1
|
Zhong X, Xiao X, Li Q, Zhang M, Li Z, Gao L, Chen B, Zheng Z, Fu Q, Wang X, Zhou G, Xu B. Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries. Nat Commun 2024; 15:9616. [PMID: 39511234 PMCID: PMC11544253 DOI: 10.1038/s41467-024-54019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (RuSA-NiFe LDH). The adaptive oxidation of RuSA-NiFe LDH to oxyhydroxide species (RuSA-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between RuSA-NiFe LDH and RuSA-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm-2 per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm-2. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.
Collapse
Affiliation(s)
- Xiongwei Zhong
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiao Xiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qizhen Li
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Mengtian Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhitong Li
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Leyi Gao
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyang Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qingjin Fu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xingzhu Wang
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Baomin Xu
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Huang Y, Xu H, Wang Y, Xing Z, Fang R, Lai H, Qian M, Dong M, Carraro M, Skrydstrup T, Daasbjerg K, Xin Z. Hierarchical Superhydrophilic/Superaerophobic Ni 3S 2/VS 2 Nanorod-Based Bifunctional Electrocatalyst Supported on Nickel Foam for Overall Urea Electrolysis. Inorg Chem 2024; 63:19002-19010. [PMID: 39323084 DOI: 10.1021/acs.inorgchem.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The design and preparation of effective nonprecious metal-based catalysts for the urea oxidation reaction (UOR) coupled with the hydrogen evolution reaction (HER) are of great significance to solve both energy shortage and environmental pollution problems. In this study, a novel hierarchical superhydrophilic and superaerophobicity three-dimensional nanorod-like bifunctional catalyst with a heterostructure (Ni3S2/VS2) was prepared on nickel foam via a simple one-step hydrothermal method, serving as an excellent electrocatalyst for both UOR and HER. The formed heterostructure significantly alters the electronic structure, optimizing charge transfer and increasing the number of active sites, which enhances the electrocatalytic performance of Ni3S2/VS2. As a result, this catalyst requires an extremely low potential of 1.396 V at the current density of 100 mA cm-2 for UOR and only 164 mV overpotential at -10 mA cm-2 for HER. Notably, a constructed two-electrode electrolyzer system (Ni3S2/VS2∥Ni3S2/VS2) demonstrates extraordinary activity and long-term stability, achieving a current density of 10 mA cm-2 at a low cell voltage of 1.48 V, which is superior to majority of the reported catalysts. This work demonstrates that the formation of heterostructures can effectively enhance the catalytic activity of nanomaterials toward UOR and HER and provides a feasible strategy for fabricating highly efficient nonprecious metal overall urea electrocatalysts.
Collapse
Affiliation(s)
- Yuxing Huang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Hui Xu
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yamei Wang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Ziyan Xing
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Ruochao Fang
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Huihuang Lai
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Man Qian
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR, UOS of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej14, Aarhus C DK-8000, Denmark
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Zhuo Xin
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
3
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Hou Z, Fan F, Wang Z, Du Y. A stable N-doped NiMoO 4/NiO 2 electrocatalyst for efficient oxygen evolution reaction. Dalton Trans 2024; 53:7430-7435. [PMID: 38591122 DOI: 10.1039/d3dt04034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Recently, there has been a significant interest in the study of highly active and stable transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Non-noble metal nanocatalysts with excellent inherent activity, many exposed active centers, rapid electron transfer, and excellent structural stability are especially promising for the displacement of precious-metal catalysts for the production of sustainable and "clean" hydrogen gas through water-splitting. Herein, efficient electrocatalyst N-doped nickel molybdate nanorods were synthesized on Ni foam by a hydrothermal process and effortless chemical vapor deposition. The heterostructure interface of N-NiMoO4/NiO2 led to strong electronic interactions, which were beneficial for enhancing the OER activity of the catalyst. Excellent OER catalytic activity in 1.0 M KOH was shown, which offered a small overpotential of 185.6 mV to acquire a current density of 10 mA cm-2 (superior to the commercial benchmark material RuO2 under the same condition). This excellent electrocatalyst was stable for 90 h at a constant current density of 10 mA cm-2. We created an extremely reliable and effective OER electrocatalyst without the use of noble metals by doping a nonmetal element with nanostructured heterojunctions of various active components.
Collapse
Affiliation(s)
- Zhengfang Hou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Fangyuan Fan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
5
|
Modi KH, Pataniya PM, Sumesh CK. 2D Monolayer Catalysts: Towards Efficient Water Splitting and Green Hydrogen Production. Chemistry 2024; 30:e202303978. [PMID: 38299695 DOI: 10.1002/chem.202303978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
A viable alternative to non-renewable hydrocarbon fuels is hydrogen gas, created using a safe, environmentally friendly process like water splitting. An important role in water-splitting applications is played by the development of two-dimensional (2D) layered transition metal chalcogenides (TMDCs), transition metal carbides (MXenes), graphene-derived 2D layered nanomaterials, phosphorene, and hexagonal boron nitride. Advanced synthesis methods and characterization instruments enabled an effective application for improved electrocatalytic water splitting and sustainable hydrogen production. Enhancing active sites, modifying the phase and electronic structure, adding conductive elements like transition metals, forming heterostructures, altering the defect state, etc., can improve the catalytic activity of 2D stacked hybrid monolayer nanomaterials. The majority of global research and development is focused on finding safer substitutes for petrochemical fuels, and this review summarizes recent advancements in the field of 2D monolayer nanomaterials in water splitting for industrial-scale green hydrogen production and fuel cell applications.
Collapse
Affiliation(s)
- Krishna H Modi
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| | - C K Sumesh
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| |
Collapse
|
6
|
Kumar V, Prasad Singh G, Kumar M, Kumar A, Singh P, Ansu AK, Sharma A, Alam T, Yadav AS, Dobrotă D. Nanocomposite Marvels: Unveiling Breakthroughs in Photocatalytic Water Splitting for Enhanced Hydrogen Evolution. ACS OMEGA 2024; 9:6147-6164. [PMID: 38371806 PMCID: PMC10870388 DOI: 10.1021/acsomega.3c07822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
An overview of the significant innovations in photocatalysts for H2 development, photocatalyst selection criteria, and photocatalytic modifications to improve the photocatalytic activity was examined in this Review, as well as mechanisms and thermodynamics. A variety of semiconductors have been examined in a structured fashion, such as TiO2-, g-C3N4-, graphene-, sulfide-, oxide-, nitride-, oxysulfide-, oxynitrides, and cocatalyst-based photocatalysts. The techniques for enhancing the compatibility of metals and nonmetals is discussed in order to boost photoactivity within visible light irradiation. In particular, further deliberation has been carried out on the development of heterojunctions, such as type I, type II, and type III, along with Z-systems, and S-scheme systems. It is important to thoroughly investigate these issues in the sense of visible light irradiations to enhance the efficacy of photocatalytic action. In fact, another advancement in this area may include hiring mediators including grapheme oxide and metals to establish indirect Z-scheme montages with a correct band adjustment. The potential consideration of reaction chemology, mass transfer, kinetics of reactions, restriction of light diffusion, and the process and selection of suitable light and photoreactor also will optimize sustainable hydrogen output efficiency and selectivity.
Collapse
Affiliation(s)
- Vikash Kumar
- Department
of Electronics and Communication Engineering, RV Institute of Technology and Management, Bangalore, Karnataka 560076, India
| | - Gajendra Prasad Singh
- Department
of Metallurgical and Material Engineering, Central University Jharkhand, Ranchi, Jharkhand 835205, India
| | - Manish Kumar
- Department
of Mechanical Engineering, RV Institute
of Technology and Management, Bangalore, Karnataka 560076, India
| | - Amit Kumar
- Centre
for Augmented Intelligence and Design, Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu 641202, India
| | - Pooja Singh
- Department
of Mechanical Engineering, Manipal University
Jaipur, Jaipur, Rajasthan 303007, India
| | - Alok Kumar Ansu
- Department
of Mechanical Engineering, Manipal University
Jaipur, Jaipur, Rajasthan 303007, India
| | - Abhishek Sharma
- Department
of Mechanical Engineering, BIT Sindri, Dhanbad Jharkhand 828123, India
| | - Tabish Alam
- CSIR-Central
Building Research Institute, Roorkee, Uttarakhand 247667, India
| | - Anil Singh Yadav
- Department
of Mechanical Engineering, Bakhtiyarpur
College of Engineering (Science, Technology and Technical Education
Department, Government of Bihar), Bakhtiyarpur, Bihar 803212, India
| | - Dan Dobrotă
- Faculty
of Engineering, Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
7
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Amer MS, Arunachalam P, Al-Mayouf AM, AlSaleh AA, Almutairi ZA. Bifunctional vanadium doped mesoporous Co 3O 4 on nickel foam towards highly efficient overall urea and water splitting in the alkaline electrolyte. ENVIRONMENTAL RESEARCH 2023; 236:116818. [PMID: 37541414 DOI: 10.1016/j.envres.2023.116818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Developing more active and stable electrode materials for oxygen evolution reaction (OER) and urea oxidation reaction (UOR) is necessary for electrocatalytic water and urea oxidation which can be used to generate hydrogen. Here, a low-cost vanadium-doped mesoporous cobalt oxide on Ni foam (V/meso-Co/NF) electrodes are obtained via the grouping of an in-situ citric acid (CA)-assisted evaporation-induced self-assembly (EISA) method and electrophoretic deposition process, and work as highly efficient and long-lasting electrocatalytic materials for OER/UOR. In particular, V/meso-Co/NF electrodes require 329 mV overpotential to maintain a 50 mA/cm2, with exceptional long-term durability of 30 h. Interestingly, V/meso-Co/NF also exhibits excellent electrocatalytic UOR performance, reaching 50 and 100 mA/cm2 versus RHE at low potentials of 1.34 and 1.35 V, respectively. By employing the V/meso-Co/NF materials as both the anode and cathode, this urea electrolysis assembly V/meso-Co/NF-5 (+,-) reaches current densities of 100 mA cm-2 at 1.62 V in KOH/urea, which is nearly 340 mV lesser than classical water electrolysis. The V/meso-Co/NF-5 electrocatalysts also exhibit remarkable durability for electrocatalytic OERs and UORs. The obtained findings revealed that the synthesized V/meso-Co/NF might be a promising electrode materials for overall urea-rich wastewater management and H2 generation from wastewater.
Collapse
Affiliation(s)
- Mabrook S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; K.A.CARE Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh, Saudi Arabia.
| | - Prabhakarn Arunachalam
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Abdullah M Al-Mayouf
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; K.A.CARE Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad A AlSaleh
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zeyad A Almutairi
- K.A.CARE Energy Research and Innovation Center at Riyadh, King Saud University, Riyadh, Saudi Arabia; Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
9
|
Hou Z, Cui C, Yang Y, Zhang T. Electrochemical Oxidation Encapsulated Ru Clusters Enable Robust Durability for Efficient Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207170. [PMID: 37021723 DOI: 10.1002/smll.202207170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical oxidization and thermodynamic instability agglomeration are a primary challenge in triggering metal-support interactions (MSIs) by immobilizing metal atoms on a carrier to achieve efficient oxygen evolution reactions (OER). Herein, Ru clusters anchored to the VS2 surface and the VS2 nanosheets embedded vertically in carbon cloth (Ru-VS2 @CC) are deliberately designed to realize high reactivity and exceptional durability. In situ Raman spectroscopy reveals that the Ru clusters are preferentially electro-oxidized to form RuO2 chainmail, both affording sufficient catalytic sites and protecting the internal Ru core with VS2 substrates for consistent MSIs. Theoretical calculations elucidate that electrons across the Ru/VS2 interface aggregate toward the electro-oxidized Ru clusters, while the electronic coupling of Ru 3p and O 2p orbitals boosts a positive shift in the Fermi energy level of Ru, optimizing the adsorption capacity of the intermediates and diminishing the migration barriers of the rate-determining steps. Therefore, the Ru-VS2 @CC catalyst demonstrated ultra-low overpotentials of 245 mV at 50 mA cm-2 , while the zinc-air battery maintained a narrow gap (0.62 V) after 470 h of reversible operation. This work has transformed the corrupt into the miraculous and paved a new way for the development of efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Zhong X, Zheng Z, Xu J, Xiao X, Sun C, Zhang M, Ma J, Xu B, Yu K, Zhang X, Cheng HM, Zhou G. Flexible Zinc-Air Batteries with Ampere-Hour Capacities and Wide-Temperature Adaptabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209980. [PMID: 36716772 DOI: 10.1002/adma.202209980] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Flexible Zn-air batteries (FZABs) have significant potentials as efficient energy storage devices for wearable electronics because of their safeties and high energy-to-cost ratios. However, their application is limited by their short cycle lives, low discharge capacities per cycle, and high charge/discharge polarizations. Accordingly, herein, a poly(sodium acrylate)-polyvinyl alcohol (PANa-PVA)-ionic liquid (IL) hydrogel (PANa-PVA-IL) is prepared using a hygroscopic IL, 1-ethyl-3-methylimidazolium chloride, as an additive for twin-chain PANa-PVA. PANa-PVA-IL exhibits a high conductivity of 306.9 mS cm-1 and a water uptake of 2515 wt% at room temperature. Moreover, a low-cost bifunctional catalyst, namely, Co9 S8 nanoparticles anchored on N- and S-co-doped activated carbon black pearls 2000 (Co9 S8 -NSABP), is synthesized, which demonstrates a low O2 reversibility potential gap of 0.629 V. FZABs based on PANa-PVA-IL and Co9 S8 -NSABP demonstrate high discharge capacities of 1.67 mAh cm-2 per cycle and long cycle lives of 330 h. Large-scale flexible rechargeable Zn-air pouch cells exhibit total capacities of 1.03 Ah and energy densities of 246 Wh kgcell -1 . This study provides new information about hydrogels with high ionic conductivities and water uptakes and should facilitate the application of FZABs in wearable electronics.
Collapse
Affiliation(s)
- Xiongwei Zhong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhiyang Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiahe Xu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chongbo Sun
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mengtian Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabin Ma
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kuang Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
11
|
Yang M, Shi B, Tang Y, Lu H, Wang G, Zhang S, Sarwar MT, Tang A, Fu L, Wu M, Yang H. Interfacial Chemical Bond Modulation of Co 3(PO 4) 2-MoO 3-x Heterostructures for Alkaline Water/Seawater Splitting. Inorg Chem 2023; 62:2838-2847. [PMID: 36709429 DOI: 10.1021/acs.inorgchem.2c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of a high current density with high energy conversion efficiency electrocatalyst is vital for large-scale industrial application of alkaline water splitting, particularly seawater splitting. Herein, we design a self-supporting Co3(PO4)2-MoO3-x/CoMoO4/NF superaerophobic electrode with a three-dimensional structure for high-performance hydrogen evolution reaction (HER) by a reasonable devise of possible "Co-O-Mo hybridization" on the interface. The "Co-O-Mo hybridization" interfaces induce charge transfer and generation of fresh oxygen vacancy active sites. Consequently, the unique heterostructures greatly facilitate the dissociation process of H2O molecules and enable efficient hydrogen spillover, leading to excellent HER performance with ultralow overpotentials (76 and 130 mV at 100 and 500 mA cm-2) and long-term durability of 100 h in an alkaline electrolyte. Theoretical calculations reveal that the Co3(PO4)2-MoO3-x/CoMoO4/NF promotes the adsorption/dissociation process of H2O molecules to play a crucial role in improving the stability and activity of HER. Our results exhibit that the HER activity of non-noble metal electrocatalysts can be greatly enhanced by rational interfacial chemical bonding to modulate the heterostructures.
Collapse
Affiliation(s)
- Mei Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Shi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yili Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongxiu Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Gang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Liangjie Fu
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Hussain S, Vikraman D, Sarfraz M, Faizan M, Patil SA, Batoo KM, Nam KW, Kim HS, Jung J. Design of XS 2 (X = W or Mo)-Decorated VS 2 Hybrid Nano-Architectures with Abundant Active Edge Sites for High-Rate Asymmetric Supercapacitors and Hydrogen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205881. [PMID: 36504329 DOI: 10.1002/smll.202205881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2 hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2 and WS2 @VS2 electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1 by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2 electrode exhibits a high specific capacitance of 222 F g- 1 at an applied current of 2.5 A g- 1 with the specific energy of 52 Wh kg- 1 at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2 catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2 and WS2 @VS2 heterostructures.
Collapse
Affiliation(s)
- Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Maria Sarfraz
- Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000, Pakistan
| | - Muhammad Faizan
- Department of Energy & Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kyung-Wan Nam
- Department of Energy & Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
13
|
Zhang C, Du X, Zhang X, Wang Y. Ni 3S 2/M xS y-NiCo LDH (M = Cu, Fe, V, Ce, Bi) heterostructure nanosheet arrays on Ni foam as high-efficiency electrocatalyst for electrocatalytic overall water splitting and urea splitting. Dalton Trans 2023; 52:763-773. [PMID: 36594242 DOI: 10.1039/d2dt03047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we synthesized a series of Ni3S2/MxSy-NiCo LDH materials (M = Cu, Fe, V, Ce, and Bi) by a two-step hydrothermal method for the first time, which display excellent oxygen evolution reaction (OER) and urea oxidation reaction (UOR) properties. M (M = Cu, Fe, V, Ce, and Bi) ions were firstly doped into NiCo LDH to change the original electronic structure and enhance the activity of the LDH. Then, Ni3S2 and MxSy were introduced by sulfurization of the Ni support and doping cations, and the combination of Ni3S2, MxSy and NiCo-LDH improved the electron transfer rate and activity of the original material. With Ni3S2/Bi2S3-NiCo LDH/NF as anode and Ni3S2/CuS-NiCo LDH as cathode, an electrolytic cell can reach 10 mA cm-2 at 1.622 V with outstanding durability for overall water splitting. In addition, with Ni3S2/Bi2S3-NiCo LDH/NF as both electrodes, it can reach 10 mA cm-2 at 1.56 V with outstanding durability for overall urea splitting, which is better than that of the overall water splitting. Density functional theory (DFT) calculation shows that the superior electrocatalytic activity can be explained by the water adsorption energy being optimized and enhanced conductivity. This study provides a new idea for improving the catalytic activity and stability of non-noble metals instead of noble metals.
Collapse
Affiliation(s)
- Chenyi Zhang
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan Road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan Road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Xueyuan Road 3, Taiyuan 030051, People's Republic of China
| | - Yanhong Wang
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan Road 3, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
14
|
Zhu J, Zheng X, Liu C, Lu Y, Liu Y, Li D, Jiang D. Zinc and fluorine ions dual-modulated NiCoP nanoprism array electrocatalysts for efficient water splitting. J Colloid Interface Sci 2023; 630:559-569. [DOI: 10.1016/j.jcis.2022.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
15
|
Xing J, Wang X, Zhang Y, Fu X. Preparation of N
x
−Fe/Fe
3
C/KVO
3
composites by heat treatment for high‐performance electrocatalytic oxygen evolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202203656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junjie Xing
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiaohan Wang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Yu Zhang
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| | - Xiuli Fu
- School of Integrated Circuits Beijing University of Posts and Telecommunications 100876 Beijing P. R. China
| |
Collapse
|
16
|
Chalcogenides and Chalcogenide-Based Heterostructures as Photocatalysts for Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chalcogenides are essential in the conversion of solar energy into hydrogen fuel due to their narrow band gap energy. Hydrogen fuel could resolve future energy crises by substituting carbon fuels owing to zero-emission carbon-free gas and its eco-friendliness. The fabrication of different metal chalcogenide-based photocatalysts with enhanced photocatalytic water splitting have been summarized in this review. Different modifications of these chalcogenides, including coupling with another semiconductor, metal loading, and doping, are fabricated with different synthetic routes that can remarkably improve the photo-exciton separation and have been extensively investigated for photocatalytic hydrogen generation. In this direction, this review is undertaken to provide an overview of the enhanced photocatalytic performance of the binary and ternary chalcogenide heterostructures and their mechanisms for hydrogen production under irradiation of light.
Collapse
|
17
|
A nanoflower-like polypyrrole-based cobalt-nickel sulfide hybrid heterostructures with electrons migration to boost overall water splitting. J Colloid Interface Sci 2022; 618:1-10. [DOI: 10.1016/j.jcis.2022.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023]
|
18
|
Yu T, Le X, Fan K, Chen H, Liu J. CuS/Ti3C2Tx homostructure with enhanced hydrogel performance for supercapacitor electrode materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Razavi M, Sookhakian M, Goh BT, Bahron H, Mahmoud E, Alias Y. Molybdenum Disulfide Nanosheets Decorated with Platinum Nanoparticle as a High Active Electrocatalyst in Hydrogen Evolution Reaction. NANOSCALE RESEARCH LETTERS 2022; 17:9. [PMID: 35006407 PMCID: PMC8748569 DOI: 10.1186/s11671-021-03644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Electrochemical hydrogen evolution reaction (HER) refers to the process of generating hydrogen by splitting water molecules with applied external voltage on the active catalysts. HER reaction in the acidic medium can be studied by different mechanisms such as Volmer reaction (adsorption), Heyrovsky reaction (electrochemical desorption) or Tafel reaction (recombination). In this paper, facile hydrothermal methods are utilized to synthesis a high-performance metal-inorganic composite electrocatalyst, consisting of platinum nanoparticles (Pt) and molybdenum disulfide nanosheets (MoS2) with different platinum loading. The as-synthesized composite is further used as an electrocatalyst for HER. The as-synthesized Pt/Mo-90-modified glassy carbon electrode shows the best electrocatalytic performance than pure MoS2 nanosheets. It exhibits Pt-like performance with the lowest Tafel slope of 41 mV dec-1 and superior electrocatalytic stability in an acidic medium. According to this, the HER mechanism is related to the Volmer-Heyrovsky mechanism, where hydrogen adsorption and desorption occur in the two-step process. According to electrochemical impedance spectroscopy analysis, the presence of Pt nanoparticles enhanced the HER performance of the MoS2 nanosheets because of the increased number of charge carriers transport.
Collapse
Affiliation(s)
- Mina Razavi
- Department of Chemistry, Faculty of Science, University Malaya Centre for Ionic Liquids, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - M Sookhakian
- Department of Chemistry, Faculty of Science, University Malaya Centre for Ionic Liquids, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Boon Tong Goh
- Department of Physics, Faculty of Science, Low Dimensional Materials Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hadariah Bahron
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Eyas Mahmoud
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Y Alias
- Department of Chemistry, Faculty of Science, University Malaya Centre for Ionic Liquids, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Li J, Wang X, Yi L, Fang C, Li T, Sun W, Hu W. Plasma-assisted rhodium incorporation in nickel–iron sulfide nanosheets: enhanced catalytic activity and the Janus mechanism for overall water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rh was incorporated in Fe-doped Ni3S2 nanosheets with the assistance of hydrogen plasma to significantly enhance the HER/OER catalytic activity. The operando evolution behavior and Janus catalytic mechanism of this catalyst were further revealed.
Collapse
Affiliation(s)
- Junying Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiaodeng Wang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Lingya Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Changxiang Fang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Tianhao Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Weihua Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Wang H, Ai T, Bao W, Zhang J, Wang Y, Kou L, Li W, Deng Z, Song J, Li M. Regulating the electronic structure of Ni3S2 nanorods by heteroatom vanadium doping for high electrocatalytic performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Liu J, Wang Y, Liao Y, Wu C, Yan Y, Xie H, Chen Y. Heterostructured Ni 3S 2-Ni 3P/NF as a Bifunctional Catalyst for Overall Urea-Water Electrolysis for Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26948-26959. [PMID: 34078074 DOI: 10.1021/acsami.1c04325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea oxidation reaction (UOR) has been proposed to replace the formidable oxygen evolution reaction (OER) to reduce the energy consumption for producing hydrogen from electrolysis of water owing to its much lower thermodynamic oxidation potential compared to that of the OER. Therefore, exploring a highly efficient and stable hydrogen evolution and urea electrooxidation bifunctional catalyst is the key to achieve economical and efficient hydrogen production. In this paper, we report a heterostructured sulfide/phosphide catalyst (Ni3S2-Ni3P/NF) synthesized via one-step thermal treatment of Ni(OH)2/NF, which allows the simultaneous occurrence of phosphorization and sulfuration. The obtained Ni3S2-Ni3P/NF catalyst shows a sheet structure with an average sheet thickness of ∼100 nm, and this sheet is composed of interconnected Ni3S2 and Ni3P nanoparticles (∼20 nm), between which there are a large number of accessible interfaces of Ni3S2-Ni3P. Thus, the Ni3S2-Ni3P/NF exhibits superior performance for both UOR and hydrogen evolution reaction (HER). For the overall urea-water electrolysis, to achieve current densities of 10 and 100 mA cm-2, cell voltage of only 1.43 and 1.65 V is required using this catalyst as both the anode and the cathode. Moreover, this catalyst also maintains fairly excellent stability after a long-term testing, indicating its potential for efficient and energy-saving hydrogen production. The theoretical calculation results show that the Ni atoms at the interface are the most efficient catalytically active site for the HER, and the free energy of hydrogen adsorption is closest to thermal neutrality, which is only 0.16 eV. A self-driven electron transfer at the interface, making the Ni3S2 sides become electron donating while Ni3P sides become electron withdrawing, may be the reason for the enhancement of the UOR activity. Therefore, this work shows an easy treatment for enhancing the catalytic activity of Ni-based materials to achieve high-efficiency urea-water electrolysis.
Collapse
Affiliation(s)
- Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yigang Yan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang 310003, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
24
|
Leong CC, Qu Y, Kawazoe Y, Ho SK, Pan H. MXenes: Novel electrocatalysts for hydrogen production and nitrogen reduction. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Yang Y, Mao H, Ning R, Zhao X, Zheng X, Sui J, Cai W. Ar plasma-assisted P-doped Ni 3S 2 with S vacancies for efficient electrocatalytic water splitting. Dalton Trans 2021; 50:2007-2013. [PMID: 33538707 DOI: 10.1039/d0dt03711g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Doping engineering is considered an effective way to improve the electrocatalytic water splitting performance of catalysts. In this paper, P-doped Ni3S2/NF was prepared by Ar plasma-assisted chemical vapor deposition, where the P dopant was efficiently introduced into Ni3S2/NF under the assistance of Ar plasma. Meanwhile, numerous vacancies were generated due to plasma bombardment. In the doping process, the P dopants replace the S vacancies, which contributes to the strong bonding between the P dopants and Ni3S2. Due to the synergistic effect of the P dopants and S vacancies, the Sv-Ni3S2-xPx-4 catalyst has low HER and OER overpotentials of 89 mV and 216 mV at 10 mA cm-2, with a lower impedance value and good stability. The present work shows a facile route to introduce dopants and vacancies into catalyst materials for adding active sites, eventually improving their electrocatalytic performance.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
A Review and Perspective on Electrocatalysts Containing Cr for Alkaline Water Electrolysis: Hydrogen Evolution Reaction. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-020-00634-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Ren X, Wei Q, Wu F, Wang Y, Li Q. Binary V–Mo sulfides grown on CNTs with morphological and electronic modulation for enhanced hydrogen evolution. CrystEngComm 2021. [DOI: 10.1039/d1ce00938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binary V–Mo sulfides on carbon nanotubes with superior electrocatalytic water splitting performance in acid media are successfully synthesized by a facile one-step sintering method.
Collapse
Affiliation(s)
- Xianpei Ren
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- Solar Energy Integration Technology Popularization and Application Key Laboratory of Sichuan Province, Panzhihua 617000, China
| | - Qingbo Wei
- Key Laboratory of Chemical Reaction Engineering of Shaanxi Province, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Fei Wu
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yonghua Wang
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Qiang Li
- Laboratory of Micro-Nano Photoelectric Materials and Devices, School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
28
|
Boppella R, Tan J, Yun J, Manorama SV, Moon J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Self-supported electrode of NiCo-LDH/NiCo2S4/CC with enhanced performance for oxygen evolution reaction and hydrogen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137534] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Shit S, Samanta P, Bolar S, Murmu NC, Kuila T. Alteration in electrocatalytic water splitting activity of reduced graphene oxide through simultaneous and individual doping of Lewis acid/base center. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Kumar Baral A, Vijaya Sankar K, Matatyaho A, Kushnir G, Tsur Y. Tri-Functional Double Perovskite Oxide Catalysts for Fuel Cells and Electrolyzers. CHEMSUSCHEM 2020; 13:5671-5682. [PMID: 32881405 DOI: 10.1002/cssc.202001503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxides are at the forefront of the race to develop catalysts/electrodes for fuel cells and electrolyzers. This work presents trifunctional properties of the double-perovskite oxide PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ and the PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ -Ag composite prepared by the glycine nitrate process. The electrocatalytic studies reveal that the Ag-based composite is an excellent catalyst for both oxygen evolution (OER) and hydrogen evolution reactions (HER) in alkaline solution. The electrochemical impedance spectroscopy analysis through distribution function of relaxation times (DFRT) suggests that the improved activity originates from the suppression of resistance contributed by various relaxation processes. The oxygen reduction reaction (ORR) kinetics in these oxide-based cathodes has been studied by performing symmetric-cell measurements at high temperatures using both oxygen-ion and proton-conducting cells. DC bias dependence of charge-transfer processes, oxygen-surface kinetics, polarization resistances, and activation energies are revealed by DFRT studies. Ag addition in PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ leads to enhanced kinetics of OER, HER, and ORR.
Collapse
Affiliation(s)
- Ashok Kumar Baral
- Department of Chemical Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Kalimuthu Vijaya Sankar
- Department of Chemical Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Asia Matatyaho
- Department of Chemical Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Kushnir
- Department of Chemical Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yoed Tsur
- Department of Chemical Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
32
|
An inclusive review on the synthesis of molybdenum carbide and its hybrids as catalyst for electrochemical water splitting. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Qian G, Chen J, Luo L, Zhang H, Chen W, Gao Z, Yin S, Tsiakaras P. Novel Bifunctional V 2O 3 Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38061-38069. [PMID: 32846500 DOI: 10.1021/acsami.0c09319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance bifunctional transition metal catalysts would be significantly beneficial for electrocatalytic oxidation of urea-rich wastewater. Herein, we synthesize a V2O3 nanosheet anchored N-doped-carbon encapsulated Ni heterostructure (Ni@C-V2O3/NF) for the reactions of urea oxidation (UOR) and hydrogen evolution (HER). Electrochemical results indicate that it exhibits small potentials of 1.32, 1.39, and 1.43 V for UOR and low overpotentials of 36, 254, and 355 mV for HER at ±10, ± 500 and ±1000 mA cm-2, respectively. It can work at 100 mA cm-2 for over 72 h as cathode and anode electrode without obvious attenuation, suggesting an outstanding durability. The reason for this behavior could be ascribed to the N-doped-carbon coating structure, the synergetic effects between Ni and V2O3, and the nano/micro nanosheets architecture self-supported on nickel foam. This work could provide a promising, inexpensive, and green method for the degradation of urea-rich wastewater and hydrogen production.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Hao Zhang
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Zhejiang Gao
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, P. R. China
| | - Panagiotis Tsiakaras
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Russian Academy of Sciences, Yekaterinburg 620990, Russia
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos 38834, Greece
| |
Collapse
|
34
|
Tian Q, Wu T, Huang C, Fang G, Zhou J, Ding L. VS 2 and its doped composition: Catalytic depolymerization of alkali lignin for increased bio-oil production. Int J Biol Macromol 2020; 156:94-102. [PMID: 32289419 DOI: 10.1016/j.ijbiomac.2020.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
VS2 spheres and VS2 sheets with doped compositions (Mo, Ag and graphite) were successfully prepared by one-step hydrothermal method and characterized by different techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption isotherms. Catalysts were applied for the depolymerization of alkali lignin. VS2 spheres exhibited lower yield of degraded lignin and bio-oil than those with VS2 sheets and VS2 flowers heated to 250 °C and held for 1.5 h with 2.0 MPa H2. The catalytic depolymerization performance was markedly affected by the dopant in the VS2 sheets, with the highest degraded lignin yield of 81.22%, achieved over 5 wt% Ag-VS2 at 290 °C under 2.0 MPa H2 for 1.5 h, yielding 61.23% bio-oil. The VS2-based catalysts show excellent selectivity in the interruption of the lignin structure and target production of bio-oil. The bio-oil showed that the relevant contents of a phenolic-type compound changes significantly according to the dopant in the VS2 catalyst.
Collapse
Affiliation(s)
- Qingwen Tian
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Nanjing Forestry University, Nanjing 210037, China.
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Laibao Ding
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China.
| |
Collapse
|
35
|
Li D, Xing Y, Yang R, Wen T, Jiang D, Shi W, Yuan S. Holey Cobalt-Iron Nitride Nanosheet Arrays as High-Performance Bifunctional Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29253-29263. [PMID: 32498507 DOI: 10.1021/acsami.0c05219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing efficient metal nitride electrocatalysts with advantageous nanostructures toward overall water splitting is of great significance for energy conversion. In this work, holey cobalt-iron nitride nanosheet arrays grown on Ni foam substrate (CoFeNx HNAs/NF) are prepared via a facile hydrothermal and subsequent thermal nitridation method. This unique HNA architecture can not only expose abundant active sites but also facilitate the charge/mass transfer. Resulting from these merits, the CoFeNx HNAs/NF exhibits high catalytic performance with overpotentials of 200 and 260 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER) and 50 mA cm-2 for the oxygen evolution reaction (OER), respectively. Furthermore, when using CoFeNx-500 HNAs/NF as both anode and cathode, the alkaline electrolyzer could afford a current density of 10 mA cm-2 at 1.592 V, higher than many other metal nitride-based electrocatalysts. This work signifies a simple approach to prepare holey metal nitride nanosheet arrays, which can be applied in various fields of energy conversion and storage.
Collapse
Affiliation(s)
- Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yingying Xing
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Rong Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tai Wen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shouqi Yuan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
36
|
Li W, Kheimeh Sari HM, Li X. Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metal-Ion Batteries: Progress and Opportunities. CHEMSUSCHEM 2020; 13:1172-1202. [PMID: 31777162 DOI: 10.1002/cssc.201903081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Rechargeable metal-ion batteries (RMIBs), as one of the most viable technologies for electric vehicles (EVs) and large-scale energy storage (EES), have received extensive research attention for a long time. Electrode materials play a decisive role on capacity, energy, and power density, which directly affect the practical applications of RMIBs in EVs and EES. As an electrode material, layered metallic vanadium disulfide (VS2 ) has theoretically and experimentally produced inspiring results because of its synthetic characteristics of continuously adjustable V valence, large interlayer spacing, weak interlayer interactions, and high surface activity. Herein, the synthetic strategies, theoretical metal-ion storage sites, diffusion kinetics, and experimental electrochemical reaction mechanisms of VS2 for RMIBs are systematically introduced. Emphatically, the critical issues that affect the metal-ion storage properties of the VS2 electrode and three major enhancement strategies, namely, optimizing the electrolyte and cutoff voltage, constructing a space-confined structure, and controlling the crystal structure are summarized, with the aim of promoting the development of transition-metal dichalcogenides. Finally, the challenges and opportunities for the future development of VS2 in the energy-storage field are presented. It is hoped that this review can attract attention from researchers for investigations into emerging layered metallic VS2 and provide insights toward the design of an excellent VS2 electrode material for next-generation, high-performance RMIBs.
Collapse
Affiliation(s)
- Wenbin Li
- Shaanxi International Joint Research Center of, Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy &, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, P.R. China
| | - Hirbod Maleki Kheimeh Sari
- Shaanxi International Joint Research Center of, Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy &, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, P.R. China
| | - Xifei Li
- Shaanxi International Joint Research Center of, Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy &, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, P.R. China
| |
Collapse
|
37
|
Liang C, Cao W, Zhou L, Yang P, Zhao X, Zhao P, Qiu R, Yang L, Huang Q, Astruc D. Design, Synthesis and High HER Performances of 3D Ni/Mo Sulfide on Ni Foam. ChemCatChem 2020. [DOI: 10.1002/cctc.201902278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chong Liang
- School of Chemical EngineeringSichuan University Chengdu 610065 P.R. China
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Wei Cao
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Linsen Zhou
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Pan Yang
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Xiaochong Zhao
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Pengxiang Zhao
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Ruizhi Qiu
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Lijun Yang
- Institute of MaterialsChinese Academy of Engineering Physics Jiangyou 621908 P.R. China
| | - Qing‐song Huang
- School of Chemical EngineeringSichuan University Chengdu 610065 P.R. China
| | - Didier Astruc
- ISM, UMR CNRS N°5255University Bordeaux 351 Cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
38
|
Wang Z, Xu W, Yu K, Feng Y, Zhu Z. 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting. NANOSCALE 2020; 12:6176-6187. [PMID: 32133477 DOI: 10.1039/d0nr00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel electrocatalytic material VS2@V2C was proposed for the first time and successfully prepared by a one-step hydrothermal method. T-VS2 nanosheets were uniformly and vertically embedded on the V2C (MXene) matrix with a fewer layer structure. Owing to the fast charge transfer process at the interface of the two-phase structure and good conductivity, the composite material showed a lower hydrogen evolution overpotential and a very low Tafel slope in highly alkaline and highly acidic electrolytes (164 mV and 47.6 mV dec-1 in 1.0 M KOH; 138 mV and 37.9 mV dec-1 in 0.5 M H2SO4) under a current density of 20 mV cm-2. More importantly, high-efficiency and stable electrolysis of seawater was achieved at a current density greater than 100 mA cm-2, and the catalytic performance was significantly better than that of platinum-based alloys. First-principles calculations mechanically confirmed that VS2@V2C had higher carrier mobility and lower free energy of hydrogen adsorption. The VS2 nanosheets that grew outwards could provide support to avoid agglomeration on the catalyst surface and the edge sulfur sites of VS2 could promote the binding of adsorbed hydrogen atoms and the desorption of hydrogen molecules. Our work is expected to provide a valuable reference for the design and synthesis of the structure of industrial catalysts for hydrogen production from seawater in the future.
Collapse
Affiliation(s)
- Zhenguo Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Wangqiong Xu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yu Feng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Ziqiang Zhu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
39
|
Wang B, Li Y, Liu K, Zhang J, Wu X. Biomolecule-assisted synthesis of porous network-like Ni 3S 2 nanoarchitectures assembled with ultrathin nanosheets as integrated negative electrodes for high-performance lithium storage. NEW J CHEM 2020. [DOI: 10.1039/d0nj02890h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous network-like Ni3S2 nanoarchitectures have been successfully synthesized on nickel foam via a facile eco-friendly biomolecule-assisted hydrothermal process, in which l-cysteine is served as both the sulfur source and the directing molecule.
Collapse
Affiliation(s)
- Bo Wang
- Department of Environmental and Chemical Engineering
- Tangshan University
- Tangshan 063000
- P. R. China
| | - Yue Li
- Department of Environmental and Chemical Engineering
- Tangshan University
- Tangshan 063000
- P. R. China
| | - Kun Liu
- Department of Environmental and Chemical Engineering
- Tangshan University
- Tangshan 063000
- P. R. China
| | - Jinhui Zhang
- Department of Environmental and Chemical Engineering
- Tangshan University
- Tangshan 063000
- P. R. China
| | - Xiaoyu Wu
- Department of Chemistry
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- P. R. China
| |
Collapse
|
40
|
Bao K, Yan Y, Liu T, Xu T, Cao J, Qi J. Constructing NiS–VS heterostructured nanosheets for efficient overall water splitting. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00239a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-supported porous NiS/VS heterostructured nanosheets were designed towards efficient electrocatalytic water splitting.
Collapse
Affiliation(s)
- Kai Bao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yaotian Yan
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Tao Liu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Tianxiong Xu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
41
|
Guo R, He Y, Wang R, You J, Lin H, Chen C, Chan T, Liu X, Hu Z. Uncovering the role of Ag in layer-alternating Ni3S2/Ag/Ni3S2 as an electrocatalyst with enhanced OER performance. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00611d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is increasingly important to develop an efficient OER catalyst that can provide high current density at low overpotentials to improve water splitting efficiency.
Collapse
Affiliation(s)
- Rui Guo
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Yan He
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
- Address here. School of Resources and Materials
| | - Renchao Wang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
- Address here. School of Resources and Materials
| | - Junhua You
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- China
| | - Hongji Lin
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu
- Taiwan
| | - Chiente Chen
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu
- Taiwan
| | - Tingshan Chan
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu
- Taiwan
| | - Xuanwen Liu
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
- Address here. School of Resources and Materials
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids
- Dresden 01187
- Germany
| |
Collapse
|
42
|
Qiu L, Jiang L, Ye Z, Liu Y, Cen T, Peng X, Yuan D. Phosphorus-doped Co3Mo3C/Co/CNFs hybrid: A remarkable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Chen G, Chen X, Song K, Zhao N, Wang W, Yin G, Liu Y. Design and Excellent HER Performance of a Novel 3D Mo–Doped Ni
3
S
2
/Ni Foam Composite. ChemistrySelect 2019. [DOI: 10.1002/slct.201902553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoli Chen
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Xiaoshuang Chen
- College of Chemistry and Chemical EngineeringQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Kun Song
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Nan Zhao
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Wenbo Wang
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Guangming Yin
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| | - Yongzhi Liu
- Analysis and Test CenterQiqihar University, Qiqihar Heilongjiang Province 161006 China
| |
Collapse
|
44
|
Fominski V, Gnedovets A, Fominski D, Romanov R, Kartsev P, Rubinkovskaya O, Novikov S. Pulsed Laser Deposition of Nanostructured MoS 3/np-Mo//WO 3-y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution. NANOMATERIALS 2019; 9:nano9101395. [PMID: 31574968 PMCID: PMC6836101 DOI: 10.3390/nano9101395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/04/2022]
Abstract
Pulsed laser ablation of MoS2 and WO3 targets at appropriate pressures of background gas (Ar, air) were used for the preparation of new hybrid nanostructured catalytic films for hydrogen production in an acid solution. The films consisted of a nanostructured WO3−y underlayer that was covered with composite MoS3/np-Mo nanocatalyst. The use of dry air with pressures of 40 and 80 Pa allowed the formation of porous WO3−y films with cauliflower- and web-like morphology, respectively. The ablation of the MoS2 target in Ar gas at a pressure of 16 Pa resulted in the formation of amorphous MoS3 films and spherical Mo nanoparticles. The hybrid MoS3/np-Mo//WO3−y films deposited on transparent conducting substrates possessed the enhanced (photo)electrocatalytic performance in comparison with that of any pristine one (MoS3/np-Mo or WO3−y films) with the same loading. Modeling by the kinetic Monte Carlo method indicated that the change in morphology of the deposited WO3−y films could be caused by the transition of ballistic deposition to diffusion limited aggregation of structural units (atoms/clusters) under background gas pressure growth. The factors and mechanisms contributing to the enhancement of the electrocatalytic activity of hybrid nanostructured films and facilitating the effective photo-activation of hydrogen evolution in these films are considered.
Collapse
Affiliation(s)
- Vyacheslav Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
| | - Alexey Gnedovets
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Dmitry Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
| | - Roman Romanov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
| | - Petr Kartsev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
| | - Oxana Rubinkovskaya
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia.
| | - Sergey Novikov
- Moscow Institute of Physics and Technology, Moscow 141700, Russia.
| |
Collapse
|
45
|
Das B, Sharma M, Hazarika A, Bania KK. Self‐Assembled Monolayer Stabilized Gold‐Vanadate Nanoflute for Water Splitting Reactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Biraj Das
- Department of Chemical SciencesTezpur University Assam India 784028
| | - Mukesh Sharma
- Department of Chemical SciencesTezpur University Assam India 784028
| | - Anil Hazarika
- Department of Electronics and Communication EngineeringTezpur University Assam India 784028
| | - Kusum K. Bania
- Department of Chemical SciencesTezpur University Assam India 784028
| |
Collapse
|
46
|
Shit S, Jang W, Bolar S, Murmu NC, Koo H, Kuila T. Effect of Ion Diffusion in Cobalt Molybdenum Bimetallic Sulfide toward Electrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21634-21644. [PMID: 31135125 DOI: 10.1021/acsami.9b06635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electrocatalyst comprising two different metal atoms is found suitable for overall water splitting in alkaline medium. Hydrothermal synthesis is an extensively used technique for the synthesis of various metal sulfides. Time-dependent diffusion of the constituting ions during hydrothermal synthesis can affect the crystal and electronic structure of the product, which in turn would modulate its electrocatalytic activity. Herein, cobalt molybdenum bimetallic sulfide was prepared via hydrothermal method after varying the duration of reaction. The change in crystal structure, amount of Co-S-Mo moiety, and electronic structure of the synthesized materials were thoroughly investigated using different analytical techniques. These changes modulated the charge transfer at the electrode-electrolyte interface, as evidenced by electrochemical impedance spectroscopy. The Tafel plots for the prepared materials were investigated considering a less explored approach and it was found that different materials facilitated different electrocatalytic pathways. The product obtained after 12 h reaction showed superior catalytic activity in comparison to the products obtained from 4, 8, and 16 h reaction, and it surpassed the overall water splitting activity of the RuO2-Pt/C couple. This study demonstrated the ion diffusion within the bimetallic sulfide during hydrothermal synthesis and change in its electrocatalytic activity due to ion diffusion.
Collapse
Affiliation(s)
- Subhasis Shit
- Surface Engineering & Tribology Division , Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute , Durgapur 713209 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Wooree Jang
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology (KIST) , Jeonbuk 565905 , South Korea
| | - Saikat Bolar
- Surface Engineering & Tribology Division , Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute , Durgapur 713209 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Naresh Chandra Murmu
- Surface Engineering & Tribology Division , Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute , Durgapur 713209 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Hyeyoung Koo
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology (KIST) , Jeonbuk 565905 , South Korea
| | - Tapas Kuila
- Surface Engineering & Tribology Division , Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute , Durgapur 713209 , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
47
|
Lin Y, Chen G, Wan H, Chen F, Liu X, Ma R. 2D Free-Standing Nitrogen-Doped Ni-Ni 3 S 2 @Carbon Nanoplates Derived from Metal-Organic Frameworks for Enhanced Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900348. [PMID: 30957975 DOI: 10.1002/smll.201900348] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/03/2019] [Indexed: 06/09/2023]
Abstract
2D metal-organic frameworks (2D MOFs) are promising templates for the fabrication of carbon supported 2D metal/metal sulfide nanocomposites. Herein, controllable synthesis of a newly developed 2D Ni-based MOF nanoplates in well-defined rectangle morphology is first realized via a pyridine-assisted bottom-up solvothermal treatment of NiSO4 and 4,4'-bipyridine. The thickness of the MOF nanoplates can be controlled to below 20 nm, while the lateral size can be tuned in a wide range with different amounts of pyridine. Subsequent pyrolysis treatment converts the MOF nanoplates into 2D free-standing nitrogen-doped Ni-Ni3 S2 @carbon nanoplates. The obtained Ni-Ni3 S2 nanoparticles encapsulated in the N-doped carbon matrix exhibits high electrocatalytic activity in oxygen evolution reaction. A low overpotential of 284.7 mV at a current density of 10 mA cm-2 is achieved in alkaline solution, which is among the best reported performance of substrate-free nickel sulfides based nanomaterials.
Collapse
Affiliation(s)
- Yifan Lin
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hao Wan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Fashen Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiaohe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
48
|
Guo M, Li Y, Zhou L, Zheng Q, Jie W, Xie F, Xu C, Lin D. Hierarchically structured bimetallic electrocatalyst synthesized via template-directed fabrication MOF arrays for high-efficiency oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Zhong X, Li Y, Zhang L, Tang J, Li X, Liu C, Shao M, Lu Z, Pan H, Xu B. High-Performance Sodium-Ion Batteries Based on Nitrogen-Doped Mesoporous Carbon Spheres with Ultrathin Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2970-2977. [PMID: 30588796 DOI: 10.1021/acsami.8b17473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hard carbon exhibits high theoretical capacity for sodium-ion batteries. However, its practical application suffers from low electric conductivity, poor electrochemical stability, and sluggish kinetics. To tackle these challenges, novel nitrogen-doped carbon spheres with mesopores, ultrathin nanostructure, and optimal graphitization are prepared by a three-step procedure. We find that the as-prepared sample (NMCSs-800) with an optimal structure and nitrogen content delivers a high reversible sodium storage capacity of 334.7 mA h/g at 50 mA/g and an ultrahigh rate performance of 93.9 mA h/g at 5 A/g, which is better than most state-of-the-art carbon materials. The improved energy storage capacity is attributed to its unique architecture and optimal nitrogen doping, which provide abundant active sites, defects, and voids. Moreover, kinetic analysis and in situ Raman spectroscopy results reveal adsorption and adsorption-intercalation mechanisms for Na+ storage in hard carbon at the slope region above 0.3 V and the other slope region of 0.3-0.02 V, respectively. We believe that our findings provide a novel tactic to design elaborate nanomaterials for the high-performance sodium-ion battery.
Collapse
Affiliation(s)
- Xiongwei Zhong
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | - Yingzhi Li
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | - Luozheng Zhang
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | - Jun Tang
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | - Xiangnan Li
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | - Chang Liu
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | | | - Zhouguang Lu
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| | | | - Baomin Xu
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong Province 518055 , China
| |
Collapse
|
50
|
Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 2019; 48:4178-4280. [DOI: 10.1039/c8cs00664d] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review describes an in-depth overview and knowledge on the variety of synthetic strategies for forming metal sulfides and their potential use to achieve effective hydrogen generation and beyond.
Collapse
Affiliation(s)
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
| | - Libo Deng
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Chris Bowen
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Yan Zhang
- Department of Mechanical Engineering
- University of Bath
- Bath
- UK
| | - Sanming Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Zhiqun Lin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Feng Peng
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|