2Se–CoSe nanograin for electrochemical supercapacitor applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01890-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Samal R, Bhat M, Kapse S, Thapa R, Late DJ, Sekhar Rout C. Enhanced energy storage performance and theoretical studies of 3D cuboidal manganese diselenides embedded with multiwalled carbon nanotubes. J Colloid Interface Sci 2021; 598:500-510. [PMID: 33934015 DOI: 10.1016/j.jcis.2021.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The burst of energy produced from the sustainable energy sources need to be harnessed by energy storage systems. Development of novel and advanced energy storage devices such as supercapacitors discover an enormous future ahead. Recently, hybrid supercapacitors (electric double layer capacitor (EDLC) and pseudocapacitors) trend to be used as energy storage interfaces for their improved efficacy in energy density without altering the power density. In the ongoing workplan, transition metal selenides MnSe2 and its hybrid with multiwalled carbon nanotubes (MWCNTs) are synthesized by a simplistic hydrothermal protocol. Certainly, cubic phases of MnSe2-MWCNT(MS/CNT) manifested superior electrochemical performance in both symmetric and asymmetric full cell configurations in contrast to prestine MnSe2(MS). The asymmetric MS/CNT cell achieved an excellent charge storage capability with an high energy density of 39.45 Wh kg-1 at a power density of 2.25 kW kg-1 maintaining an energy density of 14.5 Wh kg-1 at a high power density of 4.5 kWh kg-1 and also revealed long term stability over 5000 consecutive charge/discharge cycles (capacitance retention of 95.2%). Furthermore, the preferable growth along (200) direction in the presence of MWCNTs favoured in enriching the supercapacitive property of MS. The quantum capacitance of MnSe2surfaces and MS/CNT heterostructure has been estimated using density functional theory simulation to confirm the experimental outcomes. Theoretical investigation simultaneously exposed the contribution of (200) plane of MnSe2 and MWCNTs cultured in enhanced DOS (density of states) near the Fermi level that remarkably promoted the energy storage efficiency of MS/CNT.
Collapse
Affiliation(s)
- Rutuparna Samal
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Mahima Bhat
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Samadhan Kapse
- Department of Physics, SRM University - AP, Amaravati 522502, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University - AP, Amaravati 522502, Andhra Pradesh, India
| | - Dattatray J Late
- Centre for Nanoscience & Nanotechnology Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore 562112, Karnataka, India.
| |
Collapse
|
19
|
Pandit B, Agarwal A, Patel P, Sankapal BR. The electrochemical kinetics of cerium selenide nano-pebbles: the design of a device-grade symmetric configured wide-potential flexible solid-state supercapacitor. NANOSCALE ADVANCES 2021; 3:1057-1066. [PMID: 36133291 PMCID: PMC9417937 DOI: 10.1039/d0na00893a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/20/2020] [Indexed: 06/14/2023]
Abstract
Next-generation portable flexible electronic appliances require liquid-free energy storage supercapacitor devices to eliminate leakage and to support mechanical bending that is compatible with roll-to-roll technologies. Hence, a state-of-the-art process is presented to design a solid-state, wide-potential and flexible supercapacitor through the use of nano-pebbles of cerium selenide via a simple successive ionic layer adsorption and reaction (SILAR) method that could allow an industry scalable route. We strongly believe that this is the first approach amongst physical and chemical routes not only for synthesizing cerium selenide in thin-film form but also using it for device-grade supercapacitor applications. The designed solid-state symmetric supercapacitor assembled from cerium selenide electrodes sandwiched by PVA-LiClO4 gel electrolyte attains a wide potential window of 1.8 V with capacitance of 48.8 F g-1 at 2 mV s-1 and reveals excellent power density of 4.89 kW kg-1 at an energy density of 11.63 W h kg-1. The formed device is capable of 87% capacitive retention even at a mechanical bending angle of 175°. Lighting up a strip of 21 parallel connected red LEDs clearly demonstrates the practical use of the designed symmetric solid-state supercapacitor, aiming towards the commercialization of the product in the future.
Collapse
Affiliation(s)
- Bidhan Pandit
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS Place Eugène Bataillon Montpellier 34095, Cedex 5 France
| | - Akanksha Agarwal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| | - Priyanka Patel
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| | - Babasaheb R Sankapal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| |
Collapse
|
20
|
Sobhani A, Salavati-Niasari M. Transition metal selenides and diselenides: Hydrothermal fabrication, investigation of morphology, particle size and and their applications in photocatalyst. Adv Colloid Interface Sci 2021; 287:102321. [PMID: 33246142 DOI: 10.1016/j.cis.2020.102321] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
Abstract
This review investigates hydrothermal synthesis of metal selenides and diselenides. Briefly, structures, applications and formation mechanisms are studied. The strategies for developing metal selenides, including NiSe, NiSe2, Ni3Se2, CdSe, FeSe2, MnSe2, CoSe, CuSe, Cu1.8Se, CuSe2, Cu3Se2 and ZnSe are discussed. More of 50 hydrothermal methods used for the synthesis of metal selenides are discussed. As well as the investigation of the photocatalytic activities of these metal selenides are followed by different synthesis methods and strategies employed for the synthesis of them.
Collapse
Affiliation(s)
- Azam Sobhani
- Department of Chemistry, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran.
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
21
|
High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J Colloid Interface Sci 2020; 572:151-159. [PMID: 32240788 DOI: 10.1016/j.jcis.2020.03.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
The exploration of flexible supercapacitors with high energy density is a matter of considerable interest to meet the demand of wearable electronic devices. In this work, with carbon nanotubes (CNTs) grown on carbon cloth (CC) as flexible substrate, NiCoP nanoflake-surrounded CNT nanoarrays (NiCoP/CNT) and N-doped carbon coated CNT nanoarrays (CNT@N-C) were synthesized on CC and utilized as cathode and anode materials for constructing flexible all-solid-state hybrid supercapacitor. Both them exhibit excellent electrochemical performance. NiCoP/CNT/CC composites can deliver a specific capacitance of 261.4 mAh g-1, and CNT@N-C/CC exhibits a high capacitance of 256 F g-1 at the current density of 0.5 A g-1. The hybrid supercapacitor built from the two well designed electrodes can provide a specific capacitance of 123.3 mAh g-1 at current density 1 mA g-1 within a potential window of 0-1.5 V and retain almost 85% of its initial capacitance after 5000 cycles. Furthermore, the flexible devices show the maximum energy density of 138.7 Wh kg-1 and a power density of 6.25 kW kg-1, obviously superior to some recent reported supercapacitor devices, indicating its potential in practical application.
Collapse
|
22
|
Hydrothermal Synthesis of Cobalt Ruthenium Sulfides as Promising Pseudocapacitor Electrode Materials. COATINGS 2020. [DOI: 10.3390/coatings10030200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this paper, we report the successful synthesis of cobalt ruthenium sulfides by a facile hydrothermal method. The structural aspects of the as-prepared cobalt ruthenium sulfides were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the prepared materials exhibited nanocrystal morphology. The electrochemical performance of the ternary metal sulfides was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy techniques. Noticeably, the optimized ternary metal sulfide electrode exhibited good specific capacitances of 95 F g−1 at 5 mV s−1 and 75 F g−1 at 1 A g−1, excellent rate capability (48 F g−1 at 5 A g−1), and superior cycling stability (81% capacitance retention after 1000 cycles). Moreover, this electrode demonstrated energy densities of 10.5 and 6.7 Wh kg−1 at power densities of 600 and 3001.5 W kg−1, respectively. These attractive properties endow proposed electrodes with significant potential for high-performance energy storage devices.
Collapse
|
23
|
Construction of binder-free hierarchical mesoporous 3D Co–Mo–O flowers assembled by nanosheets for aqueous symmetrical 1.2 V supercapacitor in basic electrolyte. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Kumbhar VS, Chodankar NR, Lee K, Kim DH. Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. J Colloid Interface Sci 2019; 557:423-437. [DOI: 10.1016/j.jcis.2019.08.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
|
25
|
Kuai Y, Wang T, Liu M, Ma H, Zhang C. Flower-like Ni0·85Se nanosheets with enhanced performance toward hybrid supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Dan H, Tao K, Hai Y, Liu L, Gong Y. (Co, Mn)-Doped NiSe 2-diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe 2 nanowires for high performance supercapacitors: compositional/morphological evolution and (Co, Mn)-induced electron transfer. NANOSCALE 2019; 11:16810-16827. [PMID: 31469379 DOI: 10.1039/c9nr04478g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of MSe2-dien (M = metal(ii) ion and dien = diethylenetriamine) were grown on Ni foam (NF) based on Co(ii)/Mn(ii) salts with different molar ratios. It was found that the Co-free sample exhibited hollow tubes built by numerous interconnected nanowires, whereas nanosheets were observed in the Co-involved samples. The formation of nanosheets is associated with Co(ii), which is due to the fact that Co(ii) promotes the metal selenide nanosheet to grow along its (011[combining macron]) facet (thickness direction). Furthermore, the formation and compositional/morphological evolution of the samples were investigated. Among them, (Co, Mn)-NiSe2-dien/NF (2 : 1-Co/Mn sample) showed the largest specific capacity of 288.6 mA h g-1 at 1 A g-1 with a retention of 69% at 10 A g-1 (198.6 mA h g-1), which is associated with its ultrathin nanosheet arrays and the co-doping of (Co, Mn) into NiSe2-dien, leading to the redistribution of electron densities around the Ni and Se centers. XPS and density functional theory (DFT) calculations proved the electron transfer from NiSe2-dien to the adsorbed OH- ions from the electrolyte solution, which can facilitate the redox reaction between active sites and electrolyte ions to enhance the electrochemical performance. A hybrid supercapacitor, (Co, Mn)-NiSe2-dien/NF//activated carbon, was fabricated, which displayed an energy density of 50.9 W h kg-1 at a power density of 447.3 W kg-1 and good cycling stability with 84% capacity retention after 10 000 charge-discharge cycles. Furthermore, (Co, Mn)-doped NiSe2-dien nanosheets could be transformed into (Co, Mn, Sn)-doped NiSe2 nanowire arrays after immersion in SnCl2 alcoholic solution due to cation exchange and the Kirkendall effect, and the obtained sample exhibited a decent areal capacity of 0.267 mA h cm-2 at 5 mA cm-2.
Collapse
Affiliation(s)
- Huamei Dan
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Ramachandran R, Hu Q, Wang F, Xu ZX. Synthesis of N-CuMe2Pc nanorods/graphene oxide nanocomposite for symmetric supercapacitor electrode with excellent cyclic stability. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Pazhamalai P, Krishnamoorthy K, Mariappan VK, Kim SJ. Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J Colloid Interface Sci 2019; 536:62-70. [DOI: 10.1016/j.jcis.2018.10.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 01/21/2023]
|
29
|
Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Gao X, Wang W, Bi J, Chen Y, Hao X, Sun X, Zhang J. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.054] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Raman V, Chinnadurai D, Rajmohan R, Chebrolu VT, Rajangam V, Kim HJ. Transition metal chalcogenide based MnSe heterostructured with NiCo2O4 as a new high performance electrode material for capacitive energy storage. NEW J CHEM 2019. [DOI: 10.1039/c9nj02711d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quest for the development of promising electrode materials for energy storage persists.
Collapse
Affiliation(s)
- Vivekanandan Raman
- School of Electrical Engineering
- Pusan National University
- Busandaehak-ro 63 beon-gil
- Geumjeong-gu
- Busan
| | - Deviprasath Chinnadurai
- School of Electrical Engineering
- Pusan National University
- Busandaehak-ro 63 beon-gil
- Geumjeong-gu
- Busan
| | - Rajendiran Rajmohan
- School of Electrical Engineering
- Pusan National University
- Busandaehak-ro 63 beon-gil
- Geumjeong-gu
- Busan
| | | | - Vinodh Rajangam
- School of Electrical Engineering
- Pusan National University
- Busandaehak-ro 63 beon-gil
- Geumjeong-gu
- Busan
| | - Hee-Je Kim
- School of Electrical Engineering
- Pusan National University
- Busandaehak-ro 63 beon-gil
- Geumjeong-gu
- Busan
| |
Collapse
|
32
|
Sahoo S, Krishnamoorthy K, Pazhamalai P, Mariappan VK, Kim SJ. Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00451c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel copper molybdenum sulfide-graphene (Cu2MoS4-rGO) hybrid is investigated as an electrode for temperature tolerant supercapacitor.
Collapse
Affiliation(s)
- Surjit Sahoo
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- South Korea
| | - Karthikeyan Krishnamoorthy
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- South Korea
| | - Parthiban Pazhamalai
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- South Korea
| | - Vimal Kumar Mariappan
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- South Korea
| | - Sang-Jae Kim
- Nanomaterials and System Lab
- Department of Mechatronics Engineering
- Jeju National University
- Jeju 63243
- South Korea
| |
Collapse
|
33
|
Xuan W, Ramachandran R, Zhao C, Wang F. Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4096-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Palsaniya S, Nemade HB, Dasmahapatra AK. Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|