1
|
Santos DA, Andrews JL, Lin B, De Jesus LR, Luo Y, Pas S, Gross MA, Carillo L, Stein P, Ding Y, Xu BX, Banerjee S. Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials. PATTERNS (NEW YORK, N.Y.) 2022; 3:100634. [PMID: 36569543 PMCID: PMC9768684 DOI: 10.1016/j.patter.2022.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging.
Collapse
Affiliation(s)
- David A. Santos
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Justin L. Andrews
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA,Corresponding author
| | - Binbin Lin
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Luis R. De Jesus
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Yuting Luo
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Savannah Pas
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Michelle A. Gross
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Luis Carillo
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Peter Stein
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Yu Ding
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Bai-Xiang Xu
- Institute of Materials Science, Mechanics of Functional Materials, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany,Corresponding author
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA,Corresponding author
| |
Collapse
|
2
|
Liu H, Liang X, Jiang T, Zhang Y, Liu S, Wang X, Fan X, Huai X, Fu Y, Geng Z, Zhang D. High-performance self-doped V4+-V2O5 ion storage films grown in situ using a novel hydrothermal-assisted sol-gel composite method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Frank A, Gänsler T, Hieke S, Fleischmann S, Husmann S, Presser V, Scheu C. Structural and chemical characterization of MoO 2/MoS 2 triple-hybrid materials using electron microscopy in up to three dimensions. NANOSCALE ADVANCES 2021; 3:1067-1076. [PMID: 36133289 PMCID: PMC9418330 DOI: 10.1039/d0na00806k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/24/2020] [Indexed: 06/16/2023]
Abstract
This work presents the synthesis of MoO2/MoS2 core/shell nanoparticles within a carbon nanotube network and their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shell material was prepared by atomic layer deposition of molybdenum oxide onto carbon nanotube networks, followed by annealing in a sulfur-containing gas atmosphere. High-resolution transmission electron microscopy together with electron diffraction, supported by chemical analysis via energy dispersive X-ray and electron energy loss spectroscopy, gave proof of a MoO2 core covered by few layers of a MoS2 shell within an entangled network of carbon nanotubes. To gain further insights into this complex material, the analysis was completed with 3D electron tomography. By using Z-contrast imaging, distinct reconstruction of core and shell material was possible, enabling the analysis of the 3D structure of the material. These investigations showed imperfections in the nanoparticles which can impact material performance, i.e. for faradaic charge storage or electrocatalysis.
Collapse
Affiliation(s)
- Anna Frank
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | - Thomas Gänsler
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | - Stefan Hieke
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | | | | | - Volker Presser
- INM - Leibniz Institute for New Materials Saarbrücken Germany
- Department of Materials Science and Engineering, Saarland University Saarbrücken Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
- Materials Analytics, RWTH Aachen University Aachen Germany
| |
Collapse
|
4
|
Zhang Y, Yuan X, Lu T, Gong Z, Pan L, Guo S. Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries. J Colloid Interface Sci 2020; 585:347-354. [PMID: 33302051 DOI: 10.1016/j.jcis.2020.11.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
As well-known, hydrated vanadium pentoxide (V2O5·nH2O) has a larger layer spacing than orthogonal V2O5, which could offer more active sites to accommodate lithium ions, ensuring a high specific capacity. However, the exploration of V2O5·nH2O cathode is limited by its inherently low conductivity and slow electrochemical kinetics, leading to a significant decrease in capability. Herein, we prepared V2O5·nH2O/reduced graphene oxide (rGO) composite with low rGO content (8 wt%) via a simple yet effective dual electrostatic assembly strategy. When used as the cathode material for lithium-ion batteries (LIBs), V2O5·nH2O/rGO manifests a high reversible capacity of 268 mAh g-1 at 100 mA g-1 and especially an excellent rate capability (196 mAh g-1 at 1000 mA g-1 and 129 mA h g-1 at 2000 mA g-1), surpassing those of the V2O5/carbon composites reported in the literatures. Notably, the remarkable performance should be referable to the synergetic effects between one-dimensional V2O5·nH2O nanobelts and two-dimensional rGO nanosheets, which provide a short transport pathway and enhanced electrical conductivity. This strategy opens a new opportunity for designing high-performance cathode material with excellent rate performance for advanced LIBs.
Collapse
Affiliation(s)
- Yajuan Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Jung S, Kim J. Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers (Basel) 2020; 12:E1714. [PMID: 32751674 PMCID: PMC7464808 DOI: 10.3390/polym12081714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
With increasing air pollution and sporadic outbreaks of epidemics, there is ramping attention on the filtration devices. The main constituents of airborne pollutants are particulate matters of solid particles, liquid aerosol, bioaerosol/bio-droplets, and gas/vapor. With the growing demand for high-performance filters, novel materials and functionalities are being developed applying advanced technologies. In this paper, recent developments of fiber-based particulate filters are reviewed, with a focus on the important performance parameters and material properties. Trends in technology and research activities are briefly reviewed, and the evaluative measures of filtration performance are reported. Recent studies on the advanced filter materials are reviewed in the aspect of polymers and the fabrication process of fibrous assembly. The characterization method including 3D modeling and simulation is also briefly introduced. Multifunctional filters such as antimicrobial filter and gas and particulate filters are briefly introduced, and efforts for developing environmentally sustainable filters are noted.
Collapse
Affiliation(s)
- Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Esper JD, Zhuo Y, Barr MK, Yokosawa T, Spiecker E, de Ligny D, Bachmann J, Peukert W, Romeis S. Shape-anisotropic cobalt-germanium-borate glass flakes as novel Li-ion battery anodes. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Qi Z, Wang H. Advanced Thin Film Cathodes for Lithium Ion Batteries. RESEARCH 2020; 2020:2969510. [PMID: 32110777 PMCID: PMC7026685 DOI: 10.34133/2020/2969510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
Binder-free thin film cathodes have become a critical basis for advanced high-performance lithium ion batteries for lightweight device applications such as all-solid-state batteries, portable electronics, and flexible electronics. However, these thin film electrodes generally require modifications to improve the electrochemical performance. This overview summarizes the current modification approaches on thin film cathodes, where the approaches can be classified as single-phase nanostructure designs and multiphase nanocomposite designs. Recent representative advancements of different modification approaches are also highlighted. Besides, this review discusses the existing challenges regarding the thin film cathodes. The review also discusses the future research directions and needs towards future advancement in thin film cathode designs for energy storage needs in advanced portable and personal electronics.
Collapse
Affiliation(s)
- Zhimin Qi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
|
9
|
Jung S, An J, Na H, Kim J. Surface Energy of Filtration Media Influencing the Filtration Performance against Solid Particles, Oily Aerosol, and Bacterial Aerosol. Polymers (Basel) 2019; 11:E935. [PMID: 31146436 PMCID: PMC6631268 DOI: 10.3390/polym11060935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023] Open
Abstract
Particulate airborne pollutants are a big concern to public health, and it brings growing attention about effective filtration devices. Especially, particulate matters smaller than 2.5 µm can reach the thoracic region and the blood stream, and the associated health risk can be exacerbated when pathogenic microbials are present in the air. This study aims at understanding the surface characteristics of nonwoven media that influence filtration performance against solid particles (sodium chloride, NaCl), oily aerosol (dioctyl phthalate, DOP), and Staphylococcus aureus (S. aureus) bacteria. Nonwoven media of polystyrene (PS) fibers were fabricated by electrospinning and its pristine surface energy (38.5 mN/m) was modified to decrease (12.3 mN/m) by the plasma enhanced chemical vapor deposition (PECVD) of octafluorocyclobutane (C4F8) or to increase (68.5 mN/m) by the oxygen (O2) plasma treatment. For NaCl particles and S. aureus aerosol, PS electrospun web showed higher quality factor than polypropylene (PP) meltblown electret that is readily available for commercial products. The O2 plasma treatment of PS media significantly deteriorated the filtration efficiency, presumably due to the quick dissipation of static charges by the O2 plasma treatment. The C4F8 treated, fluorinated PS media resisted quick wetting of DOP, and its filtration efficiency for DOP and S. aureus remained similar while its efficiency for NaCl decreased. The findings of this study will impact on determining relevant surface treatments for effective particulate filtration. As this study examined the instantaneous performance within 1-2 min of particulate exposure, and the further study with the extended exposure is suggested.
Collapse
Affiliation(s)
- Seojin Jung
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
| | - Jaejin An
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsangbuk-do 38412, Korea.
| | - Hyungjin Na
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsangbuk-do 38412, Korea.
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Itkis DM, Krivchenko VA, Kozmenkova AY, Pakhotina MS, Napolskiy FS, Gigli L, Plaisier J, Khasanova NR, Antipov EV. Extended Limits of Reversible Electrochemical Lithiation of Crystalline V
2
O
5. ChemElectroChem 2019. [DOI: 10.1002/celc.201801638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Victor A. Krivchenko
- Lomonosov Moscow State University 119991 Moscow Russia
- Moscow Institute of Physics and Technology 141701 Dolgoprudny, Moscow Reg. Russia
| | | | | | | | - Lara Gigli
- Elettra Sincrotrone Trieste S.C.p.A Trieste Italy
| | | | | | - Evgeny V. Antipov
- Lomonosov Moscow State University 119991 Moscow Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology 143026 Moscow Russia
| |
Collapse
|